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Abstract

Respiratory motion is known to degrade image quality in PET imaging. The necessary
acquisition time of several minutes per bed position will inevitably lead to a blurring
effect due to organ motion. A lot of research has been done with regards to motion
correction of PET data. As full-body PET-MRI became available recently, the anatomical
data provided by MRI is a promising source of motion information. Current PET-MRI-
based motion correction approaches, however, do not take into account the available
information provided by PET data. PET data, though, may add valuable additional
information to increase motion estimation robustness and precision.
In this work we propose a registration functional that is capable of performing
motion detection in gated data of two modalities simultaneously. Evaluation is
performed using phantom data. We demonstrate that performing a joint registration
of both modalities does improve registration accuracy and PET image quality.

Introduction
Respiratory motion is known to impair image quality as well as quantification in posi-

tron emission tomography (PET) [1]. As the acquisition of PET takes several minutes

per bed position, organ motion due to respiration cannot be avoided and will thus

result in blurred images. By using gating methods, the acquired PET data can be

divided into different motion phases. Gating reduces the amount of motion contained

within each gate to a large extent, yet at the expense of reduced statistics and thereby

image quality [2,3]. To alleviate this, motion between gates can be estimated and sub-

sequently be used to correct PET data for motion, resulting in a single image volume

with reduced motion artifacts and full statistics. Various approaches for motion estima-

tion of gated PET data have been studied, including optical flow [4], B-spline based

methods [5], and registration methods including mass-preservation [6].

The use of 4D-CT data for motion correction has been proposed [7]. The advantage

of this approach lies in the usage of anatomical data, which is independent of tracer

uptake. Acquisition of 4D-CT data, however, increases the radiation burden for the

patient.

Whole body PET-MRI is promising regarding PET motion correction. High resolu-

tion MR data may allow for a precise motion estimation independent of tracer uptake
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and without additional radiation burden for the patient. The feasibility of PET-MRI-

based motion correction of PET data has been demonstrated already, e.g., using hard-

ware phantoms [8], animals [9], and simulation data [10]. A commonality of current

approaches to MR-based motion correction is that a 4D MR dataset is acquired from

which motion is estimated and subsequently used in the correction of PET data.

Strategies for the generation of 4D MR include acquisition of 2D slices with subse-

quent reordering [11], fast, consecutive acquisitions of 3D volumes [12], and sorting of

k-space data during or after acquisition [13,14]. Fayad et al. propose an approach

where motion and image data are estimated simultaneously from the acquired MR

data [15].

The motion information contained in PET data, however, remains unused in these

approaches. In clinical routine, time for the acquisition of MR data needed for motion

correction may be limited, as clinical protocols may demand for further, diagnostic

sequences [16]. Since time is proportional to image quality in MR, limited acquisition

time may not allow to exploit the full potential of MR, resulting in poorer image qual-

ity than technically possible. Accordingly, all available information for motion estima-

tion, including PET data, should be used.

Further, both modalities may contribute valuable information to the motion detec-

tion process. In MR, e.g., the lungs give relatively little signal due to their low proton

density [14]. Integrating information from PET data, if, e.g., active lesions are present

in the lungs, may benefit motion estimation. Using information from both modalities

should result in more reliable registration results. In the present work we propose an

approach that uses information from both modalities by combining two registration

functionals into a joint functional.

Methods
For motion correction approaches in PET-MRI, proper synchronisation of MR and

PET is mandatory. The motion determined from MR has to be related to the PET data

with respect to time. For the approach described in the following, we assume a gated

PET dataset as well as a series of MR datasets. We assume that each PET gate corre-

sponds to one MR gate with respect to its motion phase. The feasibility of creating

corresponding phases has been demonstrated, e.g., in [14].

In the following we describe the proposed registration functional, followed by a

description of the phantom data used in this work.

Registration functional

Registration can be formulated as the problem of finding the transformation y that

minimizes

J (y) = D(T (y),R) + α · S(y) (1)

where D is a distance functional, Ris the reference volume, T is the template

volume to be registered, and S is a regularizer penalizing unfavourable transforma-

tions. The scalar value a weights the influence of the regularizer. For non-rigid trans-

formations, y is chosen as a non-parametric transformation (one vector per voxel).

The registration functional J (y) in Equation (1) could be applied to each modality

independently. Ideally, the resulting transformations for both modalities, PET and MR,
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should be equal. This, however, will not occur in reality, as both modalities do not

provide the same, but complimentary information. The objective is thus to combine

two registration functionals into one:

J (y) = D(TMR(y),RMR) + β · D(TPET(y),RPET) + α · S(y) (2)

Here, RMR and RPET denote two reference volumes and TMR and TPET the template

volumes. The scalar value b allows to weight the influence of the data term for PET.

In the registration functional in Equation (2), the deformation is represented by a

common grid y for both modalities. Since the input data will not necessarily share the

same resolution, resampling to a common grid is performed. Here, we chose a com-

mon grid of 2 mm3 voxel size.

For S we use a hyperelastic regularizer for its ability to penalize changes in volume,

area, and length separately. The hyperelastic regularizer Shyper is defined as

Shyper(y) = αl · S length(y − yref) + αa · Sarea(y) + αv · Svolume(y), (3)

where yref is a reference grid, given by the identity transformation in our case. The

three summands control changes in length, surface area, and volume. Parameters for

the hyperelastic regularizer were chosen empirically as al = 1, aa = 0.1, av = 1.

Throughout all experiments in this paper, we keep al, aa, av fixed and vary the regu-

larization strength by changing a in Eq. (2). For further details regarding the regulari-

zer we refer to [17].

As the distance functional D, we choose the sum of squared differences (SSD) for

both PET and MR. The functional was implemented using the Matlab-based FAIR

toolbox [18]. For all registration experiments, linear interpolation was used and a

multi-level approach using a downscaling factor of 0.5 was applied. Optimiziation was

performed using a Gauss-Newton scheme with a preconditioned conjugate gradient

solver.

Phantom data

In the present work we use data generated using a software phantom for evaluation.

This allows us to compare motion estimates against ground-truth motion data. The

XCAT phantom [19] is widely used as the basis for the simulation of imaging modal-

ities and the evaluation of correction methods, e.g., in [6,20,21]. Using the XCAT

phantom, we created an artificial PET-MRI dataset as described in the following.

The XCAT phantom was set to a maximum diaphragm motion of 2 cm. We selected

eight frames representing the full range from inspiration to expiration [22].

For the creation of MR data a labelled XCAT dataset of 1 mm3 resolution was created.

This dataset and known tissue values for T1, T2, and proton density [23,24] were used as

an input to the freely available MR simulation software SIMRI [25]. We simulated an MR

acquisition of stacked 2D slices covering the thorax. For respiratory motion, the largest

amount of motion can be expected in the cranio-caudal and anterior-posterior directions.

Thus, a sagittal slice orientation was chosen to capture these directions in-plane. For the

phantom dataset used here, the maximum extents of motion are 2.5 mm (left-right), 10.9

mm (anterior-posterior), and 25.2 mm (head-feet). The following MR parameters were

used: gradient echo, TE/TR 10 ms/30 ms, 12° flip angle, 256 × 256 pixels, 2 mm pixel size

in-plane, slice spacing 1 cm, slice thickness 1 cm.
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For PET data creation an XCAT dataset with lesions added to the lungs and the liver

was created (heart 50 kBq/ml, liver 20 kBq/ml, background 2 kBq/ml, lesions 50 kBq/ml,

lesion diameter 5 mm). Sinograms were created by forward-projection using the geometry

of the Siemens Biograph mMR scanner. Poisson noise was added to the sinograms. Addi-

tionally, attenuation was added using the attenuation maps provided by the XCAT phan-

tom. For comparison, a second phantom as described above was created, but without

lesions. Subsequently, the sinograms were reconstructed. All projections and reconstruc-

tions were performed using EMRECON [26]. The generated data is shown in Figure 1.

Evaluation

Using the phantom data described above allows for evaluation based on ground-truth

motion as well as ground-truth activity data. First, we set b = 0, thereby performing an

MR-based registration and use varying values of a to determine the best result for an

MR-based registration.

Using the determined registration parameters, we compute registrations for increas-

ing values of b, thus adding increasing amounts of PET information to the registration.

The resulting deformation fields y are compared to the ground-truth motion provided

by the XCAT phantom by means of the averaged endpoint error (AEE) defined by

AEE(y, yGT) =
1

|�| ·
∑
x∈�

√√√√ 3∑
i=1

(yi(x) − yGTi (x))
2

where Ω is the image domain, yi the i-th component of vector y, and yGT the

ground-truth vector. Here, we examine averaged values of the AEE for all gates.

Further, the computed motion estimates are used to perform a motion correction of the

dataset. The PET gates are warped using the computed motion and averaged. We evaluate

correlation values of the corrected images as well as the recovered activities in the three

lesion regions. For all registrations, attenuated PET data are used. For evaluation of corre-

lation coefficients and activity recovery, attenuation corrected PET data are used.

Results
Registration accuracy

Figure 2 shows the average endpoint error for registrations with increasing regulariza-

tion strength a. A value of a = 75 minimizes the overall average endpoint error.

Figure 1 Phantom Data (a) Simulated PET data, coronal view. Visible are lesions in both lungs and in
the liver. (b) Overlay of PET and MR, coronal view. (c) Overlay of PET and MR, sagittal view. (d) Simulated
MR data, sagittal slice.
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Figure 3 shows results for increasing values of b. By increasing b, AEEs for the heart

and the lung are slightly reduced, whereas the global error and the error in the liver

region increases slightly.

In Figure 4 AEEs for the lesion regions are shown. In Figure 4a we show results for

the phantom with added lesions as described above. For all three lesion regions a sig-

nificant decrease in AEE can be observed. To examine if the decrease in AEE is indeed

caused by a better registration due to the information provided by the lesions, we

Figure 2 Average Endpoint Error for MR-only registration. The figure shows the global average
endpoint error (AEE) for a range of regularization values a. PET weight b is kept to zero here. A minimum
at a = 75 is observable.

Figure 3 Average Endpoint Error for varying degrees of PET influence. Shown is the AEE for local
regions and globally for increasing additions of PET to the registration (weight b). The upper plot gives the
AEE, the lower plot the percentage change with respect to the MR-only registration (a = 75, b = 0).
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repeated this experiment with the same phantom but without lesions. Results for this

experiment are shown in Figure 4b. Apart from the liver lesion region, the AEE for the

lesions remains almost unchanged for increasing values of b.

Correlation coefficients

After applying the motion estimates to the input data, we evaluated the average correla-

tion of all corrected PET gates with respect to the target gate. To evaluate if adding PET

information to the registration impairs correlation values for MR data, the motion esti-

mates were used to warp the MR data as well. Results are given in Figure 5, for full image

data (global) as well as for the heart region. The correlation of the PET data is increased

with increasing values of b while correlation values of the MR data decrease only slightly.

Recovered activity in lesions

In Figure 6, evaluation results regarding recovered activity in the three lesions are

given as average and maximum activity. Adding information from PET data leads to a

better recovery of activity. With very large values of b, activity recovery is decreasing

again.

Discussion
Using the joint registration approach, local improvements are observable. For the heart,

the lungs, and the lesions (lungs and liver), improvements in terms of registration error

(AEE) are achieved. In particular the lesions in the lungs show a large reduction in

registration error when PET data are added to the registration. For the liver region, an

Figure 4 AEE for lesions. (a) The upper plot shows the AEE for different weights b. A large reduction of
AEE with increasing weight b is observable for the lesion regions. (b) Same evaluation as in (a) but for
registrations using a phantom without lesions. The reduction of average endpoint error is more
pronounced when active lesions are present, indicating that it is the information by the lesions that leads
to an improvement.
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increase of the AEE is observable. For the area of the lesion added to the liver, though,

the AEE is decreased. With the exception of the liver region in toto, those regions that

exhibit tracer uptake in PET seem to contribute to a better motion estimation result.

Correlation of PET data is improved if PET data is added to the registration, indicating

a benefit. Additionally, the lower registration error leads to a slightly better recovery of

the activity in the lesions. Globally, a slight increase of the AEE is observable with

increasing values of b.

Figure 5 Averaged Correlation. The upper plots show the averaged correlation of all PET gates after
correction for a range of values of a and b, the lower plots give the averaged correlation of the MR gates.
While the averaged correlation of the PET gates is increased, the correlation of the MR gates is only slightly
reduced. For proper comparison, the z-axes are set to the same scaling.

Figure 6 Lesion Activity Recovery. Maximum and averaged activities in the added lesions after motion
correction using the respective values of a and b. Generally, addition of PET (moderately increasing values
of b) lead to a better recovery of the activity.
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The results presented here indicate that a benefit of using motion information from

both modalities, MR and PET, is achievable. Certainly, the extent of the benefit will

depend on many factors, with one major factor being the image quality of the two

image modalities. The amount of remaining motion-induced blurring within the indivi-

dual MR and PET gates will certainly limit the precision to which motion can be esti-

mated. The extent to which PET can contribute will as well depend on the image

quality, determined by factors like, e.g., type of injected tracer, injected dose, tracer

uptake, and acquisition time. The phantom data used here does not contain artifacts

other than noise. Particularly, we did not simulate motion artifacts which are likely to

occur during MR acquisitions.

Conclusion
We have presented a joint registration functional that makes use of motion informa-

tion derived from PET and MR data simultaneously. In this approach, motion informa-

tion from both modalities is used. We demonstrated that the proposed method leads

to a lower local registration error and better recovery of lesion activity, thus using

information from both modalities simultaneously is beneficial regarding motion correc-

tion. As a result, clinical scenarios involving lesion quantification might in particular

benefit from the proposed method.

In future work, we will evaluate our approach for a broader range of data, including

cardiac motion. This will include the addition of mass-preservation [6]. Certainly, the

phantom data used in this work does only approximate reality. Thus, we will evaluate

the proposed approach on real phantom data.
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