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Abstract
Background: In this paper a novel method for prostate segmentation in transrectal ultrasound
images is presented.

Methods: A segmentation procedure consisting of four main stages is proposed. In the first stage,
a locally adaptive contrast enhancement method is used to generate a well-contrasted image. In the
second stage, this enhanced image is thresholded to extract an area containing the prostate (or
large portions of it). Morphological operators are then applied to obtain a point inside of this area.
Afterwards, a Kalman estimator is employed to distinguish the boundary from irrelevant parts
(usually caused by shadow) and generate a coarsely segmented version of the prostate. In the third
stage, dilation and erosion operators are applied to extract outer and inner boundaries from the
coarsely estimated version. Consequently, fuzzy membership functions describing regional and
gray-level information are employed to selectively enhance the contrast within the prostate region.
In the last stage, the prostate boundary is extracted using strong edges obtained from selectively
enhanced image and information from the vicinity of the coarse estimation.

Results: A total average similarity of 98.76%(± 0.68) with gold standards was achieved.

Conclusion: The proposed approach represents a robust and accurate approach to prostate
segmentation.

1 Introduction
Prostate cancer is one of the most frequently diagnosed
forms of cancer in the male population and the second
cancer-related cause of death for this group [1,2]. Ultra-
sound imaging is a widely used technology for prostate
biopsy. The accurate detection of the prostate boundary in
ultrasound images is crucial for some clinical applica-
tions, such as the accurate placement of the needles dur-
ing the biopsy, accurate prostate volume measurement
from multiple frames, constructing anatomical models

used in treatment planning and estimation of tumor bor-
der. These images are the result of reflection, refraction
and deflection of ultrasound beams from different types
of tissues with different acoustic impedance [3]. However,
in ultrasound images the contrast is usually low and the
boundaries between the prostate and background are
fuzzy. Also speckle and weak edges make the ultrasound
images inherently difficult to segment. Furthermore, the
quality of the image depends on the type and particular
settings of the machine. All these factors make the analysis
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of ultrasound images challenging. But it still remains an
important image modality for clinical applications and an
automatic segmentation of these images is highly desira-
ble. This work is organized as follows: In section II exist-
ing literature on prostate segmentation is briefly reviewed.
The motivation for this work is summarized at the end of
section II. Section III introduces the proposed approach
and describes its main components in detail. Section IV
validates the performance of the method via visual inspec-
tion and some quantitative measures. Section V concludes
the work.

2 Related work
Currently, the prostate boundaries are generally extracted
from TRUS images [3]. As previously mentioned, in TRUS
images of the prostate, the signal-to-noise ratio is very
low. Therefore, traditional edge detectors fail to extract the
correct boundaries. Consequently, many methods have
been introduced to facilitate more accurate and automatic
or semi-automatic segmentation of the prostate bounda-
ries from the ultrasound images.

Knoll et al. [4] considered deformable contours for pros-
tate segmentation in medical images for both initializa-
tion and modeling. They have proposed a method based
on a one-dimensional dyadic wavelet transform as a mul-
tiscale contour parameterization technique to constrain
the shape of the prostate model.

Richard et al. [5] presented an algorithm which segments
a set of parallel 2D images of the prostate into prostate
and non-prostate regions to form a 3D image of the pros-
tate. This texture-based algorithm is a pixel classifier based
on four texture energy measures associated with each pixel
in the image. Clustering techniques are then used to label
each pixel in the image with the label of the most proba-
ble class.

Arnink et al. [6] described a method for determination of
the contour of the prostate in ultrasound images. They
have used an edge detection technique based on nonlin-
ear Laplace filtering. The method then combines the infor-
mation about edge location and strength to construct an
edge intensity image. Finally, edges representing a bound-
ary are selected and linked to build the final outline.

Ladak et al. [7,19] proposed an algorithm for semi-auto-
matic segmentation of the prostate from 2D ultrasound
images. The algorithm uses model-based initialization
and a discrete dynamic contour. First, the user must select
four points around the prostate. Then the outline of the
prostate is estimated using cubic interpolation functions
and shape information. Finally, the estimated contour is
deformed automatically to better fit the image. This semi-
automatic algorithm can segment a wide range of prostate

images, but at least four initial points must be selected
manually by the user (radiologist).

Prater et al. [8] presented a method for segmentation of
the prostate in transrectal ultrasound images based on
feed-forward neural networks. This method segments
images to prostate and non-prostate regions. Three neural
network architectures have been proposed. These net-
works are trained using a small portion of a training image
segmented by an expert and then applied to the entire
training image.

Wang et al. [30] presented two methods for semiauto-
matic three-dimensional (3-D) prostate boundary seg-
mentation using 2-D ultrasound images. The
segmentation process is initiated by manually placing
four points on the boundary of a selected slice. Then an
initial prostate boundary is determined. It is refined using
the Discrete Dynamic Contour until it fit the actual pros-
tate boundary. The remaining slices are then segmented
by iteratively propagating the result to another slices and
implementing the refinement.

Hu et al. [31] proposed an algorithm for semiautomatic
segmentation of the prostate from 3D ultrasound images.
In this method the authors use model-based initialization
and mesh refinement using deformable models. Six
points are required to initialize the outline of the prostate
using shape information. The initial outline is then auto-
matically deformed to better fit the prostate boundary.

Chiu emphet al. [32] introduced a semi-automatic seg-
mentation algorithm based on the dyadic wavelet trans-
form and the discrete dynamic contours. In this method
first a spline interpolation is used to determine the initial
contour based on four user-defined initial points. Then
the discrete dynamic contour refines the initial contour
based on the approximate coefficients and the wavelet
coefficients generated using the dyadic wavelet transform.
A selection rule is used as well to choose the best contour
based.

Abolmaesumi et al. [33] used a segmentation technique to
extract prostate contours from Transrectal Ultrasound
images. In this method an Sticks filter is used to reduce the
speckle. The problem is then discretized by projecting
equispaced radii from an arbitrary seed point inside the
prostate cavity towards its boundary. Candidate edge
points obtained along each radius include the measure-
ment points and some false returns. This modelling
approach is used for prostate contour extraction.

Ghanei et al. [9] proposed a three-dimensional deforma-
ble surface model for prostate segmentation based on a
discrete structure which is made from a set of vertices in
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the 3D space as triangle facets. The model converges from
using a weighted sum of the internal and external forces.
The model is initialized manually from a few human-
drawn polygons drawn on different slices.

Pathak et al. [10] proposed an algorithm for guided edge
delineation which provides automatic prostate edge
detection as a visual guide to the observer. It is followed
by manual editing. The edge detection algorithm contains
three stages. First, the sticks algorithm is used to enhance
contrast and reduce speckle in the image. Second, the
resulting image is smoothed using an anisotropic diffu-
sion filter. Finally, some basic prior knowledge of the
prostate, such as shape and echo pattern, is used to detect
the most probable edges which indicate the prostate
shape. In the last stage, the information is integrated by
using a manual linking procedure on the detected edges.

Shen et al. [11] introduced a statistical shape model to seg-
ment the prostate in transrectal ultrasound images. First, a
Gabor filter bank is used in both multiple scales and mul-
tiple orientations to characterize the prostate boundaries.
The Gabor features are reconstructed to be invariant to the
rotation of the ultrasound probe. Then, a hierarchical
deformation strategy is used. The model focuses on the
similarity of different Gabor features at different deforma-
tion stages using a multiresolution technique. The authors
have also introduced an adaptive focus deformable
model, which uses the concept of an attribute vector [12].

In another work Gong et al. [28] presented an approach
based on deformable models. In this technique, model
initialization and constraining model evolution are based
on prior knowledge about the prostate shape. The prostate
shape has been modeled using deformable superellipses.

Betrouni et al. [29] discussed a method for the automatic
segmentation of trans-abdominal ultrasound images of
the prostate. In this method a filter is used to enhance the
contours without changing the information in the image.
Adaptive morphological and median filtering are
employed to detect the noise-containing regions and
smooth these areas. Then a heuristic optimization algo-
rithm begins to search for the contour initialized from a
prostate model.

Generally, prostate segmentation methods have limita-
tions when the image contains shadows with similar gray
level and texture attached to the prostate, and/or missing
boundary segments. In these cases the segmentation error
may increase considerably. Another obstacle may be the
lack of a sufficient number of training (gold) samples if a
learning technique is employed. Algorithms based on
active contours have been quite successfully implemented

with the major drawback that they depend on user inter-
action to determine the seed points (initial snake).

Based on an analysis of the existing literature a new
approach should ideally possess certain properties:

• User interaction (e.g. defining seed points) may not be
always desirable due to its drawbacks such as time con-
sumption, human error etc. The new technique, therefore,
should require a minimum level of user interaction.

• Providing a large number of training samples in medical
environments is generally difficult, specially if the sam-
ples are being prepared by an expert. Hence, sample-based
learning should be avoided.

• The approach must be robust with respect to the pres-
ence of noise and shadow.

In this paper, by introducing a multi-stage, coarse-to-fine
approach, we establish a straightforward algorithm which
attempts to satisfy the above conditions as much as possi-
ble. In this method some input parameters must be
adjusted for series of images (i.e. images captured with a
certain equipment setting).

3 Proposed approach
In this section, we will present a new region- and gray-
scale-based approach to prostate segmentation in ultra-
sound images. The proposed approach contains four
main stages (see Fig. 1):

• Pre-Processing: After smoothing, using a locally-adap-
tive contrast enhancement technique, a primary version of
the image which has sufficient contrast across the image is
produced (see section 3.1).

• Coarse Segmentation: The obtained image is thresh-
olded and some morphological operators are applied
until an isolated object related to the prostate is produced.
The central point of this object can be considered as the
central point of the prostate. Subsequently, using a
Kalman estimator, a coarse estimation for the prostate
boundary is obtained. This coarse estimation is not accu-
rate, but we just use it as input for the next stage (see sec-
tion 3.2).

• Selective Enhancement: Using coarse estimation, one
eroded and one dilated version can be produced. These
are used to establish regional fuzzy membership func-
tions. By defining a fuzzy inference system based on the
produced membership functions, a selective contrast
enhancement can be obtained in the area of the prostate
(see section 3.3).
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• Prostate Segmentation: Finally, the algorithm finds
potential boundary pieces and extracts the prostate
boundary (see section 3.4).

In the following sections, each stage of the proposed
approach will be described in detail.

3.1 Pre-processing
Transrectal ultrasound images are heavily corrupted with
noise. Since we just need a rough estimation for the next
stage, we can remove the noise using a median filter (7 ×
7 or 9 × 9). It should be mentioned that this smoothed
version is only used for the next step. For the final segmen-
tation we use the "original" ultrasound image. Therefore,
the median filter does not manipulate the edge informa-
tion needed for the final segmentation. Fig. 2 shows the
original TRUS and its smoothed version.

In order to enhance the contrast of the image, a locally-
adaptive method based on fuzzy sets has been used to cre-
ate a primary version which has enough contrast
[13,14,25].

In a fuzzy approach, an image can be presented as an array
of fuzzy singletons (a membership function with only one
supporting point). Each of these singletons has a value
that denotes the membership of each pixel to a predefined

image property. The properties can be defined globally for
the whole image or locally for sub-images [13]. In the case
of contrast enhancement using fuzzy techniques, some
parameters of spatial domain, such as minimum gray-
level gmin or maximum gray-level gmax, are needed. In a glo-
bal method, finding those parameters is simple, but if we
want to enhance the image in a locally approach, then we
must calculate these parameters for each local neighbor-
hood to adjust the membership function. Tizhoosh et al.
[13] have presented a locally adaptive approach to find
the parameters for some support points for an M × N-
image and interpolate these values to obtain correspond-
ing values for each pixel. It is clear that these interpolated
parameters are not precise, but because the concept of
fuzziness is incorporated, the input data have not to be
exact [13,14]. In the method proposed in [13], first the
image is divided into MS rows and NS. This leads to a
matrix with the size of MS × NS. Each element in this
matrix corresponds to a supporting point for the image. A
window around each supporting point is considered to
find the local information for that point. In a general case
the size of window around each supporting point
depends on the degree of homogeneity or edginess of
local pixels in the corresponding sub-image. Small

Schematic diagram of the proposed approachFigure 1
Schematic diagram of the proposed approach.

Top: Original image, Bottom: Smoothed image using a median filter 9 × 9Figure 2
Top: Original image, Bottom: Smoothed image using a 
median filter 9 × 9.
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window sizes do not only increase the computational cost
but also sometimes fail to capture correct information due
to noise sensitivity. On the other hand, with large window
sizes, values obtained by interpolated parameters lose
their accuracy. In our application we use constant window
sizes around each supporting point to find the local infor-
mation. Just to avoid loss of information during the inter-
polation, the size of windows is chosen in a way that they
have enough overlap with each other. Using the local win-
dows we can extract local parameters, like gmin,local and
gmax,local. Applying a 2-D interpolation function (e.g. linear
or cubic), the membership function parameters can be
calculated for the whole image [13].

To apply this method in our case we have used a maxi-
mum window size of 40 × 40 and a minimum window
size of 20 × 20, both determined heuristically. The algo-
rithm calculates a proper window size between these two
values using fuzzy rules. Among methods introduced in
[13] we have employed a fuzzy rule-based approach to
enhance the contrast for the entire image [13-16]. The
input membership functions used in this fuzzy rule-based
approach are shown in Fig. 3.

For the output membership function we have used three
singleton values gS1 = 10, gS2 = 100 and gS3 = 255.

The result of applying the above method on the smoothed
image followed by global thresholding on the enhanced
image are shown in Fig. 4 and 5, respectively. As we can
see in Fig. 4, applying the primary contrast enhancement
makes a significant gray level difference between the dark
areas, including prostate, and bright gaps around the
prostate.

For global thresholding, all gray levels g less than a thresh-
old value T are set to zero and those greater than this
threshold are set to 255 such that a binary image with
black and white values g' is obtained. Fig. 5(a) shows the
result of applying global thresholding to the image in Fig.
4. The main advantage of applying the primary contrast
enhancement is that the bright gaps produced around the
prostate have distinctly large gray level intensities. Conse-
quently, an image with a bimodal histogram is produced.
T is chosen as a middle value between two peaks in the
histogram and for a large category of ultrasound images,
good performance of global thresholding can be expected.

3.2 Coarse estimation
This section demonstrates how a central point inside the
prostate can be found. We will see that using this point
and some other information how a Kalman estimator
achieves a coarse estimation of the prostate boundary.

The binary image obtained after thresholding contains
several black holes (Fig 5(a)). These holes can be filled
such that a completely white region is archived (Fig 5(b))
[17]. Applying the primary contrast enhancement stage
ensures the extraction of a white area corresponding to the
prostate in the thresholded image. This area must be iso-
lated from other white regions. One straightforward
method uses the morphological opening [17]. This oper-
ator must be applied with a large structuring element to
isolate the object corresponding to the prostate. Consider-
ing the geometrical location and the measurement of area,
the isolated object with high likelihood to be part of the
prostate can be distinguished. A point O inside the pros-
tate is required to perform the next stage. This point can
be simply obtained by finding the centroid point of this
isolated object.

Now we want to find a coarse estimation of the prostate
boundary. This can be solved using a Kalman filter [18]
for tracing the edges. We can use some properties of this
filter to extract the valid data from the thresholded image
and remove the irrelevant parts. To implement such a sys-
tem we interpret the problem of edge tracing as a dynamic
tracking system. In this system the pixels located on the
edge of an object of interest are used as the input (meas-
urement data) for the tracking filter. Using such a system
the Kalman filter can track a trajectory along the border of
the object. Each new pixel along the border brings
updated information for the current and future position.
We assume each pixel along the border to be in a dynamic

Input membership function for locally adaptive contrast enhancementFigure 3
Input membership function for locally adaptive contrast 
enhancement. It represents three terms for the fuzzy set 
"pixel intensity". Generally b is in the middle value of 
LocalMin and LocalMax, a is the middle values of LocalMin 
and b, and c is the middle value of LocalMax and b.
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movement. For this movement we can consider the posi-
tion and velocity as the variables which describe the state
of the system. Using a Kalman filter we can estimate the
position which is actually the border of the object of inter-
est. In fact we use a tracking system to follow the border.
In a 2D image we have two variables for position and two
variables for velocity. Because of the shape of the prostate
it is more efficient to represent the state variables in the
form of relative polar coordinates. We can use the internal
point O to define such state variables and consider the fol-
lowing state vector:

where r is the distance between the internal point O(xc, yc)
and pixels (xp, yp) located on the border of the prostate
and θ is the angle between the vertical axis and . Hence,
the following equations can be considered for r, θ,  and

:

where ,  are the radial and angular velocity, respec-
tively. Using the above state vector we represent the
sequential pixels on the border of the object of interest
(corresponding to the movement of vehicle on a path) by
radial and angular position and velocity. Kalman filter
considers a discrete dynamic model contains state and
measurement equations:

xk = Ak-1xk-1 + Bk-1Wk-1,  (6)

Zk = Hkxk + Vk,  (7)

where x is the state vector in equation 1. Other compo-
nents are defined as follows:

Primary high contrast version of the smoothed image from Fig. 2Figure 4
Primary high contrast version of the smoothed image from 
Fig. 2.
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where Wk ~ N(0,Qk) and Vk ~ N(0, Rk) are the process and
measurement noise, respectively. T is the interval which
represents the changes in the state and measurement
equations. The value of T does not affect the final result
and therefore we can choose it as T = l for simplicity. R and
Q are diagonal matrices. The values in these matrixes are
the measurement and process noise covariance, respec-
tively. In the area that border is changing smoothly the
measurement data is placed inside the association gate
and the value of measurement noise R should be small. In
the case when there is no data inside the association gate
we cannot be ensure about the validity of measurement
data. Therefore the value of measurement noise R should
be large. The large and small values for the measurement
noise depend on the quality of image and can be adjusted
between 5 to 100. The value of process noise in matrix Q
simulates the small variation around the estimated point.
For process noise we can consider a value between 4 to 8.
In the discrete dynamic equations the accelerations in the
radius and angle (the changes of radial and angular veloc-
ities) is modeled as a zero-mean, white, Gaussian noise W.
Also the measurement data Zk which is the location of
boundary pixels in the form of r and θ is assumed to be a
noisy version of the actual position of the boundary.
Kalman filtering is done using prediction and update
steps. The prediction equations include

xk|k-1 = Ak-1xk-1|k-1,  (11)

whereas update equations can be given as follows

Kk-1 = Pk|k-1Hk-1S-1,  (14)

xk-1|k-1 = xk-1|k-2 + Kk-1[Zk-1 - Hk-1xk-1|k-2],  (15)

where P is error covariance matrix, K is kalman gain and S
is innovation covariance matrix. For calculation of the
coarse version, the Kalman filter receives its initial data
from the nearest point placed on the vertical axis and on
the top of the internal point O. Then it starts the estima-

tion using the data located on the border of the object in
the thresholded image. In each sequential iteration, the
points along the prostate border can be used as measured
data and the Kalman filter estimates the next r and θ.
These predicted values determine a pixel as the next pixel
on the border. Also it predicts  and  for the next itera-
tion. When we go to the next iteration the new pixel on
the border is the new measured data for the filter. This
data is compared to the predicted position from the previ-
ous iteration. If there is sufficient correlation between
them the measured data is incorporated to update the fil-
ter state, otherwise the prediction point is considered as
measured point and after updating the filter starts the next
iteration. To measure the correlation we implement an
association process between the predicted and measured
data. For this association process we use a gate, the so-
called "association gate" around the predicted pixel. Only
the pixels located on the border and inside of this gate are
considered as valid measured data for updating the filter.
For good performance, the association gate must be adap-
tive. This means that the size of this gate must be varied
based on the covariance of the Kalman filter. The gate
must maximize the presence of valid data and minimize
invalid data. To find such a gate, the probability ratio
function, L, at the kth iteration must be maximized [18]:

where p1(k) and p0(k) are the probabilities of the presence
of valid data and invalid data in the gate, respectively. This
prompts us to check the value of a statistical distance d
with respect to a threshold D as follows [18]:

d2 ≤ D,  (17)
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with

d2 = lTP-1l,  (18)

where l is the vector of geometrical distance between the
predicted point and an arbitrary point l = (l1, l2), and P is
the covariance matrix of the Kalman filter. In two dimen-
sional problems, equation 18 is reduced to the following
form:

where a, b, c and e are the values of covariance matrix. This
is an equation for the points inside of an ellipse. The value
of D is generally a constant between 1 to 10. In the case
when there is no data inside the association gate we need
to capture the data. Therefore, the value of D should grad-
ually increase. Fig. 6 illustrates this local polar coordinate
schema and elliptical gating.

When the border reaches a shadow, or a missing bound-
ary segment is encountered, then there is an abrupt
change in the pixel path. These sharp changes are consid-
ered as new paths for tracking process. After a few itera-
tions Kalman filter detects that such cases do not belong
to the true path because the data do not correlate with the
followed path. The filter adaptively enlarges the associa-
tion gate until it again captures the true data on the border
which have enough correlation with the prediction. Using
the association technique the data belonging to shadows
and missing segments on the prostate border are detected
and eliminated. During the process, Kalman estimator fol-
lows the prostate border variations in a coarse manner
and irrelevant parts are isolated. Fig. 7 shows this coarse
estimation for the prostate.

In the most parts, the gray level difference produced by
primary contrast enhancement makes the prostate border
distinguishable after thresholding. Applying the Kalman
estimator ensures that the prostate is isolated from any
irrelevant parts and a coarse estimation is achieved. An
interesting result is that if the quality of ultrasound images
are good enough there is no irrelevant parts attached to
the prostate and the boundary can be visible after primary
contrast enhancement and thresholding. In these cases we
do not need to employ the Kalman filter and coarse esti-
mation may even be used as the final segmented image.

The quality of this coarse estimation directly depends on
the quality of the ultrasound image in terms of original
contrast, the presence and intensity of shadow, the noise
and so on. For all tested images the extracted coarse esti-
mation had sufficient accuracy to be passed to subsequent
stages.

3.3 Selective enhancement
In this section a new regional approach is introduced to
increase the prostate contrast. This will amplify the
strength of the outer prostate edges.

The previous section contained some techniques to find a
coarse estimation. Using the boundary generated by the
coarse estimation, two contours can be obtained such that
the true boundary is ideally located between them. In our
approach, these are called inner and outer contours. For
extracting the inner contour, an erosion operator with a
disk-shaped structuring element can be employed on the
coarse estimation. With the same structuring element and
using a dilation operator, the outer contour can be
obtained as well. These two contours are employed as
points of departure to define a membership function.

This membership function determines to what degree
does a pixel belong to the prostate. Fig. 8 illustrates the
membership function µlocation based on pixel position.
Because the boundary of the coarse estimation is extracted
from the object corresponding to the prostate, it can be
assumed that the true edges of the prostate are located
around this boundary. If the pixel is located outside of the
outer contour, the membership value is 0, if it is inside of
the inner contour, the membership value is 1. For the pix-
els in between, the nearest distance from the inner and
outer contours is determined and the value of member-
ship is calculated. Because the pixels located between the
inside contour and the coarse estimation boundary most
likely belong to the prostate, the membership function
has more emphasis on this interval.

Similarly, this function has less emphasis for the pixels
located between the coarse estimation boundary and the
outer contour because the pixels located around the outer
contour most likely do not belong to the prostate. In fact,

al b c l l el D1
2

1 2 2
2 19+ + + ≤ ( )( ) ,

Isolated object corresponding to the prostate and its centerFigure 7
Isolated object corresponding to the prostate and its center.
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the membership value µ depends on the following
equation:

where α = 6, β = 0.5 (heuristically selected parameters for
the sigmoidal function) and the value of d is calculated as
follows

where dinside and doutside are the shortest euclidian distance
of arbitrary points to the outer and inner contours,
respectively. For the establishment of a fuzzy inference
system, we need to define appropriate fuzzy rules [13,14].
The area between the two contours is important for the
extraction of the prostate boundary. Since we assume that
there is generally a dark to light transition from the inside
to outside of the prostate, any algorithm improving the
strength of edges in this area is useful. A straightforward
method is to make the dark and gray pixels darker and
bright pixels brighter. This can increase the strength of the
edges around the prostate boundary. In addition, as previ-
ously discussed, we want to enhance the contrast just for
the area within the prostate. Therefore, simple rules can be
defined as follows:

• IF the pixel does not belong to the prostate, THEN leave it
unchanged

• IF the pixel belongs to the prostate AND is dark, THEN
make it darker

• IF the pixel belongs to the prostate AND is gray, THEN
make it dark

• IF the pixel belongs to the prostate AND is bright, THEN
make it brighter

The last rule is mainly designed to enhance the brighter
boundary pixels (bright pixels within the prostate are not
relevant at this stage). The membership function for input
gray levels is shown in Fig. 9. In this figure T4 is the bright-
est gray level in the image. T1, T2 and T3 can be calculated
based on local information, but for simplicity we have
used the values 25, 50 and 80, respectively. For the output
membership function, fuzzy singletons with the values
GS1= 1, GS2 = 64 and GS3= 255 are defined empirically.

Using these rules we enhance the contrast of the image not
only based on gray level values but also based on the loca-
tion of each pixel. The result is shown in Fig. 10. It clearly
demonstrates that the result is an image with higher con-
trast in the prostate area.

3.4 Final segmentation
In the previous section we achieved an image with a
highly contrasted prostate area and almost no changes in
other regions such that strong edges were created in the
boundaries of the prostate. Also we know that the true
boundary is located between the inner and outer contours

the membership function µlocation based on pixel positionFigure 8
the membership function µlocation based on pixel position. In 

this Figure  and dinsideand doutside are the 

shortest euclidian distance to the outside and inside contours 
respectively.
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Membership functions for input gray level valuesFigure 9
Membership functions for input gray level values.
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and somewhere most likely close to the coarse estimation.
Therefore, we must first detect the edges located between
these two contours. For this purpose, a Canny edge detec-
tor is used [21]. Fig. 11 shows the result for the area
between two contours. This image contains many

potential boundary pieces. Among these pieces, those
with higher likelihood of being a true edge should be con-
sidered. We start from a point above the internal point O,
traverse along the coarse boundary and consider small
pieces (3 to 5 pixels) on this boundary, sequentially. For
each edge segment on the coarse boundary there are sev-
eral edge pieces. We use three criteria to extract the final
edges:

1. The average distance  of N candidate pixels in the
vicinity of the coarse boundary – we can calculate the
vicinity distance by the following equation:

where di is the distance of ith pixel with respect to the
boundary of the coarse estimation.

2. The value of the gradient – In the preceding section, we
enhanced the contrast of the prostate area. This increases
the local gradient values of the pixels located on the true
boundary pieces. The local gradient value in 3 × 3 neigh-
borhoods is determined as:

where Gx and Gy are the gradient values in x and y direc-
tions, respectively.

3. The angle of edge pieces with respect to the coarse
boundary – we can calculate the absolute value of angle
between the coarse boundary piece and edge piece. This
value can vary from 0 to π/2. Zero radians reflects the most
and π/2 the least compatibility.

After these criteria are considered in the presented priority
order, the final boundaries must be extracted from poten-
tial pieces. Using the above criteria we must extract the
edge pieces which have the greatest likelihood of being a
true edge. Among all pieces, a piece with minimum dis-
tance, maximum gradient, or minimum angle with
respect to the boundary of the coarse estimation should
be chosen. If we consider the border of the coarse version
where there was no shadow and missing boundary
segment, the information of the coarse version is more
reliable. Therefore, in these parts our criteria for choosing
an edge piece is the distance of that piece with respect to
the coarse version. If the distances are equal, then the
angles of pieces are considered. If the angles are equal as
well, then the gradient values are compared. But in the
parts where the Kalman filter has estimated the border of
the coarse estimation the strengths of the edge pieces
(using gradient values) are the only criteria for the

Top: Original imageFigure 10
Top: Original image. Bottom: Enhanced Image using pro-
posed fuzzy inference.

The result of applying Canny edge detection on the enhanced image (Fig. 10)Figure 11
The result of applying Canny edge detection on the enhanced 
image (Fig. 10). Solid line is the coarse estimation outline.
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selection. Subsequently, the algorithm goes directly to the
next piece and continues the procedure until the complete
prostate outline is achieved. For the coarse boundary
pieces, if there is no edge piece around them we can con-
tinue the edge extracted in the previous coarse boundary
piece so that it has the minimum angle with respect to the
coarse estimation. A straightforward way to fill the gaps
between adjacent pieces is to fill them by straight lines.
Finally, we can again apply a Kalman filter to smooth
these edges and make a consistent outline for the prostate
to achieve the final result. This smoothing filter is just like
what we used to find the coarse estimation except that it
uses all final data on the prostate border.

A sample result of employing the proposed approach on
the extracted edge is shown in Fig. 12. This is the final
result for the prostate segmentation. This figure shows the
outline obtained manually by a radiologist (solid line).
Visually, the difference between the two contours is
negligible. To evaluate the algorithm for a low quality
case, we have applied the proposed method in the image
shown in Fig. 13. As we can see, the segmentation in the
strongly shadowed areas have some error but in the other
areas, the result is almost the same as manual
segmentation.

4 Experiments and results
Other algorithms mentioned in section 2 have used differ-
ent numbers of ultrasound images (from 8 [11] to 90
[7,19]) to validate their approaches. They have compared
the algorithm-based segmentations with the manual seg-
mentations (as a gold standard). We have selected the
images to include regular and difficult cases and examined
42 different TRUS images. The images were noisy, with
low contrast and shadow effects. The results of the

proposed method have been evaluated by comparing the
algorithm-based segmentation and the manual segmenta-
tion (gold standards).

As it was mentioned throughout the paper some parame-
ters need to be adjusted in this algorithm. But for a set of
similar TRUS images (i.e. images captured with a certain
machine setting), most of them do not require any
change. In the conducted experiments, the following
parameter configurations have been used:

• The size of the median filter used for smoothing was 7 ×
7.

• The structuring element used in the opening procedure
was a disk with diameter 15.

Automatic and manual boundaries are shown on the original imagesFigure 12
Automatic and manual boundaries are shown on the original 
images. Solid lines are manually segmented images and dash 
lines are the result of proposed algorithm.

A low quality TRUS image and the result of automatic and manual boundaries shown on the original imagesFigure 13
A low quality TRUS image and the result of automatic and 
manual boundaries shown on the original images. Solid lines 
are manually segmented images and dash lines are the result 
of proposed algorithm.
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For quantitative evaluation, we have used the following
error measures to validate the performance of our seg-
mentation compared to the manual segmentation by a
radiologist for those images [22]:

Distance δ = Average Euclidean distance (in pixels)
between the algorithm-based segmentation and the
manual segmentation. For each pixel the distance is
defined as the shortest Euclidean distance between that
pixel and the pixels located on the other contour.

Area EA = Area error (%) = 100. ,

where SMan is the area of the manual segmentation and SAlg
is the area of the algorithm-based segmentation.

Similarity In addition, we have used a similarity measure,
η, based on the misclassification rate as a more general cri-
terion in image segmentation [23,24]:

where B0 and F0 denote the background and foreground of
the original image (manually segmented), BT and FT
denote the background and foreground area pixel in the
result image, and |.| is the set cardinality.

Table I summarizes the results along with the average, m,
and standard deviation, σ, for the three quantitative meas-
ures for all 42 test images.

Considering the quality of the images in terms of the
shadow effect, the quantitative results are promising.
From the results, it can be seen that in the areas that there
is no shadow the proposed method is able to deliver very
accurate results. In the areas, in which strong shadows
cover the prostate the result of the algorithm is still accept-
able. Of course, in these areas error is increased because
the gray level and the texture of the shadow is very similar
to those of the prostate. Qualitatively, the difference

between the algorithm-based segmentations and the
manual segmentations is not considerable. The proposed
approach, implemented in MatLab, needs (in average)
less than 10s to segment the prostate using a 2.8 GHz Pen-
tium IV. However, this time measurement is based on
experimental setup. It can be expected that a considerable
speedup can still be achieved if the algorithm is imple-
mented and optimized in realtime platforms such as C++.

5 Conclusion
A novel approach to prostate segmentation containing a
coarse estimation and a new selective fuzzy contrast
enhancement model has been presented in this paper.
Because of the characteristics of the ultrasound images, we
first smooth the original image using two filters. This
smoothed image is enhanced using a locally-adaptive
contrast technique. The output image has large gaps with
high intensity around the prostate. Using global thresh-
olding and morphological operators, an isolated object
containing the prostate was obtained. The center of this
object was considered as an internal point of the prostate.
A Kalman estimator with the polar coordinates was imple-
mented to find a coarse estimation of the prostate border.
Using erosion and dilation of this estimation, inner and
outer contours were obtained. A fuzzy inference system
based on these regional contours and spatial gray level
information was designed to selectively enhance the
contrast of original image within the prostate region. The
output of this fuzzy enhancement system provided an
image with high contrast and strong edges on the prostate
borders. Finally, the edges between inner and outer con-
tours were extracted. In order to correctly recognize the
prostate boundaries, potential boundary pieces were
marked and based on pixels gradients, the vicinity and
angle relative to the coarse estimation boundary, the final
segmentation was achieved. The proposed approach has
been examined for typical TRUS images. In comparison
with manually segmented images, the experimental
results show that our approach can segment the prostate
boundary accurately. A total average similarity of
98.76%(± 0.68) with the gold standards was achieved.
The test images contain not only regular but also noisy,
low-contrasted and shadowy cases. In this approach we
have designed a straightforward and fast algorithm with
minimum level of user interaction. It also does not need
training samples for implementation. More samples con-
taining the manual prostate segmentation by radiologists
are desired in order to verify the segmentation accuracy
more reliably. In addition, by using an adaptive approach
for noise reduction, we can improve the image quality,
especially the prostate edges. This can give us better results
in subsequent stages. In addition, developing of a similar
technique for 3D prostate segmentation can be a subject
for further work.

Table 1: Quantitative evaluation of proposed approach in 
comparison with manual segmentation (gold standard). The 
average m and deviation σ for three performance measures are 
calculated for 42 test images and their corresponding gold 
standards.

Number δ EA η

m 3.67 5.62 98.76
σ 1.08 2.98 0.68
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