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Abstract
Background: A pivotal component in automated external defibrillators (AEDs) is the detection
of ventricular fibrillation by means of appropriate detection algorithms. In scientific literature there
exists a wide variety of methods and ideas for handling this task. These algorithms should have a
high detection quality, be easily implementable, and work in real time in an AED. Testing of these
algorithms should be done by using a large amount of annotated data under equal conditions.

Methods: For our investigation we simulated a continuous analysis by selecting the data in steps
of one second without any preselection. We used the complete BIH-MIT arrhythmia database, the
CU database, and the files 7001 – 8210 of the AHA database. All algorithms were tested under
equal conditions.

Results: For 5 well-known standard and 5 new ventricular fibrillation detection algorithms we
calculated the sensitivity, specificity, and the area under their receiver operating characteristic. In
addition, two QRS detection algorithms were included. These results are based on approximately
330 000 decisions (per algorithm).

Conclusion: Our values for sensitivity and specificity differ from earlier investigations since we
used no preselection. The best algorithm is a new one, presented here for the first time.

Background
Sudden cardiac arrest is a major public health problem
and one of the leading causes of mortality in the western
world. In most cases, the mechanism of onset is a ven-
tricular tachycardia that rapidly progresses to ventricular
fibrillation [1]. Approximately one third of these patients

could survive with the timely employment of a
defibrillator.

Besides manual defibrillation by an emergency para-
medic, bystander defibrillation with (semi-)automatic
external defibrillators (AEDs) has also been recom-
mended for resuscitation. These devices analyze the
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electrocardiogram (ECG) of the patient and recognize
whether a shock should be delivered or not, as, e.g., in
case of ventricular fibrillation (VF). It is of vital impor-
tance that the ECG analysis system used by AEDs differen-
tiates well between VF and a stable but fast sinus rhythm
(SR). An AED should not deliver a shock to a collapsed
patient not in cardiac arrest. On the other hand, a success-
fully defibrillated patient should not be defibrillated
again.

The basis of such ECG analysis systems of AEDs is one or
several mathematical ECG analysis algorithms. The main
purpose of this paper is to compare various old and new
algorithms in a standardized way. To gain insight into the
quality of an algorithm for ECG analysis, it is essential to
test the algorithms under equal conditions with a large
amount of data, which has already been commented on
by qualified cardiologists.

Commonly used annotated databases are Boston's Beth
Israel Hospital and MIT arrhythmia database (BIH-MIT),
the Creighton University ventricular tachyarrhythmia
database (CU), and the American Heart Association data-
base (AHA).

We used the complete CU and BIH-MIT arrhythmia data-
base, and the files 7001 – 8210 of the AHA database, [2],
[3,4]. For each algorithm approximately 330 000 deci-
sions had been calculated. No preselection of certain ECG
episodes was made, which mimics the situation of a
bystander more accurately. In this investigation we ana-
lyzed 5 well-known standard and 5 new ventricular fibril-
lation detection algorithms. In addition, two QRS
detection algorithms were included. The results are
expressed in the quality parameters Sensitivity and Specifi-
city. In addition to these two parameters, we calculated the
Positive Predictivity and Accuracy of the investigated algo-
rithms. Furthermore, the calculation time in comparison
to the duration of the real data was calculated for the dif-
ferent algorithms. The calculation times were obtained by
analyzing data from the CU database only.

The quality parameters were obtained by comparing the
VF/no VF decisions suggested by the algorithm with the
annotated decisions suggested by cardiologists. The cardi-
ologists' decisions are considered to be correct. We distin-
guished only between ventricular fibrillation and no
ventricular fibrillation, since the annotations do not
include a differentiation between ventricular fibrillation
and ventricular tachycardia. The closer the quality param-
eters are to 100%, the better the algorithm works. Since an
AED has to differentiate between VF and no VF, the sensi-
tivity and specificity are the appropriate parameters. To
represent the quality of an algorithm by its sensitivity and
specificity bears some problems. A special algorithm can

have a high sensitivity, but a low specificity, or conversely.
Which one is better? To arrive at a common and single
quality parameter, we use the receiver operating character-
istic (ROC). The sensitivity is plotted in dependence of (1
- specificity), where different points in the plot are
obtained by varying the critical threshold parameter in the
decision stage of the algorithm. By calculating the area
under the ROC curve (we call this value "integrated
receiver operating characteristic", and denote it by IROC),
it is possible to compare different algorithms by one sin-
gle value. Figure 1 shows a typical example of an ROC
curve.

Section 1 provides the necessary background for the algo-
rithms under investigation. Section 2 describes the meth-
ods of evaluation and represents our results in Table 1, 2,
3 and Figure 5 and 6. A discussion of the results follows in
Section 3. Appendix A recalls the basic definitions of the
quality parameters Sensitivity, Specificity, Positive Predic-
tivity, Accuracy, and ROC curve. In Appendix B we pro-
vide more details on one of the new algorithms.

1 Methods
The ventricular fibrillation detection algorithms consid-
ered here are partly taken from the scientific literature, five
of them are new. Some of them have been evaluated in [5]
and [6].

For all algorithms we used the same prefiltering process.
First, a moving average filter of order 5 is applied to the

Receiver operating characteristic for the algorithm "com-plexity measure" described in the introduction, for a window length of 8 sFigure 1
Receiver operating characteristic for the algorithm "com-
plexity measure" described in the introduction, for a window 
length of 8 s. The calculated value for the area under the 
curve, IROC, is 0.87.
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signal. (Note 1: Fixing the order of 5 seems to bear a prob-
lem. Data with different frequencies (AHA, CU ... 250 Hz,
BIH-MIT ... 360 Hz) are filtered in a different way. But this
is neglectable, when the Butterworth filter is applied after-
wards.) This filter removes high frequency noise like inter-

spersions and muscle noise. Then, a drift suppression is
applied to the resulting signal. This is done by a high pass
filter with a cut off frequency of one Hz. Finally, a low pass
Butterworth filter with a limiting frequency of 30 Hz is
applied to the signal in order to suppress needless high-

Table 1: >Quality of ventricular fibrillation detection algorithms (sensitivity (Sns), specificity (Spc), integrated receiver operating 
characteristic (IROC)) in per cent, rounded on 3 significant digits, wl = window length in seconds. (*) ... no appropriate parameter 
exists.

Data 
Source

MIT DB CU DB AHA DB overall result

Parameter wl Sns. Spc. Sns. Spc. Sns. Spc. Sns. Spc. IROC

TCI 3 82.5 78.1 73.5 62.6 75.2 78.3 75.0 77.5 82
TCI 8 74.5 83.9 71.0 70.5 75.7 86.9 75.1 84.4 82
ACF95 8 33.2 45.9 38.1 58.9 51.5 52.2 49.6 49.0 49
ACF99 8 59.4 30.1 54.7 49.3 71.5 40.3 69.2 35.0 49
VF 4 36.7 100 32.2 99.5 17.6 99.9 19.6 99.9 85
VF 8 29.4 100 30.8 99.5 16.9 100 18.8 100 87
SPEC 8 23.1 100 29.0 99.3 29.2 99.8 29.1 99.9 89
CPLX 8 6.3 92.4 56.4 86.6 60.2 91.9 59.2 92.0 87
STE 8 54.5 83.4 52.9 66.6 49.6 81.0 50.1 81.7 67
MEA 8 62.9 80.8 60.1 87.5 49.8 88.6 51.2 84.1 82
SCA 8 72.4 98.0 67.7 94.9 71.7 99.7 71.2 98.5 92
WVL1 8 28.7 99.9 26.2 99.4 26.8 99.5 26.7 99.7 80
WVL2 8 81.1 89.0 61.0 72.1 73.5 89.6 72.0 88.4 (*)
LI 8 3.1 95.1 7.5 94.8 9.3 92.0 9.0 93.9 58
TOMP 8 68.5 40.6 71.3 48.4 95.9 39.7 92.5 40.6 67

Table 2: Quality of ventricular fibrillation detection algorithms (positive predictivity (PP), accuracy (Ac), calculation time(ct)) for a 
window length of 8 seconds. Positive predictivity and accuracy in per cent, rounded on 3 digits; calculation time in per cent of the real 
time of the data, rounded on 2 digits, wl = window length in seconds.

Data 
Source

MIT DB CU DB AHA DB overall result

Parameter wl PP. Ac. PP. Ac. PP. Ac. PP. Ac. ct.

TCI 3 0.6 78.1 33.9 64.8 41.7 77.8 23.7 77.2 1.5
TCI 8 0.8 83.9 38.9 70.6 54.4 84.9 31.1 83.6 2.1
ACF95 8 0.1 45.9 19.7 54.5 18.2 52.1 8.3 49.0 3.6
ACF99 8 0.1 30.2 22.2 50.4 19.9 45.7 9.1 37.9 3.6
VF 4 91.3 99.9 94.0 85.5 98.0 85.8 97.0 93.1 1.4
VF 8 82.4 99.9 94.5 85.2 98.9 85.7 97.7 93.0 1.9
SPEC 8 60.6 99.8 92.0 84.6 97.3 87.7 96.1 93.8 1.9
CPLX 8 0.1 92.3 52.7 80.3 60.7 86.5 40.8 89.2 2.5
STE 8 0.5 83.4 29.5 63.8 35.1 75.6 20.4 79.0 1.9
MEA 8 0.5 80.8 56.0 81.8 47.5 81.9 23.2 81.3 2.5
SCA 8 5.6 97.9 77.8 89.2 98.0 94.9 81.6 96.2 5.9
WVL1 8 38.9 99.8 92.1 84.1 91.8 87.0 90.5 93.5 1.9
WVL2 8 1.2 88.9 36.6 69.8 59.3 86.8 36.8 87.0 40
LI 8 0.1 94.9 27.5 76.5 19.4 77.8 12.1 86.6 15
TOMP 8 0.2 40.6 26.7 53.2 24.8 49.4 12.7 45.0 0.84
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frequency information even more. This filtering process is
carried out in a MATLAB routine. It uses functions from
the "Signal Processing Toolbox". (Note 2: We used MAT-
LAB R13 – R14 and "Signal Processing Toolbox" version
6.1 – 6.3 on a Power Mac G5, 2 GHz.) In order to obtain
the ROC curve we have to change a parameter which we
call "critical threshold parameter" below.

TCI algorithm
The threshold crossing intervals algorithm (TCI) [7] oper-
ates in the time domain. Decisions are based on the
number and position of signal crossings through a certain
threshold.

First, the digitized ECG signal is filtered by the procedure
mentioned above. Then a binary signal is generated from
the preprocessed ECG data according to the position of
the signal above or below a given threshold. The threshold
value is set to 20% of the maximum value within each
one-second segment S and recalculated every second. Sub-
sequent data analysis takes place over successive one-sec-
ond stages. The ECG signal may cross the detection
threshold one or more times, and the number of pulses is
counted. For each stage, the threshold crossing interval
TCI is the average interval between threshold crossings
and is calculated as follows

Figure 2 illustrates the situation.

Here, N is the number of pulses in S. t1 is the time interval
from the beginning of S back to the falling edge of the pre-
ceding pulse. t2 is the time interval from the beginning of
S to the start of the next pulse. t3 is the interval between the
end of the last pulse and the end of S and t4 is the time
from the end of S to the start of the next pulse.

If TCI ≥ TCI0 = 400 ms, SR is diagnosed. Otherwise sequen-
tial hypothesis testing [7] is used to separate ventricular
tachycardia (VT) from VF.

As stated above, the original algorithm works with single
one-second time segments, (see [7], page 841). To achieve
this the algorithm picks a 3-second episode. The first sec-
ond and the third second are used to determine t1 and t4.
The 2nd second yields the value for TCI. When picking an

Table 3: Sensitivity of ventricular fibrillation detection 
algorithms in per cent, wl = window length in seconds.

Parameter wl Sns. if Spc. = 95 Sns. if Spc. = 99

TCI 3 15.0 1.0
TCI 8 25.3 1.3
ACF95 8 3.0 0.6
ACF99 8 3.0 0.6
VF 4 71.0 59.2
VF 8 73.4 59.7
SPEC 8 69.8 58.9
CPLX 8 38.8 5.8
STE 8 29.4 10.8
MEA 8 7.0 0.5
SCA 8 79.0 66.4
WVL1 8 56.7 35.2
LI 8 7.3 1.4
TOMP 8 9.1 1.8
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ROC curve for the algorithms ACF, STE, MEA, WVL1, LI, TOMPFigure 5
ROC curve for the algorithms ACF, STE, MEA, WVL1, LI, 
TOMP.

ROC curve for the algorithms TCI, VF, SPEC, CPLX, SCAFigure 6
ROC curve for the algorithms TCI, VF, SPEC, CPLX, SCA.
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8-second episode we can hence evaluate 6 consecutive TCI
values. Final SR decision is taken if diagnosed in four or
more segments otherwise the signal is classified as VF.

The critical threshold parameter to obtain the ROC is
TCI0.

ACF algorithm
The autocorrelation algorithms ACF95 (Note 3: Probabil-
ity of 95% in the Fisher distribution → α = 0.05 in F(α, k1,
k2) with k1 = 1, k2 = 5) and ACF99 (Note 4: Probability of
99% in the Fisher distribution → α = 0.01 in F(α, k1, k2)
with k1 = 1, k2 = 5) [8] analyze the periodicities within the
ECG. Given a discrete signal x(m), the short-term autocor-
relation function (ACF) of x(m) with a rectangular win-
dow is calculated by

Here, this technique is used to separate VT and SR from
VF. It is assumed that VF signals are more or less aperiodic
and SR signals are approximately periodic.

This assumption is however questionable since VF signals
may have a cosine like shape. Compare this assumption
with the assumption made by the algorithm in the next
subsection.

Note that the autocorrelation function of a function f is

connected to the Power Spectrum of  by the "Wiener-
Khinchin Theorem".

The detection algorithm performs a linear regression anal-
ysis of ACF peaks. An order number i is given to each peak
according to its amplitude. So, the highest peak is called
P0, etc., ranged by decreasing amplitudes. In a SR signal,
which is considered to be periodic or nearly periodic, a
linear relationship should exist between the peaks lag and
their index number i. No such relationship should exist in
VF signals. The linear regression equation of the peak
order and its corresponding lag of m peaks in the ACF is
described as

yi = a + bxi,  (3)

where xi is the peak number (from 0 to (m - 1)), and yi is
the lag of Pi.

In this study, m = 7. The variance ratio VR is defined by

Binary signal with 2 pulses in threshold crossing intervals algorithmFigure 2
Binary signal with 2 pulses in threshold crossing intervals algorithm.
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where

If VR ≥ VR0 is greater than the Fisher statistics for degrees
of freedom k1 = 1 and k2 = m - 2 = 5 with 95% (99%) prob-
ability, the rhythm is classified by ACF95 (ACF99) to be SR,
otherwise it is VF. The critical threshold parameter to
obtain the ROC is VR0, (VR0 ≈ 6.61(16.3) at 95% (99%)).

VF filter algorithm
The VF filter algorithm (VF) [9] applies a narrow band
elimination filter in the region of the mean frequency of
the considered ECG signal.

After preprocessing, a narrow band-stop filter is applied to
the signal, with central frequency being equivalent to the
mean signal frequency fm. Its calculated output is the "VF
filter leakage". The VF signal is considered to be approxi-
mately of sinusoidal waveform.

The number N of data points in an average half period N
= T/2 = 1/(2fm) is given by

where Vi are the signal samples, m is the number of data
points in one mean period, and Q...N denotes the floor func-
tion. The narrow band-stop filter is simulated by combin-
ing the ECG data with a copy of the data shifted by a half
period. The VF-filter leakage l is computed as

In the original paper [9] this algorithm is invoked only if
no QRS complexes or beats are detected. This is done by
other methods. Since we employ no prior QRS detection,
we use the thresholds suggested by [5]. If the signal is
higher than a third of the amplitude of the last by the VF-
filter detected QRS complex in a previous segment and the
leakage is smaller than l0 = 0.406, VF is identified. Other-
wise the leakage must be smaller than l0 = 0.625 in order
to be classified as VF.

The critical threshold parameter to obtain the ROC is the
leakage l0.

Spectral algorithm
The spectral algorithm (SPEC) [10] works in the frequency
domain and analyses the energy content in different fre-
quency bands by means of Fourier analysis.

The ECG of most normal heart rhythms is a broadband
signal with major harmonics up to about 25 Hz. During
VF, the ECG becomes concentrated in a band of frequen-
cies between 3 and 10 Hz (cf. [11,12], with particularly
low frequencies of undercooled victims).

After preprocessing, each data segment is multiplied by a
Hamming window and then the ECG signal is trans-
formed into the frequency domain by fast Fourier trans-
form (FFT). The amplitude is approximated in accordance
with ref. [10] by the sum of the absolute value of the real
and imaginary parts of the complex coefficients. (Note 5:
Normally one would take the modulus of complex ampli-
tudes.) Let Ω be the frequency of the component with the
largest amplitude (called the peak frequency) in the range
0.5 – 9 Hz. Then amplitudes whose value is less than 5%
of the amplitude of Ω are set to zero. Four spectrum
parameters are calculated, the normalized first spectral
moment M

jmax being the index of the highest investigated frequency,
and A1, A2, A3. Here wj denotes the j-th frequency in the
FFT between 0 Hz and the minimum of (20Ω, 100 Hz)
and aj is the corresponding amplitude. A1 is the sum of
amplitudes between 0.5 Hz and Ω/2, divided by the sum
of amplitudes between 0.5 Hz and the minimum of (20Ω,
100 Hz). A2 is the sum of amplitudes between 0.7Ω and
1.4Ω divided by the sum of amplitudes between 0.5 Hz
and the minimum of (20Ω, 100 Hz). A3 is the sum of
amplitudes in 0.6 Hz bands around the second to eighth
harmonics (2Ω – 8Ω), divided by the sum of amplitudes
in the range of 0.5 Hz to the minimum of (20Ω, 100 Hz).

VF is detected if M ≤ M0 = 1.55, A1 <A1,0 = 0.19, A2 ≥ A2,0 =
0.45, and A3 ≤ a3,0 = 0.09.

The critical threshold parameter to obtain the ROC is A2,0,
the other threshold parameters (A1,0, A3,0, M0) being kept
constant.
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Complexity measure algorithm
The complexity measure algorithm (CPLX) [13] trans-
forms the ECG signal into a binary sequence and searches
for repeating patterns.

Lempel and Ziv [14] have introduced a complexity meas-
ure c(n), which quantitatively characterizes the complex-
ity of a dynamical system.

After preprocessing, a 0 – 1 string is generated by compar-
ing the ECG data xi (i = 1...n, n being the number of data
points) to a suitably selected threshold. The mean value
xm of the signal in the selected window is calculated. Then
xm is subtracted from each signal sample xi. The positive
peak value Vp, and the negative peak value Vn of the data
are determined.

By counting, the quantities Pc and Nc are obtained. Pc rep-
resents the number of data xi with range 0 <xi < 0.1Vp and
Nc the number of data xi with range 0.1Vn <xi < 0. If (Pc +
Nc) < 0.4n, then the threshold is selected as Td = 0. Else, if
Pc <Nc, then Td = 0.2Vp, otherwise Td = 0.2Vn. Finally, xi is
compared with the threshold Td to turn the ECG data into
a 0 – 1 string s1s2s3 ... sn. If xi <Td, then si = 0, otherwise si =
1. Now, from this string a complexity measure c(n) is cal-
culated by the following method, according to [14].

If S and Q represent two strings then SQ is their concate-
nation. SQπ is the string SQ when the last element is
deleted. Let v(SQπ) denote the vocabulary of all different
substrings of SQπ. At the beginning, c(n) = 1, S = s1, Q =
s2, and therefore SQπ = s1. For generalization, now sup-
pose S = s1s2 ... sr and Q = sr+1. If Q � v(SQπ), then sr+1 is a
substring of s1s2 ... sr, therefore S does not change. Q has to
be renewed to be sr+1sr+2. Then it has to be judged if Q
belongs to v(SQπ) or not. This procedure has to be carried
out until Q ∉ v(SQπ), now Q = sr+1 sr+2 ... sr+i, which is not
a substring of s1s2 ... srsr+1 ... sr+i-1, thus c(n) is increased by
one. Thereafter S is combined with Q, and S is renewed to
be S = s1s2 ... srsr+1 ... sr+i, and at the same time Q has to be
renewed to be Q = sr+i+1. The above procedures are
repeated until Q contains the last character. At this time
the number of different substrings of s1, s2, ..., sn is c(n),
i.e., the measure of complexity, which reflects the rate of
new pattern arising with the increase of the pattern length
n.

The normalized C(n) is computed:

where b(n) gives the asymptotic behavior of c(n) for a ran-
dom string:

Evidently, 0 ≤ C(n) ≤ 1. In order to obtain results that are
independent of n, n must be larger than 1000. Since n is
given by window length wl times sampling rate, we
choose wl = 8s.

If C <C0 = 0.173 the ECG is classified as SR, if 0.173 ≤ C ≤
0.426 as VT, and if C > C1 = 0.426 as VF. A shock is recom-
mended only if C > C1.

The critical threshold parameter to obtain the ROC is C0.

Standard exponential algorithm
The standard exponential (STE) algorithm counts the
number of crossing points of the ECG signal with an expo-
nential curve decreasing on both sides. The decision for
the defibrillation is made by counting the number of
crossings. This simple algorithm is probably well-known,
but we did not find any description of it in the literature.

The ECG signal is investigated in the time domain. First,
the absolute maximum value of the investigated sequence
of the signal is searched. An exponential like function Es(t)
is put through this point. This function is decreasing in
both directions. Hence, it has the representation:

Here, M is the amplitude of the signal maximum, tm is the
corresponding time, τ is a time constant. In our investiga-
tion, τ is set to 3 seconds. The number of intersections n
of this curve with the ECG signal is counted and a number
N is calculated by

where T is the time length of the investigated signal part.
If N > N0 = 250 crossings per minute (cpm), the ECG-sig-
nal is classified as VF. If N <N1 = 180 cpm, SR is identified.
Otherwise the signal is classified as VT. Figure 3 illustrates
the situation (note that each QRS complex intersects the
exponential function two times).

A shock is recommended only if N > N0.

The critical threshold parameter to obtain the ROC is N0.

Modified exponential algorithm
A modified version of STE, called MEA lifts the decreasing
exponential curve at the crossing points onto the
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following relative maximum. This modification gives rise
to better detection results.

This algorithm works in the time domain. First, the first
relative maximum value of the investigated sequence of
the signal is searched and an exponential like function
En,1(t) is put through this point. Here, it has the
representation:

with Mj being the value of the j-th relative maximum of
the signal, tm,j the corresponding time and τ the time con-
stant. Here, τ is set to 0.2 seconds. tc,j is the time value,
where the exponential function crosses the ECG signal.

The difference to STE is, that here the function does not
have the above representation over the whole investigated
signal part, but only in the region from the first relative
maximum to the first intersection with the ECG signal.
Then, the function En,j(t) coincides with the ECG signal
until it reaches a new relative maximum. In some way one
can say that the function MEA(t) is "lifted" here from a
lower value to a peak. From that peak on it has again the
above representation with M being the value of the next
relative maximum. This is done until the curve reaches the
end of the investigated ECG sequence.

The number of the liftings n of this curve with the ECG sig-
nal is counted and a number N is calculated by

where T is the time length of the investigated signal part.
If N > N0 = 230 crossings per minute (cpm), the ECG-sig-
nal is classified as VF. If N <N1 = 180 cpm, SR is identified.

Otherwise the signal is classified as VT. Figure 4 illustrates
the situation. A shock is recommended only if N > N0.

The critical threshold parameter to obtain the ROC is N0.

Signal comparison algorithm
This new algorithm (SCA) compares the ECG with four
predefined reference signals (three sinus rhythms contain-
ing one PQRST segment and one ventricular fibrillation
signal) and makes its decision by calculation of the resid-
uals in the L1 norm.

The algorithm works in the time domain. After preproc-
essing, all relative maxima of a modified ECG signal are
searched. The relative positions in time tj and amplitude aj
of these points are considered. We call this set M0, with M0
= {(tj, aj)|aj is a local maximum}. With this information a
probability test for being the peak of a possible QRS com-
plex is performed. For a detailed description of this test see
steps 1 and 2 in Appendix B. In a normal ECG, most of the

A 8 second episode of SR rhythm is investigated with the standard exponential algorithm (STE)Figure 3
A 8 second episode of SR rhythm is investigated with the 
standard exponential algorithm (STE). The exponential func-
tion intersects the signal 12 times.
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A 8 second episode of SR rhythm is investigated with the modified exponential algorithm (MEA)Figure 4
A 8 second episode of SR rhythm is investigated with the 
modified exponential algorithm (MEA). The exponential func-
tion is lifted 7 times.
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relative maxima M0 of the ECG signal, which are not the
peaks of an QRS complex, are sorted out and omitted by
this procedure. On the other hand, in an ECG signal with
ventricular fibrillation only such peaks are preserved,
which are peaks of a fibrillation period.

In other words: Most of the relative maxima, which exist
due to noise in the ECG signal are deleted. Furthermore,
nearly all relative maxima, which are peaks of
insignificant elevations (in this algorithm also P waves
and T waves) are deleted as well. This selection procedure
is carried out by setting adaptive thresholds. The value of
the thresholds is calculated by use of different parameters,
that were selected by experiments with ECG signals. The
result is a set of points X, which is a subset of M0. In fact,
the temporal appearance of the points in X is related to the
frequency of the heart beat. The average frequency found
by this points is related to a certain probability factor. This
factor, together with other results, is finally used to make
a decision whether the signal is VF or not.

Now, the central idea of the algorithm is applied. The
points in X are used to generate four artificial signals. The
first signal looks like a normal sinus rhythm, that has its
QRS peaks exactly at the points of X. A reference signal
which consists of one PQRST segment is fitted from one
maximum of X to the next. To fit the different size of the
peaks it is scaled linearly. It has all features that a normal
ECG signal should have (narrow QRS complex, P wave, T
wave). The second artificial signal is the average of about
700 normal sinus rhythm signals found in 16 files of the
MIT database and 16 files of the CU database. The third
artificial signal has QRS complexes and an elevated T
wave. The fourth signal, which we use as a reference for a
ventricular fibrillation signal, has the shape of a cosine
like function, which has its peaks at the points of X and
therefore simulates ventricular fibrillation.

The next step is the calculation of the residuals with
respect to the reference signals. We call the ECG signal
E(t), the reference signals that simulate a healthy heart
Sj(t), j = 1,2,3, and the ventricular fibrillation signal F(t).
The following parameters are calculated

where I = [t0, t1] with t0 = min {tj|tj � X} and t1 = max {tj|tj
� X}. Thus, I is the temporal interval from the smallest tj

in X to the largest tj in X. Now, four further values are
calculated

c1 and c2 are two constants that were suitably chosen by
tests. Finally, VRF and VRS are compared. If all tj, j = 1, 2,
3 are smaller than 1, the signal is classified as VF, other-
wise it is considered to be SR. (Note 6: Using an L2 norm
did not improve the quality.)

The critical threshold parameter to obtain the ROC are tj,0.

Wavelet based algorithms
The continuous wavelet transform of a signal f � L2 is
defined by

where ψ is the mother wavelet, ψ � L2, and admissible,
i.e.,

Here,  denotes the Fourier transform of ψ

The wavelet transform Lψf contains information about the
frequency distribution as well as information on the time
distribution of a signal.

According to Lemma 1.1.7 from [15], the Fourier trans-
form of Lψf is given by

WVL1
A new simple wavelet based algorithms (WVL1) operates
like SPEC in the frequency domain. The idea of this first
wavelet algorithm is the following: First, a continuous
wavelet transform of the ECG signal is carried out using a
Mexican hat as mother wavelet. Then a Fourier transform
is performed. Now, the maximum absolute values are
investigated in order to make the decisions for the defi-
brillation process. However, one can show that these max-
imum values are located on a hyperbola in the (a, w)

RF E t F t dt

RS E t S t dt j

IF F t d

I

j jI

= −

= − =

=

∫
∫

| ( ) ( )| ,

| ( ) ( )| , , , ,

| ( )|

1 2 3

tt IE E t dt

IS S t dt

II

j jI

, | ( )| ,

| ( )| ,

=

= ( )
∫∫

∫ 15

VRF
c RF

IF IE
VRS

c RS

IS IE

t
VRF

VRS
t

j
j

j

j
j

j

= =

= =

1 2

0 1

min( , )
,

min( , )
,

, , ,, , , .j = ( )1 2 3 16

L f a b
c a

f t
t b

a
dtψ

ψ
ψ( , )

| |
( ) ,= −





( )∫
1

17
\

0 2 18
2

< = < ∞ ( )∫c
w

w
dwψ π ψ

:
| ( )|

| |
.

\

ψ̂

ˆ( ) : ( )exp( ) .ψ
π

ψw x iwx dx= − ( )∫
1

2
19

\

L f a w aw f wa
cψ
π
ψ

ψn( , ) ( ) ( ).| |= − ( )2 20
Page 9 of 15
(page number not for citation purposes)



BioMedical Engineering OnLine 2005, 4:60 http://www.biomedical-engineering-online.com/content/4/1/60
plane of the Fourier transform of the wavelet transform of
the ECG signal, i.e., on a curve that has the representation
aw = C, C being a constant. The values on this curve in the
(a, w) plane are the Fourier transform of the ECG signal
multiplied by a weight function g(w). Therefore, if one

searches for the maximum values of  in the (a, w)

plane of the wavelet transform, it is sufficient to search for
the maxima of the weighted Fourier transform of the ECG

signal .

Since we are looking for maxima of the modulus of ,

we need to consider the maxima of  only. In

WVL1 the function  is handled exactly like the

spectrum in the algorithm SPEC. The same spectrum
parameters are calculated and also the thresholds for the
decision have the same values like the algorithm in SPEC.

In WVL1, the critical threshold parameter to obtain the
ROC is A2,0.

WVL2
This new method of detecting ventricular fibrillation uses
a discrete wavelet transform. It is split into two parts.

(i) Finding VF
The first part uses the algorithm SPEC to search for typical
VF properties in the ECG. If the algorithm decides that the
ECG part contains VF, then the result is accepted as true
and no further investigation is carried out. This procedure
can be justified by the high specificity of the SPEC algo-
rithm. If the algorithm yields that the ECG part is "no VF",
a further investigation is carried out to confirm this result
or to disprove it.

(ii) Discrete Wavelet Transform (DWT)
This part is only carried out, if the first part of the algo-
rithm considers the ECG episode to be "no VF". In this
case a discrete wavelet transform is applied, that searches
for QRS complexes in the following way:

The third scale of a discrete wavelet transform with 12
scales and a "Daubechies8" wavelet family is used.
Numerical tests have shown that this scale makes it easiest
to distinguish VF from "no VF". If the signal in the third
scale has a value higher than a certain threshold, the
according ECG part is considered as QRS complex. The
threshold used in this investigation is set to 0.14
max(ECG signal). Multiple peaks belonging to the same
QRS complex are removed.

If more than two but less than 40 QRS complexes are
found within an 8 second episode, "no VF" is diagnosed.
Otherwise the two spectral parameters FSMN and A2 from
the first part are investigated again. If FSMN < 2.5 and A2
> 0.2, the considered ECG part is diagnosed as VF.

The mentioned range for the number of found QRS com-
plexes has the following reason: Sometimes, especially in
ECGs with a high amount of noise, the DWT part makes
wrong interpretations and "finds" QRS complexes also in
QRS free episodes. Therefore, a minimal number of three
QRS complexes is demanded to confirm the existence of
QRS complexes. On the other side, if the DWT part "finds"
more than 40 QRS complexes (equal to a pulse of 300
beats per minute), the signal is likely to be VF, since such
high sinus rhythms do not appear. The limits of the range
were chosen from experiments with data.

In WVL2 no IROC is calculated due to the special structure
of the algorithm. Since it consists of two parts and the sec-
ond part is not executed always, we do not have a single
parameter that includes the calculations of both
algorithm parts in every ECG segment. Hence we cannot
calculate an IROC value. Using the parameters of the
SPEC algorithm as an IROC parameter does not yield an
ROC curve over the full range.

Finally we want to compare the VF detection algorithms with
two algorithms, that are originally used for QRS detection. The
decision thresholds of these algorithms have been opti-
mized to be suitable for VF detection.

Li algorithm
The Li algorithm (LI) [16] is based on wavelet analysis,
too.

The wavelet transform of an ECG signal is calculated using
the following equations

Here,  is a smoothing operator and 

being the ECG signal. hk and gk are coefficients of a low-
pass filter H(w) and a highpass filter G(w), respectively.
Scales 21 to 24 are selected to carry out the search for QRS
complexes. QRS complexes are found by comparing ener-
gies from the ECG signal in the scale 23 with the energies
in the scale 24. Redundant modulus maximum lines are
eliminated and the R peaks detected. Different methods
from [17] are used to improve the detection quality:
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Method 1
Blanking, where events immediately following a QRS
detection are ignored for a period of 200 ms.

Method 2
Searching back, where previously rejected events are
reevaluated when a significant time has passed without
finding a QRS complex. If no QRS complex was detected
within 150% of the latest average RR interval, then the
modulus maxima are detected again at scale 23 with a new
threshold.

If the number of found QRS complexes is 0 or higher than
5 times the window length in seconds, the ECG segment
is classified as VF.

The critical threshold parameter to obtain the ROC is the
number of found QRS complexes.

Tompkins algorithm
This algorithm is based on a QRS complex search (TOMP)
[18]. It uses slope, amplitude and width information to
carry out this task.

After preprocessing, the ECG signal is band filtered by a
low pass filter and a high pass filter to reduce interference
and high frequency noise. Then, the signal is differenti-
ated to provide the QRS complex slope information. The
difference equation for the slope y(j) of the ECG data x(j)
reads

where T is the sampling period of the ECG signal. After-
wards the signal is squared to make all data points
positive. A moving window integration with a window
width of 150 ms (e.g., 54 points at a sampling rate of 360
Hz) is applied. Thresholds are set up to detect QRS
complexes.

This algorithm uses a dual threshold technique and a
searchback for missed beats. If the number of found QRS
complexes is smaller than l0 = 2 or higher than l1 = 32, the
ECG segment is classified as VF.

The critical threshold parameter to obtain the ROC is l0.

2 Results
For all algorithms tested in this paper we used the same
prefiltering process described at the beginning of the pre-
vious section. The function filtering.m for preprocessing
can be found on the website http://www2.staff.fh-vorarl
berg.ac.at/~ku/VF.

First, we investigated ECG episodes of window length
according to the original papers, and then of window
length of 8 seconds since that yielded the best results. For
the investigation we simulated a continuous analysis by
selecting the data in steps of one second. The decision of
an algorithm analyzing an episode of a certain window
length was assigned to the endpoint of that interval. By its
very nature this continuous monitoring of an ECG signal
contains transitions of different rhythms. All algorithms
were tested under equal conditions. Finally, we recorded
the results together with the annotations in an output file.

The quality parameters are presented in the following
tables and figures. The perfect algorithm would have val-
ues for sensitivity, specificity, positive predictivity, accu-
racy and IROC of 100%, assuming that the annotations
are 100% correct.

The data sets were taken from the BIH-MIT database (48
files, 2 channels per file, each channel 1805 seconds
long), the CU database (35 files, 1 channel per file, each
channel 508 seconds long), and the AHA database (files
7001 – 8210, 40 files, 2 channels per file, each channel
1800 seconds long).

Note 7: ANSI/AAMI EC38:1998 Ambulatory electrocardi-
ographs: "The incidence and variety of VF in the AHA and
MIT databases are not sufficient to allow those databases
to serve as substitutes for the CU DB for the purposes of
5.2.14.5. An evaluation of VF detection using the 80
records of the AHA DB and the 48 records of the MIT DB
should supplement the required CU DB evaluation, how-
ever, as the CU DB does not contain a sufficient sample of
signals likely to provoke false VF detections."

Thus, the total number of decisions per algorithm (win-
dow length = 8s) was 2·48·(1805 - 7) + 35·(508 - 7) +
2·40·(1800 - 7) = 333 583.

The annotations of these databases are on a beat to beat
level. When taking an arbitrary 8 second episode which
includes a VF sequence at the end, it was assumed that the
overall classification is VF.

The testing was done automatically by an application
written with MATLAB, since there is no chance to inspect
330 000 ECG episodes by hand.

Numerical results
Table 1 shows the values for the sensitivity, the specificity
and the integrated receiver operating characteristic of the
investigated algorithms. The great differences in perform-
ance on different databases can be easily explained by the
different nature of this databases (see Note 7). The overall
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results were directly calculated from the 333 583 decisions
of VF/no VF.

Table 2 shows the values for the positive predictivity, the
accuracy and the calculation time of the investigated
algorithms.

Table 3 shows the values for the sensitivity of the investi-
gated algorithms, if, due to an appropriate adaption of the
threshold parameters, the specificity were 95% and 99%,
respectively.

Figure 5 and 6 show the ROC curves for all algorithms.

For the computation of the ROC curves, we used 64
nodes. Since some critical threshold parameters are dis-
crete the points of the ROC curve are not equidistant.

3 Discussion and Conclusion
In real applications of AEDs the specificity is more impor-
tant than the sensitivity, since no patient should be defi-
brillated due to an analysis error which might cause
cardiac arrest. Therefore, a low number of false positive
decisions should be achieved, even if this process makes
the number of false negative decisions higher. But one has
to distinguish between our calculated values for specificity
and sensitivity and the values in [19]. Our values were
determined for the basic mathematical algorithms,
whereas this paper gives recommendations for whole ECG
analysis systems. It also does not consider an analysis
without preselection.

Our results show that no algorithm achieves its pro-
claimed values for the sensitivity or specificity as
described in the original papers or in [5] and [6] when
applied to an arbitrary ECG episode. The main reason for
this is the following: Whereas all other researchers made a
preselection of signals, we simulated the situation of a
bystander, who is supposed to use an AED, more accu-
rately. Hence no preselection of ECG episodes were made.

The best algorithm SCA, which yields the best value for
the integrated receiver operating characteristic (IROC) is a
new algorithm followed by the algorithms SPEC and VF.
Studying the ROC curves in Figure 5 and Figure 6 we see
that the relevant part of the ROC curves lies at the left side.
The ROC curve also enables us to compare different algo-
rithms given a specified specificity.

All other algorithms yielded only mixed results in our
simulations. We also conclude that algorithms developed
for QRS detection, like LI and TOMP, are not suitable for
VF detection even when the thresholds are suitably
adapted.

Outlook
The currently best algorithm works in the time domain.
The two algorithms SPEC and VF use information on the
energy distribution from the frequency domain but do
not use any corresponding phase information. Whereas
the algorithm CPLX which uses methods from chaos the-
ory has a poor performance in the region where Specificity
> 80% our current investigations indicate a promising
good performance for new algorithms based on other
methods coming from chaos theory which are currently
under development. When finished these algorithms will
be presented elsewhere.

Appendix A: Sensitivity, Specificity, Positive 
Predictivity, Accuracy, and ROC
Sensitivity is the ability (probability) to detect ventricular
fibrillation. It is given by the quotient

with TP being the number of true positive decisions, FN
the number of false negative decisions. Specificity is the
probability to identify "no VF" correctly.

It is given by the quotient

where TN is the number of true negative decisions, and FP
is the number of false positive decisions. This means that
if a defibrillator has a sensitivity of 90% and a specificity
of 99%, it is able 90% of the time to detect a rhythm that
should be defibrillated, and 99% of the time to recom-
mend not shocking when defibrillation is not indicated.

Remark: a trivial algorithm which classifies every ECG epi-
sode as "no VF" will reach a specificity of 100%, but will
have sensitivity 0%. On the other hand, a trivial algorithm
which classifies every ECG episode as VF will reach a sen-
sitivity of 100%, but will have specificity 0%. The ROC
curve (see below) describes this inherent tradeoff between
sensitivity and specificity.

Furthermore, we calculated the Positive Predictivity and the
Accuracy of the investigated algorithms.

Positive predictivity is defined by

Positive predictivity is the probability, that classified VF is
truly VF:

detected cases of VF
all cases of VF

=
+
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detected cases of "no VF"
all cases of "no VF"
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Accuracy is defined by

Accuracy is the probability to obtain a correct decision.

Specificity and sensitivity always depend on the chosen
critical threshold parameters which depend, on the other
hand, on the databases used for evaluation (see Note 7).

To get rid of at least of the dependence on the chosen crit-
ical threshold parameter one uses the ROC curve. The sen-
sitivity is plotted in dependence of (1 - specificity), where
different points in the plot are obtained by varying the
critical threshold parameter in the decision stage of an
algorithm.

The ROC curves enables us to compare different algo-
rithms when choosing a specified specificity. For more
information on ROC curves see [20,21].

Appendix B: Algorithm details: Signal 
Comparison Algorithm (SCA)
Here we describe the search for relative maxima and the
appropriate choice among them, used in Section 1 in
more detail.

An offset is added to the ECG signal to make its mean
value to zero. We construct a set Z containing the values aj
and temporal positions tj of this new signal, i.e., Z = {(tj,
aj)|aj is the value of the ECG signal at time tj}.

All further steps are executed both with the set Z and the
set -Z, where -Z = {(tj, bj)|bj = -aj is the value of the negative
ECG signal at time tj} with the help of the reference sig-
nals rECG�, � being VF, SR1, SR2 or SR3, or, equivalently,
� = 0,1, 2, 3. Note, that the maxima of Z correspond to the
minima of -Z. So we get 2 * 4 = 8 tests to find out whether
a signal is VF or SR. If any of the 8 tests yields SR, the signal
is considered to be SR.

Step 1
All relative maxima aj of Z and their corresponding times
tj are determined. The resulting set is called M0, i.e., M0 =
{(tj, aj)|aj is a local maximum}, so M0 ⊂ Z. All aj in M0, that
are smaller than A, where A = ∆·max(aj) and ∆ is a thresh-
old, are deleted. The threshold ∆ is set to 0.1 for the VF ref-
erence signal and to 0.2 for the SR reference signals. We
call the reduced set M1. In Figure 7 we see an ECG episode
from the CU database (cu21, from t = 148 s until t = 156
s) together with its selected relative maxima according to
the status after processing step 1.

Now, we introduce an index l and set it to l = 1.

ECG signal with relative maxima (indicated by stars left) after applying step 1 of Signal Comparison Algorithm (SCA)Figure 7
ECG signal with relative maxima (indicated by stars left) after 
applying step 1 of Signal Comparison Algorithm (SCA). This 
ECG episode is annotated as no VF, a.u. ... arbitrary units.
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ECG signal with relative maxima left (indicated by stars) after applying step 2 of Signal Comparison Algorithm (SCA)Figure 8
ECG signal with relative maxima left (indicated by stars) after 
applying step 2 of Signal Comparison Algorithm (SCA).
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Step 2
Ml is reduced further: The maximum aj in Ml is searched.
Here, we call it amax. amax has a corresponding temporal
position tmax. Then, the largest possible temporal interval
Il in Z around tmax is searched, so that all values aj in this

interval are equal or smaller than amax and larger than
0.2amax. All pairs (aj, tj) except (amax, tmax) in Ml, that are
referred to the found interval Il, are deleted. We get a set
that we call Ml+1. This procedure is repeated with all
untreated aj in Ml, until every aj has been considered and
afterwards either been deleted or kept. After each step, l is
increased by 1. This means, first we consider M1, then M2

= M1\I1, then M3 = M1\{I1 ∪ I2} and so on, until we reach
a highest l, called lmax. In the end, we get a set that we call

M, with .

In the end, the aj in M are the relative maxima in Z, that
are higher than A and are the only ones in certain subin-
tervals of Z. Two different aj in M can only be neighbors in
Z, if they are separated by a valley that is deeper than 20%
of the higher peak of the two. In Figure 8 we again see the
ECG episode, together with its newly selected relative
maxima according to the status after processing step 2.

Step 3
A value Ω is calculated from M. The frequency Ω of
"peaks" is given by

where NM is the number of points in M and tmax - tmin is the
maximum temporal range of the elements in M.

ECG signal with relative maxima (indicated by stars) after applying step 4 of Signal Comparison Algorithm (SCA)Figure 9
ECG signal with relative maxima (indicated by stars) after 
applying step 4 of Signal Comparison Algorithm (SCA).

ECG signal with relative maxima and VF reference signal after applying step 6 of Signal Comparison Algorithm (SCA)Figure 10
ECG signal with relative maxima and VF reference signal after 
applying step 6 of Signal Comparison Algorithm (SCA).
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ECG signal with relative maxima and SR reference signal after applying step 6 of Signal Comparison Algorithm (SCA)Figure 11
ECG signal with relative maxima and SR reference signal after 
applying step 6 of Signal Comparison Algorithm (SCA).
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Step 4
Now, if two different elements (ai, ti) and (aj, tj) of M are

separated by a temporal distance |ti - tj| smaller than ,

the element with the smaller a is deleted from M. This
final set is called X. In Figure 9 we again see the ECG
episode as in the figures above and together with its newly
selected relative maxima according to the status after
processing step 4.

Step 5
Ω is recalculated by Equation (28) with the help of the
recalculated set X. If Ω > 280, r is set to 2, if Ω < 180, r is
set to 0.9, else r is set to 1.

Step 6
The decision is calculated by Equation (16). VRF is calcu-
lated for the ventricular fibrillation reference signal, VRS
for the sinus rhythm reference signal.

In Figure 10 we see the ECG episode together with the cor-
responding VF reference signal.

In Figure 11 we see the ECG episode together with the first
corresponding SR reference signal. c1 is set to 2/r, c2 is set
to 1.
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