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Abstract
The purpose of this review is to examine the literature that has investigated mechanomyographic
(MMG) amplitude and frequency responses during dynamic muscle actions. To date, the majority
of MMG research has focused on isometric muscle actions. Recent studies, however, have
examined the MMG time and/or frequency domain responses during various types of dynamic
activities, including dynamic constant external resistance (DCER) and isokinetic muscle actions, as
well as cycle ergometry. Despite the potential influences of factors such as changes in muscle length
and the thickness of the tissue between the muscle and the MMG sensor, there is convincing
evidence that during dynamic muscle actions, the MMG signal provides valid information regarding
muscle function. This argument is supported by consistencies in the MMG literature, such as the
close relationship between MMG amplitude and power output and a linear increase in MMG
amplitude with concentric torque production. There are still many issues, however, that have yet
to be resolved, and the literature base for MMG during both dynamic and isometric muscle actions
is far from complete. Thus, it is important to investigate the unique applications of MMG amplitude
and frequency responses with different experimental designs/methodologies to continually reassess
the uses/limitations of MMG.

Background
Mechanomyography (MMG) involves recording and
quantifying the low frequency lateral oscillations of active
skeletal muscle fibers [1,2]. Although the exact origin(s)
of the MMG signal is not completely understood, Gordon
and Holbourn [3] suggested that MMG reflects the
mechanical counterpart of motor unit electrical activity as
measured by electromyography (EMG). During voluntary

muscle actions, MMG is usually measured at the surface of
the skin over a muscle, and it has been suggested [1,4-6]
that in this situation, the MMG signal is generated by
three primary mechanisms: a) gross lateral movements of
the muscle as it moves toward, or away from, its line of
pull during contraction and relaxation, respectively, b)
smaller subsequent lateral oscillations of the muscle at its
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resonant frequency, and c) dimensional changes of the
active fibers (see Figure 1).

Although various terminologies, such as soundmyogra-
phy, phonomyography, acousticmyograpy, and vibromy-
ography have been used by previous studies to describe
the MMG signal, Orizio [4] recommended that the term
"mechanomyogram" should be used to reflect the
mechanical nature of the signal. Many different types of
sensors have been used to detect the MMG signal, includ-
ing hydrophones, condenser microphones, piezoelectric
contact sensors, accelerometers, and, more recently, laser
distance sensors [4,5]. As acknowledged by Orizio [4], the
most important characteristic of the sensor is its frequency
response. Specifically, Orizio [4] recommended that the
"...low frequency cut-off has to be around 1 to 2 Hz," and
"the upper cut-off has to be chosen so that the greater part
of the power is well below 100 Hz." Another important
characteristic is the mass of the sensor. In particular, it has
been suggested [4] that lightweight accelerometers may be
more appropriate than larger condenser microphones and
piezoelectric contact sensors when recording MMG sig-
nals from small muscles, such as the first dorsal interos-

seous. For larger limb muscles, such as the biceps brachii
and superficial quadriceps femoris muscles, however,
condenser microphones and piezoelectric contact sensors
can be used, as long as the contact pressure of the sensor
over the muscle remains constant [4,7]. Although the
shape of the MMG signal is dependent on the type of sen-
sor used to detect it [4], Orizio et al. [5] have suggested
that its pattern is similar to the small oscillations in force
that occur during an isometric muscle action. Further-
more, it has been hypothesized [4,8-11] that both signals
(MMG and force) contain information regarding motor
control strategies (relative contributions of recruitment
and firing rate). In particular, several investigations
[5,8,10,12-14] have suggested that under certain condi-
tions, the amplitude of the MMG signal may be related to
the number of active motor units (i.e. motor unit recruit-
ment), while the MMG power density spectrum could
provide qualitative information regarding the global fir-
ing rates of the unfused activated motor units.

Most studies have examined the MMG amplitude and/or
frequency responses during isometric muscle actions [15-
20]. Stokes [6] suggested, however, that "If AMG [MMG]
is to be used as a means of monitoring force during func-
tional activities, then its relationship with force during
dynamic activation must be considered." In addition to
the implications related to monitoring functional and/or
sporting activities, MMG responses during dynamic mus-
cle actions may be particularly important for clinical
applications such as controlling external prostheses [21],
assessing low back pain which can be exacerbated during
movement [22], monitoring rehabilitation following
injury [4,23], and examining masseter muscle function
associated with cranio-mandibular disorders [24]. Unfor-
tunately, there are a number of factors that can potentially
affect the MMG signal during dynamic muscle actions,
including changes in torque production, muscle length,
and the thickness of the tissue between the muscle and the
MMG sensor [4,25]. Theoretically, one or more of these
factors can influence the amplitude and frequency of the
MMG signal during a dynamic muscle action and con-
found the interpretation of the underlying motor control
strategies. There are, however, several pieces of evidence
that indicate that the MMG signal is generated primarily
by muscle activity during a dynamic muscle action.
Briefly, MMG amplitude increases with torque production
during concentric and eccentric muscle actions [26-28], as
well as with increases in power output during incremental
cycle ergometry [29-32]. These responses suggest that
MMG may provide information regarding the level of
muscle activity that is required to perform an exercise task.
In addition, for a given torque level, MMG amplitude is
less during eccentric muscle actions than concentric mus-
cle actions [26], which is consistent with EMG data show-
ing that a lower level of muscle activity is required during

Mechanomyographic (MMG) signal during a voluntary muscle actionFigure 1
Mechanomyographic (MMG) signal during a volun-
tary muscle action. Example of the raw mechanomyo-
graphic (MMG) signal from the biceps brachii muscle and the 
torque production curve during a concentric isokinetic mus-
cle action of the forearm flexors at 100% peak torque (PT) 
for one subject. The concentric muscle action was per-
formed at a velocity of 30°·s-1 across a 90° range of motion 
(180° to 90° of forearm flexion), and the MMG signal was 
recorded with an accelerometer (Entran EGAS FT 10).
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eccentric activity [33,34]. Shinohara et al. [30], however,
provided perhaps the most convincing evidence that
MMG reflects muscle activity during dynamic muscle
actions. The authors [30] examined the MMG amplitude
responses for the vastus lateralis muscle during an incre-
mental cycle ergometry test in which the power output
was increased by 20 W each minute and the subject main-
tained a pedal cadence of 60 revolutions per minute. Dur-
ing the first 30 s of each 1-minute stage, the subjects were
instructed to relax with their feet on the pedals while one
of the investigators pushed the pedals at the required
cadence. For the second 30 s of each one minute stage,
however, the subjects pedaled actively against the ergom-
eter. The authors [30] reported that MMG amplitude for
the vastus lateralis muscle increased linearly with power
output during the active cycling, but there was only a
small increase in MMG amplitude during the passive
cycling. In addition, it was hypothesized that the small
increases in MMG amplitude during the passive cycling
may have been due to incomplete relaxation in some of
the subjects, because there was also a small increase in
EMG amplitude for the vastus lateralis muscle. Thus, the
authors [30] stated, "These observations confirm that the
MMG recorded during the contraction phase could
include some noise, but mainly reflect the activity of the
quadriceps muscle within the parameters of this experi-
ment." These findings [26-28,30-32] clearly indicated that
during dynamic muscle actions, MMG is generated prima-
rily by muscle activity. Therefore, pertinent follow-up
questions include: a) what kind of information can be
extracted from the MMG signal that is recorded during a
dynamic muscle action; and b) what are the uses/applica-
tions of this information? Unfortunately, there are no
simple answers to these questions because the MMG
amplitude and frequency responses depend largely on the
type of dynamic muscle action(s) (i.e. concentric versus
eccentric, maximal versus submaximal) that is being per-
formed. Furthermore, there are many issues regarding the
exact origin(s) of the MMG signal that have yet to be
resolved. The purpose of this review, however, is to exam-
ine the literature regarding the MMG responses during dif-
ferent types of dynamic muscle actions. Although many of
the studies discussed in this review are contributions from
our laboratory, an attempt has been made to be as com-
prehensive as possible, and emphasis will be placed on
summarizing the common findings from the various
types of experiments that have been performed.

MMG amplitude and frequency responses with 
increases in velocity during maximal concentric 
isokinetic muscle actions
Evetovich et al. [35] were the first to examine the MMG
amplitude responses with increases in velocity during iso-
kinetic muscle actions. The authors [35] reported that dur-
ing maximal concentric isokinetic leg extensions, there

was a velocity-related increase in MMG amplitude for the
vastus lateralis muscle, but leg extension peak torque (PT)
decreased with increases in velocity from 60–360°·s-1. In
addition, the MMG amplitude values were highly reliable,
with intraclass correlation coefficients (ICCs) ranging
from R = 0.90–0.99, with no significant differences
between the mean MMG amplitude values for test versus
retest at any velocity. Evetovich et al. [35] hypothesized
that the increase in MMG amplitude for the vastus latera-
lis muscle with an increase in velocity may have been due
to reduced muscle stiffness at the high velocities. Specifi-
cally, at slow velocities, both slow- and fast-twitch muscle
fibers contribute to torque production [35,36]. With
increases in velocity, however, slow-twitch muscle fibers
may become unloaded, because they are unable to con-
tract rapidly enough to keep up with the speed of the
movement [36]. As a result, there are decreases in PT and
muscle stiffness, which may result in increased muscle
fiber oscillations and greater MMG amplitude values [35].
Smith et al. [37] provided support for this hypothesis by
demonstrating that during maximal concentric isokinetic
muscle actions of the forearm flexors at velocities ranging
from 30–150°·s-1, there was a velocity-related increase in
MMG amplitude for the biceps brachii, but forearm flex-
ion PT decreased with increases in velocity. Furthermore,
Evetovich et al. [38] found that during maximal concen-
tric isokinetic leg extensions at velocities ranging from
30–150°·s-1, there were velocity-related increases in
MMG amplitude for the vastus lateralis muscle in both
men and women subjects. In addition to decreases in
muscle stiffness, the authors [38] hypothesized that the
increases in MMG amplitude at high velocities could be
due to factors such as: a) a greater rate of cross-bridge
cycling at high velocities that caused larger vibratory
motions of the sarcomeres, and/or b) greater intracellular
and extracellular fluid turbulence. The velocity-related
increases in MMG amplitude were greater, however, for
the men than for the women, and the men demonstrated
greater MMG amplitude values than the women at all
velocities [38]. It was suggested that the gender differences
in the MMG amplitude patterns could be related to a
greater decline in leg extension PT with increases in veloc-
ity for the women (33.3% decline) than for the men
(28.5% decline). In addition, the greater MMG amplitude
values for the men may have reflected differences in fiber
type composition [39], a larger muscle mass, and/or a
thinner adipose tissue layer over the vastus lateralis than
is typically found in women [38]. In particular, English et
al. [39] recently reported that the masseter muscle in male
rabbits contained more fast-twitch fibers and fewer slow-
twitch fibers than the same muscle in female rabbits. If
these differences also occur in large limb muscles of
humans, then gender differences in the MMG amplitude
and/or MPF responses could be related to unique muscle
fiber type distribution patterns in men versus women.
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Theoretically, a velocity-related shift in the contributions
of slow-twitch muscle fibers to torque production could
also influence the frequency content of the surface MMG
signal. In particular, if slow-twitch muscle fibers become
unloaded at high velocities, it is possible that their contri-
bution to MMG decreases. Several studies [40-42] have
reported that when compared to low threshold slow-
twitch motor units, high threshold fast-twitch motor units
have higher initial firing rates and require greater stimula-
tion rates to achieve complete fusion of motor unit
twitches. Thus, decreases in the contributions of slow-
twitch muscle fibers to MMG at high velocities could
result in higher frequency MMG signals. Ebersole et al.
[43] tested this hypothesis by examining the MMG ampli-
tude and mean power frequency (MPF) responses from
the vastus lateralis muscle during maximal concentric iso-
kinetic leg extensions at velocities of 60 and 300°·s-1. The
authors [43] reported that with an increase in velocity
from 60 to 300°·s-1, there was a significant decrease in leg
extension PT and an increase in MMG amplitude. There
was, however, no difference between the mean MMG MPF
values at 60 and 300°·s-1. It was hypothesized that the
tendonous iliotibial band that covers the vastus lateralis
muscle could have interfered with the muscle fiber oscil-
lations that generated the MMG signal. In addition, it was
still unclear if the velocity-related increases in MMG
amplitude that had been reported for the vastus lateralis
[35,38,43] and biceps brachii [37] were due to reduced
muscle stiffness, a greater rate of cross-bridge cycling, or
increased turbulence of the intracellular and extracellular
fluid mediums at high velocities.

Bodor [44], however, proposed that MMG amplitude may
be more related to power output than PT during maximal
concentric isokinetic muscle actions. Cramer et al. [45]
tested this hypothesis by examining the potential relation-
ship between MMG amplitude and mean power output
during maximal concentric isokinetic leg extensions at
velocities ranging from 60 to 300°·s-1. The authors [45]
reported that leg extension PT decreased with increases in
velocity, but mean power output and MMG amplitude for
the rectus femoris, vastus lateralis and vastus medialis
muscles increased from 60 to 240°·s-1, and then pla-
teaued from 240 to 300°·s-1. It was suggested that MMG
amplitude may be useful for monitoring training-induced
changes in power output.

Interestingly, there is also evidence to suggest that there
may be muscle-specific differences in the MMG amplitude
responses with increases in velocity during maximal con-
centric isokinetic muscle actions. For example, Cramer et
al. [46] reported that during maximal concentric isoki-
netic leg extensions at velocities ranging from 60 to
300°·s-1, MMG amplitude for each of the superficial
quadriceps femoris muscles (rectus femoris, vastus latera-

lis, and vastus medialis) increased with velocity from 60
to 180°·s-1. At velocities above 180°·s-1, however, MMG
amplitude increased to 240°·s-1 and then plateaued from
240 to 300°·s-1 for the vastus lateralis, plateaued from
180 to 300°·s-1 for the rectus femoris, and increased from
180 to 300°·s-1 for the vastus medialis. It was suggested
that the muscle-specific differences in the MMG ampli-
tude responses may be due to differences among the rec-
tus femoris, vastus lateralis, and vastus medialis muscles
in fiber type composition and/or muscle architecture
(unipennate versus bipennate or the degree of penna-
tion). In addition, Ebersole et al. [47] examined the pat-
terns for MMG amplitude from the vastus lateralis with
increases in velocity during maximal concentric isokinetic
and passive leg extension muscle actions. The authors [47]
found that MMG amplitude increased with leg extension
velocity during both the active and passive leg extension
muscle actions. During the passive leg extension muscle
actions, however, the vastus lateralis muscle remained
inactive because the EMG amplitude values from the mus-
cle were very small and did not change with increases in
velocity. It was hypothesized that the velocity-related
increases in MMG amplitude for the vastus lateralis mus-
cle may have been due to greater turbulence of the intrac-
ellular and extracellular fluid mediums and/or cross-talk
from the hamstring muscles. Thus, these findings sug-
gested that in addition to power output, MMG amplitude
may be affected by factors such as fiber type composition
and muscle architecture [46], as well as turbulence of the
intracellular and extracellular fluid mediums and/or
cross-talk [47]. Cramer et al. [48], however, recently
reported that the potential for cross-talk in surface MMG
signals is relatively small, even for muscles that are very
close to each other and have a common innervation. Spe-
cifically, the authors [48] used cross-correlation to quan-
tify the common variance present in the MMG signals
from the rectus femoris, vastus lateralis, and vastus medi-
alis muscles during maximal concentric and eccentric iso-
kinetic leg extensions at a velocity of 60°·s-1. The
common variance shared between the MMG signals from
any two muscles ranged from 14% to 27%, and it was sug-
gested [48] that, "...despite the potential for some cross-
talk, MMG measurements can be used to examine differ-
ences between the patterns of MMG amplitude and fre-
quency responses of the superficial muscles of the
quadriceps femoris."

One issue that is still unresolved, however, is the potential
relationship between MMG MPF and velocity during max-
imal concentric isokinetic muscle actions. For example,
Cramer et al. [49] reported that during maximal concen-
tric isokinetic leg extensions, MMG MPF for the rectus
femoris, vastus lateralis, and vastus medialis muscles did
not change with increases in velocity from 60 to 240°·s-1.
There were, however, velocity-related increases in MMG
Page 4 of 27
(page number not for citation purposes)



BioMedical Engineering OnLine 2005, 4:67 http://www.biomedical-engineering-online.com/content/4/1/67
MPF (marginal means, collapsed across muscles) from
240 to 300°·s-1. Furthermore, Cramer et al. [50] recently
suggested that the MMG MPF responses to increases in
velocity may be muscle-specific. For example, during max-
imal concentric isokinetic leg extensions, there were veloc-
ity-related increases in MMG MPF for the rectus femoris
and vastus lateralis muscles, but not for the vastus media-
lis [50]. Thus, it is possible that potential increases in
MMG MPF during concentric isokinetic muscle actions
may be muscle- and/or velocity-specific.

Collectively, the results from these studies have indicated
that during maximal concentric isokinetic muscle actions,
there are velocity-related increases in MMG amplitude
that may be due to reduced muscle stiffness, a greater rate
of cross-bridge cycling, and/or increased turbulence of the
intracellular and extracellular fluid mediums. In addition,

MMG amplitude may be closely related to power output
(see Figure 2), which suggests that MMG could potentially
be useful for examining training-induced adaptations in
muscular power. It is unclear, however, if there is a rela-
tionship between MMG MPF and velocity during concen-
tric isokinetic muscle actions.

MMG amplitude and frequency responses with 
increases in velocity during maximal eccentric 
isokinetic muscle actions
Eccentric muscle actions may require unique motor con-
trol strategies from the central nervous system [51]. Spe-
cifically, it has been suggested that when compared to
concentric and/or isometric activities, eccentric muscle
actions are characterized by lower levels of muscle activa-
tion [26], reduced recruitment thresholds [52,53], lower
motor unit firing rates [54], de-recruitment of low thresh-

Mean power output, isokinetic peak torque (PT), mechanomyographic (MMG) amplitude, and MMG mean power frequency (MPF) responses with increases in velocity during maximal concentric isokinetic muscle actionsFigure 2
Mean power output, isokinetic peak torque (PT), mechanomyographic (MMG) amplitude, and MMG mean 
power frequency (MPF) responses with increases in velocity during maximal concentric isokinetic muscle 
actions. (A) Relationship between mean power output and angular velocity during maximal concentric isokinetic leg exten-
sions. (B) Relationship between maximal concentric isokinetic leg extension peak torque and angular velocity. (C) Relationship 
between mechanomyographic (MMG) amplitude (averaged across the rectus femoris, vastus lateralis, and vastus medialis mus-
cles) and angular velocity. (D) Relationship between MMG mean power frequency (MPF, averaged across the rectus femoris, 
vastus lateralis, and vastus medialis muscles) and angular velocity. The data presented in each graph are the mean values from 
26 subjects, and all MMG signals were recorded with a piezoelectric contact sensor (HP 21050A).
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old slow-twitch motor units [55], and selective activation
of high threshold fast-twitch motor units [56]. In addi-
tion, unlike maximal concentric isokinetic muscle actions,
torque production during maximal eccentric isokinetic
muscle actions does not change with increases in velocity
[37,38,57-59], but there are significant velocity-related
increases in mean power output [59]. Thus, MMG ampli-
tude and/or MPF could provide information regarding the
unique motor control strategies that are used during
eccentric muscle actions. In addition, the possibility for
velocity-related increases in mean power output suggests
that maximal eccentric isokinetic muscle actions may be
useful for testing the hypothesis of Bodor [44] that MMG
amplitude is more closely related to power output than PT
during maximal isokinetic muscle actions.

Smith et al. [57] examined the MMG amplitude responses
from the vastus lateralis during maximal eccentric isoki-
netic muscle actions of the leg extensors at velocities of 60,
90, 120, and 180°·s-1. The authors [57] found that
although there was no change in eccentric PT from 60 to
180°·s-1, there was a velocity-related increase in MMG
amplitude for the vastus lateralis muscle. In addition, the
MMG amplitude values during the maximal eccentric iso-
kinetic muscle actions were highly reliable, with ICCs
ranging from R = 0.97–0.98 and no significant differences
between the mean MMG amplitude values for test versus
retest at any velocity. The authors [57] proposed three
potential hypotheses to explain the velocity-related
increase in MMG amplitude for the vastus lateralis mus-
cle. First, an increased rate of cross bridge activity during
high-velocity eccentric muscle actions could result in
larger vibrations of the myosin heads, potentially result-
ing in greater MMG amplitude values. Second, de-recruit-
ment of low threshold slow-twitch motor units [55] and
selective activation of high threshold fast-twitch motor
units [56] at high velocities during eccentric muscle
actions could influence MMG amplitude because in some
muscles, fast-twitch motor units may be more superfi-
cially located than slow-twitch motor units [60]. Thus,
when compared to slow-twitch motor units, the vibra-
tions from fast-twitch motor units may be damped to a
lesser degree by the surrounding tissues, potentially result-
ing in greater MMG amplitude values [57]. Finally, the
velocity-related increases in MMG amplitude may be due
to faster movement of the limb and a greater overall dis-
turbance of the intracellular and extracellular fluid medi-
ums [57].

Evetovich et al. [38] also reported velocity-related
increases in MMG amplitude for the vastus lateralis dur-
ing maximal eccentric isokinetic muscle actions of the leg
extensors. There was no gender difference for the increases
in MMG amplitude with velocity, but the men demon-
strated greater MMG amplitude values than the women at

all velocities. As stated previously for maximal concentric
isokinetic muscle actions, the greater MMG amplitude val-
ues for men during maximal eccentric isokinetic muscle
actions could be related to a larger muscle mass and/or
thinner adipose tissue layer over the vastus lateralis than
is typically found in women [38]. In addition, Smith et al.
[37] reported that MMG amplitude for the biceps brachii
increased with velocity during maximal eccentric isoki-
netic muscle actions of the forearm flexors at velocities of
30, 90, and 150°·s-1. These findings indicated that
increases in MMG amplitude with velocity during maxi-
mal eccentric isokinetic muscle actions can occur in the
biceps brachii, which is a fusiform muscle with a poten-
tially different fiber type composition [60] when com-
pared to the unipennate vastus lateralis that had been
examined in previous studies [38,57]. The exact mecha-
nism(s) underlying the velocity-related increase in MMG
amplitude was, however, still unknown.

Theoretically, de-recruitment of low threshold slow-
twitch motor units [55] and selective activation of high
threshold fast-twitch motor units [56] during high-veloc-
ity eccentric muscle actions could result in greater MMG
amplitude and MPF values. Evetovich et al. [61], however,
reported that during maximal eccentric isokinetic muscle
actions of the leg extensors at velocities of 60, 120, and
180°·s-1, there was a velocity-related increase in MMG
amplitude for the vastus lateralis muscle, but there was no
change in MMG MPF from 60 to 180°·s-1. It was sug-
gested that the increase in MMG amplitude may have
been due to factors other than a velocity-related shift in
the contributions of slow- and fast-twitch muscle fibers to
torque production. In addition, Cramer et al. [62] found
that during maximal eccentric isokinetic muscle actions of
the leg extensors, MMG MPF for the rectus femoris, vastus
lateralis, and vastus medialis muscles actually decreased
with an increase in velocity from 60 to 120°·s-1, and then
remained relatively stable from 120 to 180°·s-1. Although
there was no change in eccentric PT, there were increases
in mean power output and the average MMG amplitude
values for each muscle from 60 to 180°·s-1. Furthermore,
Cramer et al. [59] reported that mean power output and
MMG amplitude for the vastus lateralis increased with
velocity during maximal eccentric isokinetic muscle
actions of the leg extensors at velocities of 30, 90, and
150°·s-1. The velocity-related increases in MMG ampli-
tude were similar, however, in men and women.

Thus, the results from these studies [37,38,57,59,61,62]
provided support for the hypothesis that MMG amplitude
could be more closely related to power output than PT
during maximal isokinetic (both concentric and eccentric)
muscle actions (see Figure 3) [44]. In addition, the veloc-
ity-related increases in MMG amplitude that have been
reported in the biceps brachii [37], vastus lateralis [38,57],
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rectus femoris, and vastus medialis muscles [59,62] sug-
gested that MMG amplitude increases with velocity during
maximal eccentric isokinetic muscle actions, even for
muscles with a potentially different architecture (fusi-
form, unipennate, bipennate) and/or fiber type composi-
tion. Finally, MMG MPF may not reflect a potential
velocity-related shift in the contributions of fast- and
slow-twitch muscle fibers to torque production during
maximal eccentric isokinetic muscle actions.

MMG amplitude and frequency responses with 
increases in torque during incremental 
concentric and eccentric muscle actions
Dalton and Stokes [26,63] were the first investigators to
examine the potential torque-related patterns for MMG
amplitude and MPF during concentric and eccentric mus-

cle actions. The authors [26,63] measured the MMG signal
from the biceps brachii muscle during submaximal
dynamic constant external resistance (DCER, formerly
called isotonic) muscle actions of the forearm flexors in
which the subjects lifted (concentric) and lowered (eccen-
tric) weights ranging from 0 to 8.5 kg. Dalton and Stokes
[26] reported that MMG amplitude for the biceps brachii
increased linearly from 0 to 8.5 kg during both the con-
centric and eccentric muscle actions. In addition, during
the concentric muscle actions, MMG MPF for the biceps
brachii increased from 0 to approximately 5.5 kg and then
decreased from 5.5 to 8.5 kg [63]. During the eccentric
muscle actions, however, MMG MPF remained relatively
stable from 0 to 8.5 kg [63]. It was suggested that during
submaximal concentric muscle actions of the forearm
flexors, torque may be increased by recruiting additional

Mean power output, isokinetic peak torque (PT), mechanomyographic (MMG) amplitude, and MMG mean power frequency (MPF) responses with increases in velocity during maximal eccentric isokinetic muscle actionsFigure 3
Mean power output, isokinetic peak torque (PT), mechanomyographic (MMG) amplitude, and MMG mean 
power frequency (MPF) responses with increases in velocity during maximal eccentric isokinetic muscle 
actions. (A) Relationship between mean power output and angular velocity during maximal eccentric isokinetic muscle 
actions of the leg extensors. (B) Relationship between isokinetic peak torque and angular velocity during maximal eccentric 
isokinetic muscle actions of the leg extensors. (C) Relationship between mechanomyographic (MMG) amplitude (averaged 
across the rectus femoris, vastus lateralis, and vastus medialis muscles) and angular velocity. (D) Relationship between MMG 
mean power frequency (MPF, averaged across the rectus femoris, vastus lateralis, and vastus medialis muscles) and angular 
velocity. The data presented in each graph are the mean values from 24 subjects, and all MMG signals were recorded with a 
piezoelectric contact sensor (HP 21050A).
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motor units in the biceps brachii, as well as increasing
their firing rates. During submaximal eccentric muscle
actions, however, forearm flexion torque may be
increased primarily through motor unit recruitment, with
little change in motor unit firing rates. Petitjean et al. [64]
also examined the potential relationship between MMG
amplitude and torque during submaximal concentric
DCER muscle actions of the forearm flexors. The authors
[64] reported that MMG amplitude for the biceps brachii
and brachioradialis muscles increased linearly with fore-
arm flexion torque. Beck et al. [27,65] reported similar
results for the biceps brachii during submaximal to maxi-
mal concentric isokinetic muscle actions of the forearm
flexors at a velocity of 30°·s-1. Specifically, MMG ampli-
tude for the biceps brachii muscle increased linearly with
forearm flexion torque, but there was no significant
change in MMG MPF from 10% to 100% PT. The findings
for MMG MPF differed from those of Dalton and Stokes
[63]. It is possible, however, that the discrepancies among
the results from these studies [27,63,65] may have been
due to differences in experimental design. Specifically,
Dalton and Stokes [63] used submaximal DCER muscle
actions of the forearm flexors with weights ranging from 0
to 8.5 kg, while the subjects in the studies by Beck et al.
[27,65] performed maximal as well as submaximal isoki-
netic muscle actions at a single velocity (30°·s-1) over a
range of 10% to 100% PT. Beck et al. [27,65] suggested,
however, that the torque-related increases in MMG ampli-
tude for the biceps brachii, with no significant change in
MMG MPF, may have been due to recruitment, with little
change in motor unit firing rates. In addition, Coburn et
al. [66] examined the MMG amplitude and MPF versus
torque relationships for the vastus medialis during sub-
maximal to maximal concentric isokinetic muscle actions
of the leg extensors at a velocity of 30°·s-1. The authors
[66] reported that MMG amplitude and MPF for the vas-
tus medialis muscle increased linearly with leg extension
torque from 10% to 100% PT. It was suggested that the
torque-related increases in MMG amplitude and MPF for
the vastus medialis may have been due to concurrent
modulation of the number of active motor units and their
firing rates throughout the entire range of concentric leg
extension torque.

Recent studies [28,67] have also examined the MMG
amplitude and MPF versus eccentric torque relationships.
Beck et al. [67] found that during submaximal to maximal
eccentric isokinetic muscle actions of the forearm flexors
at a velocity of 30°·s-1, MMG amplitude for the biceps
brachii increased from 10% to approximately 60% PT and
then plateaued from 60% to 100% PT. In addition, there
was a linear increase in MMG MPF for the biceps brachii
from 10% to 100% PT. It was hypothesized that the
increases in MMG amplitude and MPF from 10% to
approximately 60% PT were likely due to recruitment of

motor units in the biceps brachii muscle, as well as
increases in their firing rates. The plateau in MMG ampli-
tude, and increase in MMG MPF from 60% to 100% PT,
however, suggested that recruitment in the biceps brachii
muscle may have ended at approximately 60% PT, and
further increases in eccentric isokinetic torque were due to
changes in motor unit firing rates [67]. In addition,
Coburn et al. [28] examined the MMG amplitude and
MPF versus torque relationships for the vastus medialis
during submaximal to maximal eccentric isokinetic mus-
cle actions of the leg extensors at a velocity of 30°·s-1. The
authors [28] reported that both MMG amplitude and MPF
for the vastus medialis muscle increased linearly with
eccentric isokinetic torque from 10% to 100% PT. It was
suggested that for the vastus medialis muscle, motor unit
recruitment and firing rate modulation may occur
throughout the entire range of eccentric torque produc-
tion. Interestingly, Madeleine et al. [68] found that during
both concentric and eccentric muscle actions of the first
dorsal interosseous, there were no changes in MMG
amplitude or MPF with increases in torque. These findings
are in contrast to the torque-related increases in MMG
amplitude and/or MPF that have been reported for the
biceps brachii [26,27,63-65,67] and vastus medialis
[28,66,69] during concentric and eccentric muscle
actions, and may reflect muscle-specific differences in the
motor control strategies that modulate torque produc-
tion. For example, previous studies [14,33,70] have
reported that large limb muscles such as the biceps brachii
and vastus medialis rely heavily on motor unit recruit-
ment for increasing isometric torque production. For
smaller hand muscles such as the first dorsal interosseous,
however, increasing motor unit firing rates is important
for generating additional torque, particularly above
approximately 50% MVC when all motor units have been
recruited [14,33]. Thus, if these muscle-specific differ-
ences in motor control strategies also occur during con-
centric and eccentric muscle actions, then the lack of
significant changes in MMG amplitude and MMG MPF
reported by Madeleine et al. [68] could be related to the
potential importance of firing rate modulation for
increasing concentric and eccentric torque production in
the first dorsal interosseous muscle.

Collectively, the results from these studies [26-28,63-69]
suggested that the torque-related patterns for MMG
amplitude and MPF may provide information regarding
the motor control strategies that modulate torque in vari-
ous muscles during concentric and eccentric muscle
actions (see Figures 4 and 5). In addition, the MMG
amplitude and/or MPF versus dynamic torque relation-
ships may be useful in rehabilitative settings, where func-
tional activities such as dynamic muscle actions are
usually preferred over isometric muscle actions [6]. In par-
ticular, the linear MMG amplitude versus torque relation-
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ship during concentric muscle actions of the biceps
brachii [26,27,64] and vastus medialis [66] suggested that
MMG amplitude could potentially be used to assess
dynamic force production in situations where force can-
not be measured directly (i.e. when examining some of
the individual limb muscles, the facial muscles, and/or
the muscles of the back and abdomen) [23].

MMG amplitude and MPF responses during 
fatiguing concentric and eccentric isokinetic 
muscle actions
Recent studies have also investigated the MMG amplitude
and/or MPF responses during fatiguing concentric [71,72]
and eccentric [73] isokinetic muscle actions. For example,
Perry-Rana et al. [71] examined the patterns for MMG
amplitude from the rectus femoris, vastus lateralis, and
vastus medialis muscles during 50 consecutive maximal
concentric isokinetic leg extensions at velocities of 60,
180, and 300°·s-1. The authors [71] found that at 60 and
300°·s-1, there were quadratic decreases in MMG ampli-
tude for the vastus lateralis and vastus medialis muscles,

but linear decreases in MMG amplitude for the rectus fem-
oris. At 180°·s-1, MMG amplitude decreased quadrati-
cally for the vastus medialis muscle, but there were linear
decreases in MMG amplitude for the rectus femoris and
vastus lateralis [71]. The reductions in MMG amplitude at
each velocity (60, 180, and 300°·s-1) were greater for the
rectus femoris muscle than for the vastus lateralis and vas-
tus medialis. In addition, at 60°·s-1, the decrease in con-
centric isokinetic leg extension torque was best fit with a
quadratic model, but at 180 and 300°·s-1, the patterns for
torque were best fit with cubic models [71]. It was sug-
gested that the decreases in MMG amplitude for each mus-
cle at the three velocities may have been due to reduced
muscle compliance and/or "muscle wisdom," in which
the central nervous system reduces motor unit firing rates
to compensate for fatigue-induced increases in muscle
fiber relaxation times [74]. Theoretically, muscle wisdom
allows for an economical activation of fatiguing muscle
[75] and could reduce the number of pressure waves
recorded per unit of time, thereby decreasing MMG ampli-
tude [71,76]. In addition, it has been suggested [77-80]
that during prolonged static and dynamic muscle actions,
there are increases in muscle thickness, fluid content, and
intramuscular pressure, all of which may contribute to
reductions in the compliance (i.e. elastic properties) of
the muscle. In theory, a decrease in muscle compliance
could restrict the muscle fiber oscillations and/or attenu-
ate the pressure waves that generate the MMG signal,
thereby decreasing MMG amplitude [71]. Søgaard et al.
[81], however, recently suggested that MMG amplitude
may not be influenced by changes in intramuscular pres-
sure. Specifically, the authors [81] reported that during an
isometric ramp muscle action of the forearm flexors from
10% to 60% MVC, MMG amplitude for the biceps brachii
increased linearly with torque, even when intramuscular
pressure was increased with a sphygmomanometer cuff. It
was suggested that MMG amplitude may not be influ-
enced by intramuscular pressure. This hypothesis should
be tested, however, at higher torque levels and with differ-
ent muscles to further examine the potential influence of
intramuscular pressure on MMG amplitude. Furthermore,
the greater decreases in MMG amplitude for the rectus
femoris muscle than for the vastus lateralis and vastus
medialis reported by Perry-Rana et al. [71] may have
reflected a larger percentage of fast-twitch muscle fibers in
the rectus femoris [60]. Beck et al. [72] examined the
MMG amplitude and MPF responses from the biceps bra-
chii during 50 consecutive maximal concentric isokinetic
muscle actions of the forearm flexors at a velocity of
180°·s-1. The authors [72] found linear decreases in both
MMG amplitude and MPF across the 50 repetitions. In
addition, the decrease (approximately 70%) in mean fore-
arm flexion torque was best fit with a cubic model [72]. It
was suggested that the reductions in MMG amplitude and
MPF may have been due to fatigue-induced decreases in

Relationships for mechanomyographic (MMG) amplitude and mean power frequency (MPF) versus torque during concen-tric isokinetic muscle actionsFigure 4
Relationships for mechanomyographic (MMG) ampli-
tude and mean power frequency (MPF) versus 
torque during concentric isokinetic muscle actions. 
The top graph shows the linear relationship between mechan-
omyographic (MMG) amplitude (m·s-2) for the biceps brachii 
and concentric isokinetic torque. The bottom graph demon-
strates the lack of a significant relationship between MMG 
mean power frequency (MPF, Hz) for the biceps brachii and 
concentric isokinetic torque. The data presented are from 
one subject, and the MMG signals were recorded with an 
accelerometer (Entran EGAS FT 10) during concentric isoki-
netic forearm flexion muscle actions at a velocity of 30°·s-1.
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motor unit firing rates (i.e. muscle wisdom) and/or
reduced compliance in the biceps brachii muscle. Beck et
al. [72] also hypothesized, however, that de-recruitment
of fast-twitch motor units [82,83], which have higher fir-
ing rates than slow-twitch motor units [40,41,84], could,
theoretically, result in decreases in both MMG amplitude
and MPF. In addition, Perry-Rana et al. [73] examined the
MMG amplitude responses from the rectus femoris, vastus
lateralis, and vastus medialis during 25 consecutive maxi-
mal eccentric isokinetic muscle actions of the leg exten-
sors at a velocity of 120°·s-1. The authors [73] found that
for the vastus lateralis and vastus medialis muscles, MMG
amplitude decreased linearly across the 25 repetitions. For
the rectus femoris muscle, however, the MMG amplitude
pattern was best fit with a cubic model, in which MMG

amplitude increased slightly during repetitions 1–5,
decreased during repetitions 5–20, and increased
throughout the last 5 repetitions of the test. Interestingly,
the pattern for eccentric leg extension torque was best fit
with a cubic model, where torque increased during the
first 10 repetitions, and then remained relatively stable
from repetitions 11–25. The authors [73] hypothesized
that the decreases in MMG amplitude for each muscle
may have been due to the effects of muscle wisdom and/
or reduced muscle compliance. In addition, it was sug-
gested that the muscle-specific differences in the MMG
amplitude patterns (i.e. a cubic decline for the rectus fem-
oris versus linear decreases for the vastus lateralis and vas-
tus medialis) may have been due to differences among the
three muscles in fiber type composition and/or architec-
ture (unipennate versus bipennate).

Thus, the results from these studies [71-73] suggested that
MMG amplitude and/or MPF could potentially provide
information regarding the motor control strategies that
are used during fatiguing concentric and eccentric isoki-
netic muscle actions. Specifically, fatigue-induced
decreases in MMG amplitude and MPF may reflect reduc-
tions in motor unit firing rates (muscle wisdom) and/or
de-recruitment of fast-twitch motor units [71-74,82]. In
addition, MMG amplitude and/or MPF patterns during
fatiguing isokinetic muscle actions may be influenced by
fiber type composition and/or muscle architecture
[71,73]. Finally, decreases in muscle compliance during
repeated maximal isokinetic muscle actions [77-80] could
attenuate the muscle fiber oscillations and/or pressure
waves that generate the MMG signal.

MMG amplitude and MPF responses during cycle 
ergometry
Several studies [29-32,85-87] have investigated the MMG
amplitude and/or MPF responses during cycle ergometry.
For example, Stout et al. [29] examined the patterns for
oxygen consumption rate (VO2) and MMG amplitude
from the vastus lateralis muscle during an incremental
cycle ergometer test performed to exhaustion. The authors
[29] found that the MMG amplitude and VO2 versus
power output relationships were highly linear (r2 range =
0.79–0.99 and 0.97–0.99, respectively). In addition, for
20 of the 24 subjects that participated in the study, the lin-
ear slope coefficients for the normalized MMG amplitude
and VO2 versus power output relationships were statisti-
cally equivalent. It was suggested that MMG could be use-
ful for quantifying muscular activity and monitoring
changes in exercise intensity during incremental cycle
ergometry. Furthermore, the similar slope coefficients for
the normalized MMG amplitude and VO2 versus power
output relationships for the majority of the subjects indi-
cated that there may be a close relationship between the
metabolic (VO2) and mechanical (MMG) aspects of mus-

Relationships for mechanomyographic (MMG) amplitude and mean power frequency (MPF) versus torque during eccentric isokinetic muscle actionsFigure 5
Relationships for mechanomyographic (MMG) ampli-
tude and mean power frequency (MPF) versus 
torque during eccentric isokinetic muscle actions. 
The top graph shows the linear relationship between normal-
ized mechanomyographic (MMG) amplitude and percent 
eccentric isokinetic peak torque (PT) for the vastus medialis 
muscle of one subject. The bottom graph demonstrates that 
for this particular subject (the same subject as in the top 
graph), there was no relationship between normalized MMG 
mean power frequency (MPF) for the vastus medialis muscle 
and percent eccentric isokinetic PT. The data presented are 
from one subject, and the MMG signals were recorded with a 
piezoelectric contact sensor during eccentric isokinetic mus-
cle actions of the leg extensors at a velocity of 30°·s-1.

y = 0.9453x - 0.413

r
2
= 0.9426

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

% PT

N
o
rm

al
iz
ed

M
M
G
A
m
p
li
tu
d
e
(%

m
ax
)

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

%PT

N
o
rm

al
iz
ed

M
M
G
M
P
F
(%

m
ax
)

Page 10 of 27
(page number not for citation purposes)



BioMedical Engineering OnLine 2005, 4:67 http://www.biomedical-engineering-online.com/content/4/1/67
cle activity during cycle ergometry. Shinohara et al. [30]
also found that MMG amplitude for the vastus lateralis
muscle increased linearly with power output during incre-
mental cycle ergometry. In fact, MMG amplitude was
more linearly related to power output than was EMG
amplitude, which tended to increase curvilinearly at high
power outputs. Perry et al. [31] reported similar results for
the vastus lateralis muscle during incremental cycle
ergometry. Specifically, for the majority of the subjects (7
out of 9), MMG amplitude increased linearly with power
output, but EMG amplitude increased curvilinearly. The
authors [31] also reported linear increases in normalized
heart rate and ratings of perceived exertion (RPE) with
power output, and the linear slope coefficients for these
relationships were statistically equivalent to the slope
coefficient for the linear normalized MMG amplitude ver-
sus power output relationship. Thus, it was suggested that
during incremental cycle ergometry, there may be a close
relationship among the mechanical (MMG), heart rate,
and perception of effort (RPE) aspects of muscular activ-
ity.

The potential relationship between MMG frequency and
motor unit firing rates [5,13,84] has suggested that the fre-
quency domain of the MMG signal may provide informa-
tion regarding the motor control strategies that are used
during incremental cycle ergometry [32]. Theoretically,
increases in MMG MPF could reflect modulation of motor
unit firing rates with increasing power output. Perry et al.
[32], however, reported no change in MMG MPF for the
vastus lateralis muscle, but a linear increase in MMG
amplitude with increases in power output during an incre-
mental cycle ergometer test performed to exhaustion. It
was suggested that during cycle ergometry, motor control
strategies are examined across a narrow range of very low
levels of force production. Specifically, Sjøgaard [88]
reported that during cycle ergometry at 100% of VO2 max
and a pedal cadence of 60 rev·min-1, the force exerted
against the pedals represented approximately 16% of the
isometric MVC. Large limb muscles (such as the vastus lat-
eralis) typically rely heavily on recruitment for increasing
isometric torque to about 50–80% MVC, above which,
modulation of motor unit firing rates becomes progres-
sively more important for increasing torque [33,70]. Thus,
the lack of a significant change in MMG MPF for the vastus
lateralis reported by Perry et al. [32] may have been due to
the low force levels examined (relative to maximal capa-
bilities) and recruitment as the primary motor control
strategy for increasing power output, rather than firing
rate modulation.

Several studies [85-87] have also examined the MMG
amplitude responses during continuous cycle ergometry
performed at constant, submaximal power outputs. For
example, Housh et al. [87] investigated the patterns for

MMG amplitude for the vastus lateralis and vastus media-
lis muscles during continuous, constant power output
workbouts at 50, 65, 80, and 95% of the peak power
(Wpeak) that was achieved during an incremental cycle
ergometer test performed to exhaustion. The authors [87]
found that the MMG amplitude responses were depend-
ent upon the power output at which the workbout was
performed, as well as the muscle that was being examined.
Specifically, MMG amplitude for the vastus lateralis and
vastus medialis muscles decreased during the workbouts
at 50% and 65% Wpeak, but remained stable at 80%
Wpeak. At 95% Wpeak, however, MMG amplitude
increased for the vastus medialis muscle, but remained
relatively stable for the vastus lateralis. It was suggested
that the decreases in MMG amplitude for both muscles
(vastus lateralis and vastus medialis) at 50% and 65%
Wpeak may have been due to fatigue-induced decreases in
motor unit firing rates (i.e. muscle wisdom). At 80%
Wpeak, however, the lack of a significant change in MMG
amplitude for either the vastus lateralis or vastus medialis
may have reflected a balance between the influences of
recruitment (which can increase MMG amplitude) and
decreases in motor unit firing rates (which can reduce
MMG amplitude). In contrast, the increases in MMG
amplitude for the vastus medialis muscle at 95% Wpeak
suggested that recruitment may have had a greater influ-
ence on MMG amplitude than potential fatigue-induced
decreases in motor unit firing rates. The vastus lateralis
muscle, however, demonstrated no change in MMG
amplitude at 95% Wpeak, and it was hypothesized that
the tendonous iliotibial band that covers the vastus later-
alis may have affected the muscle fiber oscillations that
were being transmitted to the skin surface, thereby influ-
encing MMG amplitude [87]. Perry et al. [85] also exam-
ined the MMG amplitude responses from the vastus
lateralis muscle during continuous, constant power out-
put cycle ergometry. The authors [85] found that MMG
amplitude decreased during continuous workbouts at
28%, 35%, and 42% Wpeak. These findings were consist-
ent with those of Housh et al. [87] for the vastus lateralis
and vastus medialis muscles at 50% and 65% Wpeak, and
it was hypothesized that the decreases in MMG amplitude
for the vastus lateralis may have been due to the effects of
muscle wisdom, and/or decreases in muscle compliance.
In addition, Bull et al. [86] examined the MMG amplitude
responses from the vastus lateralis muscle during contin-
uous cycle ergometry at a submaximal workload known as
critical power (CP). In theory, CP is the maximal power
output that can be accomplished without fatigue [89,90]
and, therefore, should be characterized by steady state
VO2 and no increase in muscle activation [86]. Thus,
MMG amplitude could also remain stable at CP, poten-
tially reflecting little change in the motor unit mechanical
activities that are required to perform the workload. Bull
et al. [86], however, found that there was a quadratic
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decrease in MMG amplitude for the vastus lateralis muscle
during a 60-min cycle ergometer workbout at CP. It
should be noted that different mathematical models have
been used to estimate CP [91], and Housh et al. [92]
found that CP was approximately 17% greater than the
power output that could be maintained for 60-min. Thus,
in some cases, CP may be a fatiguing workload, and it is
possible that fatigue-related factors such as muscle wis-
dom and/or reduced muscle compliance may have con-
tributed to the decreases in MMG amplitude reported by
Bull et al. [86] for the vastus lateralis muscle.

Collectively, the results from these studies provided sev-
eral important pieces of information regarding the MMG
amplitude and frequency responses during cycle ergom-
etry. Specifically, the highly linear relationship between
MMG amplitude and power output during incremental
cycle ergometry (see Figure 6) [29-32] provided indirect
support for the hypothesis of Bodor [44] that during max-
imal isokinetic muscle actions, MMG amplitude may be
more closely related to power output than force produc-
tion. In addition, the lack of a significant change in MMG
MPF for the vastus lateralis muscle reported by Perry et al.
[32] suggested that during incremental cycle ergometry,
firing rate modulation may not be as important as recruit-
ment for increasing power output. Furthermore, the MMG
amplitude responses during continuous, constant power
output cycle ergometry are dependent on the relative
workload that is being performed and may be related to
the competing influences of fatigue-related decreases in
motor unit firing rates and increases in motor unit recruit-
ment. In particular, decreases in MMG amplitude for
workloads below approximately 65% Wpeak may be due
to fatigue-induced decreases in motor unit firing rates
(muscle wisdom) and/or reduced muscle compliance,
while an increase in MMG amplitude at 95% Wpeak may
reflect a greater contribution of motor unit recruitment
(which can increase MMG amplitude) than decreases in
firing rates (which can decrease MMG amplitude) to the
MMG signal [85-87]. Finally, the relatively stable MMG
amplitude values during continuous cycle ergometry at
80% Wpeak may have been due to approximately equal
influences of motor unit recruitment and decreases in fir-
ing rates on the MMG signal [87].

Effects of dynamic resistance training on MMG 
amplitude and frequency
Several studies [93-97] have investigated the potential for
MMG to be used as a tool for examining the neuromuscu-
lar adaptations that occur during a resistance training pro-
gram. Resistance training results in increases in muscle
fiber size (hypertrophy) [98,99] and muscle stiffness
[100], and it has been suggested [94,95] that both of these
factors may influence the amplitude and/or frequency
contents of the MMG signal. For example, Evetovich et al.

[94] hypothesized that hypertrophy could decrease the
distance between the muscle and the MMG sensor as the
fibers press against the tissue layers superficial to the mus-
cle (i.e. fascia, adipose tissue, etc.). The tissue between the
muscle and the MMG sensor acts as a low pass filter for the
muscle fiber oscillations and pressure waves that generate
the MMG signal [4,25]. Thus, the close proximity of
hypertrophied muscle fibers to the MMG sensor may
result in less attenuation of the MMG signal by the tissue
layers superficial to the muscle, resulting in greater MMG
amplitude values [94]. In addition, it has been suggested
[95] that training-induced increases in muscle stiffness
could affect MMG frequency. Specifically, Barry and Cole
[101] indicated that the MMG signal occurs at the "...res-
onant frequency of the muscle," which is a function of the
mass, length, topology, and stiffness of the muscle being
investigated. It was suggested, however, that during an
isometric muscle action, the changes in stiffness are
greater than the changes in any of the other parameters
[101]. In addition, both the resonant frequency and peak
frequency of the MMG signal increased with force produc-
tion during an electrically-stimulated tetanic contraction
of isolated frog gastrocnemius muscle [101]. Thus, these
findings suggested that training-induced increases in mus-
cle stiffness could potentially result in corresponding
increases in the muscle's resonant frequency (and, by
extension, MMG frequency).

Cerquiglini et al. [93] examined the effects of two months
of DCER strength training on MMG frequency in two sed-
entary subjects and two Olympic weightlifters. During the
training, the subjects performed the press, jerk, and snatch
exercises with loads corresponding to 80% of their per-
sonal records and were tested weekly for "...maximum iso-
metric strength of the lower limbs..." in two "typical
lifting positions" [93]. The MMG signals were recorded
from the vastus lateralis muscle and the medial head of
the gastrocnemius during the isometric strength tests. The
authors [93] found that the resistance training program
resulted in a "...relative increase of higher frequencies
(above 70 Hz)" in the MMG signals from the vastus later-
alis and gastrocnemius muscles. It was suggested [93] that
the information provided by the MMG signal was
"...meaningful as regards the effect of training on mus-
cle..." and could potentially be used by trainers and/or
athletes to monitor changes in muscle function during a
resistance training program. Evetovich et al. [94,95] exam-
ined the effects of concentric isokinetic strength training
of the leg extensors on MMG amplitude and MPF for the
vastus lateralis muscle. Twenty-one male subjects that
were not experienced in resistance training were randomly
assigned into either a training or control group. The sub-
jects in the training group performed maximal concentric
isokinetic leg extensions with the non-dominant limb at a
velocity of 90°·s-1 three times per week for twelve weeks.
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The subjects in the training and control groups were tested
for maximal concentric isokinetic leg extension PT at a
velocity of 90°·s-1 prior to beginning the twelve week
training program (week 0), and every four weeks thereaf-
ter (weeks 4, 8, and 12, respectively). During each testing
session, the MMG signal was recorded from the vastus lat-
eralis muscle. The authors [94,95] found that there was a
significant increase in leg extension PT across the twelve
week training period for the training group, but not for
the control group. There were, however, no changes in
MMG amplitude or MPF for the vastus lateralis muscle
from week 0 to week 12 for either group. It was suggested
that the lack of a significant change in MMG amplitude
and MPF following training may have been due to com-
pression of hypertrophied muscle fibers in the vastus lat-
eralis by the tendonous iliotibial band and/or training-
induced adaptations in muscles other than the vastus lat-

eralis. Specifically, although muscle hypertrophy was not
directly examined [94,95], increases in muscle fiber size
could potentially stretch the iliotibial band, resulting in a
taut layer of fascia that compresses the vastus lateralis and
restricts the muscle fiber oscillations that generate the
MMG signal. Theoretically, this could influence MMG
amplitude and/or MPF. It is also possible, however, that
training-induced adaptations in muscles other than the
vastus lateralis may have contributed to increases in leg
extension PT, with no changes in MMG amplitude and
MPF. For example, reduced hamstring coactivation [102]
and/or preferential hypertrophy of the other quadriceps
femoris muscles [99] could have increased leg extension
PT without affecting the MMG signal from the vastus lat-
eralis [94,95].

Esposito et al. [96] recently examined the MMG ampli-
tude and MPF versus isometric torque relationships for
the vastus lateralis muscle of elderly men before and after
an isokinetic strength training program. During this train-
ing program, the subjects performed maximal concentric
isokinetic muscle actions of the dominant leg extensors at
velocities of 120 and 240°·s-1. The training was per-
formed twice a week for twelve weeks. The authors [96]
found that the training program had no effect on the
MMG amplitude values for the vastus lateralis muscle at
each relative torque level (20, 40, 60, 80, and 100%
MVC). At 80% and 100% MVC, however, the training pro-
gram resulted in significant increases in MMG MPF for the
vastus lateralis muscle. In addition, the authors [96]
reported that before training, the MMG power density
spectrum for the vastus lateralis during an isometric MVC
was "...unimodal, with a well-defined main peak at about
11 Hz." After training, however, the MMG power density
spectrum during an MVC was bimodal, with a large peak
at approximately 15 Hz and a smaller peak at about 30
Hz. It was suggested [96] that the training-induced
increases in MMG MPF for the vastus lateralis muscle at
80% and 100% MVC, as well as the changes in the MMG
power density spectrum, may have reflected a "retrieval"
of fast-twitch motor units, which are lost in some muscles
during the aging process [103]. In addition, Coburn [97]
recently examined the effects of three days of velocity-spe-
cific isokinetic training on the MMG amplitude and MPF
values from the rectus femoris, vastus lateralis, and vastus
medialis muscles. Thirty adults were randomly assigned to
one of three groups: a) a control group, b) a slow velocity
training group, or c) a fast velocity training group. The
subjects in the two training groups performed three sepa-
rate training sessions that consisted of maximal concentric
isokinetic muscle actions of the nondominant leg exten-
sors at a velocity of 30 (slow velocity training group) or
270°·s-1 (fast velocity training group). In addition, the
subjects in the training groups were tested for maximal
concentric isokinetic leg extension PT at velocities of 30,

Relationships for mechanomyographic (MMG) amplitude and mean power frequency (MPF) versus power output during incremental cycle ergometryFigure 6
Relationships for mechanomyographic (MMG) ampli-
tude and mean power frequency (MPF) versus power 
output during incremental cycle ergometry. The top 
graph shows the linear relationship between normalized 
mechanomyographic (MMG) amplitude (%max) for the vastus 
lateralis muscle and normalized power output. The bottom 
graph demonstrates the lack of a significant relationship 
between normalized MMG mean power frequency (MPF, 
%max) for the vastus lateralis muscle and normalized power 
output. The data presented are from one subject, and the 
MMG signals were recorded with a contact sensor (HP 
21050A) during an incremental cycle ergometer test to 
exhaustion.
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150, and 270°·s-1 prior to, and following the training pro-
gram. The subjects in the control group were also tested
for leg extension PT at the same velocities, but did not per-
form any training. Coburn [97] found training-induced
increases in leg extension PT for the fast velocity training
group at 270°·s-1 and for the slow velocity training group
at 30, 150, and 270°·s-1. In addition, when compared to
the control group, there were training-induced increases
in MMG amplitude (averaged across the rectus femoris,
vastus lateralis, and vastus medialis muscles) for the fast
velocity training group at 270°·s-1 and for the slow veloc-
ity training group at 150°·s-1. The isokinetic leg extension
training did not, however, result in changes in MMG MPF
for any muscle at any velocity. In addition, the training
program had no effect on EMG amplitude for the rectus
femoris, vastus lateralis, and vastus medialis muscles at
any velocity. Thus, it was suggested that the increases in
MMG amplitude for the rectus femoris, vastus lateralis,
and vastus medialis muscles for the fast velocity training
group at 270°·s-1 and for the slow velocity training group
at 150°·s-1 may have been due to changes in muscle com-
pliance. Specifically, although the EMG signal was not
recorded from the hamstrings, it is possible that reduced
coactivation in the biceps femoris, semitendinosus, or
semimembranosus following the isokinetic training may
have increased the net leg extension torque and affected
compliance in the quadriceps femoris muscles [97]. As
stated previously, muscle compliance could influence the
muscle fiber oscillations and/or pressure waves that gen-
erate the MMG signal [71-73,86,87].

Thus, the findings from these studies [93-97] provided
conflicting evidence regarding the potential effects of
dynamic strength training on the amplitude and fre-
quency contents of the MMG signal. The training-induced
increases in MMG frequency for the vastus lateralis and
gastrocnemius muscles reported by Cerquiglini et al. [93]
and Esposito et al. [96] suggested that the frequency
domain of the MMG signal may provide information
regarding functional changes in skeletal muscle following
a training program, such as retrieval of fast-twitch motor
units in elderly individuals. In contrast, Evetovich et al.
[95] found that there was no change in MMG MPF for the
vastus lateralis muscle following twelve weeks of concen-
tric isokinetic leg extension training. It is possible that the
discrepancies among the results from these investigations
[93,95,96] may have been due to differences in the testing
methods that were used and/or the characteristics of the
subjects that participated in the studies. Specifically, Eve-
tovich et al. [95] tested subjects during maximal concen-
tric isokinetic muscle actions, while Cerquiglini et al. [93]
and Esposito et al. [96] recorded MMG signals only during
isometric muscle actions. In addition, Evetovich et al. [95]
tested young untrained men, while Cerquiglini et al. [93]
examined Olympic weightlifters and untrained individu-

als, and Esposito et al. [96] investigated elderly men. Fur-
thermore, Coburn [97] found that three days of velocity-
specific isokinetic training resulted in isolated changes in
MMG amplitude for the rectus femoris, vastus lateralis,
and vastus medialis muscles, but Evetovich et al. [94]
reported that a twelve week isokinetic resistance training
program had no effect on MMG amplitude for the vastus
lateralis. There are several factors that may have contrib-
uted to the differences between the results from these
studies, the most obvious of which is the duration of the
training program that was used (thirty-six training ses-
sions over twelve weeks for Evetovich et al. [94] and three
training sessions over approximately five to seven days for
Coburn [97]). In addition, differences between the inves-
tigations in the muscles that were examined and/or the
velocities that were used for the testing and training may
have influenced the results for MMG amplitude. Collec-
tively, the findings from these studies [93-97] suggested
that MMG could provide information regarding the adap-
tations that occur during a resistance training program,
but this possibility should be examined further in differ-
ent muscles and/or subject groups, as well as following
various types of training programs.

Acute effects of stretching on MMG amplitude 
and MPF
A number of studies [104-107] have reported decreases in
maximal concentric isokinetic PT following stretching.
Two primary hypotheses have been proposed to explain
the stretching-induced reductions in strength: a) mechan-
ical factors, such as changes in muscle stiffness, and b)
neuromuscular factors, such as altered motor control
strategies and/or changes in reflex sensitivity
[104,107,108]. Theoretically, both of these factors could
affect MMG amplitude and MPF. For example, Barry and
Cole [101] indicated that the frequency content of the
MMG signal is influenced by muscle stiffness. Specifically,
high levels of muscle stiffness could increase the muscle's
resonant frequency, potentially resulting in a higher fre-
quency MMG signal. In addition, several investigations
[8,27,66,109] have suggested that during isometric mus-
cle actions at high torque levels, muscle stiffness may
restrict the lateral oscillations of the active muscle fibers,
thereby decreasing MMG amplitude. In contrast, if
stretching reduces muscle stiffness, the muscle fibers may
be able to oscillate more freely and at lower frequencies.
Theoretically, this could result in increases in MMG
amplitude and decreases in MMG MPF. Furthermore,
recent studies [4,5,10,12,14] have suggested that MMG
amplitude is related to motor unit recruitment, while the
MMG power density spectrum may contain information
regarding the global motor unit firing rate. Thus, the time
and frequency domains of the MMG signal could be use-
ful for examining potential stretching-induced alterations
in motor control strategies.
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Evetovich et al. [106] examined the acute effects of static
stretching of the forearm flexors on PT, MMG amplitude,
and EMG amplitude during maximal concentric isoki-
netic muscle actions of the forearm flexors at velocities of
30 and 270°·s-1. The authors [106] found that the stretch-
ing resulted in a significant decrease in forearm flexion PT
(averaged across the 30 and 270°·s-1 velocities) and
increases in MMG amplitude for the biceps brachii muscle
at both velocities. The stretching had no effect, however,
on the EMG amplitude values for the biceps brachii mus-
cle at either velocity. It was suggested that the stretching-
induced decreases in forearm flexion PT and increases in
MMG amplitude for the biceps brachii may have been due
to reduced muscle stiffness. Cramer et al. [105] examined
the acute effects of static stretching of the dominant leg
extensors on PT, mean power output, MMG amplitude,
and EMG amplitude during maximal concentric isoki-
netic leg extensions at velocities of 60 and 240°·s-1. The
authors [105] reported that the stretching resulted in
decreases in PT for the stretched limb at 60 and 240°·s-1,
as well as for the unstretched limb at 60°·s-1. In addition,
there were stretching-induced decreases in EMG ampli-
tude for the rectus femoris and vastus lateralis muscles for
both the stretched and unstretched limbs at 60 and
240°·s-1. It was suggested that the decreases in leg exten-
sion PT and EMG amplitude following the static stretch-
ing may have been due, at least partially, to reduced
muscle activation in the rectus femoris and vastus lateralis
muscles. The stretching had no effect, however, on mean
power output and MMG amplitude for the rectus femoris
or vastus lateralis muscles for either limb at 60 and
240°·s-1. Thus, these findings provided support for the
hypothesis of Bodor [44] that MMG amplitude is more
closely related to power output than PT during maximal
isokinetic muscle actions. Marek et al. [110] recently
examined the acute effects of static and proprioceptive
neuromuscular facilitation (PNF) stretching on PT, mean
power output, EMG amplitude, and MMG amplitude dur-
ing maximal concentric isokinetic leg extensions at veloc-
ities of 60 and 300°·s-1. PNF stretching is a technique that
is designed to relax the stretched muscle(s) by activating
Golgi tendon organs and reducing the stretch reflex,
thereby allowing for less active resistance to muscle
lengthening [111]. The authors [110] found that both
static and PNF stretching resulted in decreases in PT, mean
power output, and EMG amplitude for the rectus femoris
and vastus lateralis muscles at 60 and 300°·s-1. In addi-
tion, there was an increase in MMG amplitude following
the static stretching, but only for the rectus femoris muscle
at 60°·s-1. It was suggested that the stretching-induced
decreases in PT, mean power output, and EMG amplitude
for the rectus femoris and vastus lateralis may have been
due to a combination of reduced muscle activation and
decreases in muscle stiffness.

The acute effects of static stretching have also been exam-
ined during maximal eccentric isokinetic muscle actions.
Eccentric muscle actions may provide an interesting situa-
tion for examining potential stretching-induced changes
in PT and MMG amplitude, because Wilson et al. [112]
found that unlike concentric and isometric muscle
actions, maximal eccentric torque was not related to mus-
culotendonous stiffness. Thus, decreases in muscle stiff-
ness following stretching could, theoretically, result in
increases in MMG amplitude, with no change in eccentric
PT. Cramer [113] examined the acute effects of static
stretching on PT, mean power output, EMG amplitude,
EMG MPF, MMG amplitude, and MMG MPF during max-
imal eccentric isokinetic muscle actions of the leg exten-
sors at velocities of 60 and 180°·s-1. The results indicated
that there were no meaningful changes in PT, EMG ampli-
tude, EMG MPF, and MMG MPF following the static
stretching. There were, however, stretching-induced
decreases in mean power output and MMG amplitude for
the rectus femoris muscle at 60 and 180°·s-1. It was sug-
gested that the decreases in MMG amplitude for the rectus
femoris muscle following stretching may have been due to
a close relationship between MMG amplitude and mean
power output.

Collectively, the results from these studies
[105,106,110,113] indicated that the acute effects of
stretching on MMG amplitude are muscle-specific as well
as specific to the type of muscle action. For example, dur-
ing maximal concentric isokinetic muscle actions, static
stretching resulted in an increase in MMG amplitude for
the biceps brachii [106], but not for the rectus femoris and
vastus lateralis [105]. In addition, during maximal eccen-
tric isokinetic muscle actions, static stretching actually
decreased MMG amplitude for the rectus femoris and vas-
tus lateralis [113]. The results from these studies also pro-
vided support for the hypothesis of Bodor [44] that MMG
amplitude is more closely related to power output than PT
during maximal isokinetic muscle actions. Furthermore,
the stretching-induced decreases in PT and EMG ampli-
tude in both the stretched and unstretched limbs during
maximal concentric isokinetic muscle actions [105] sug-
gested that decreases in PT following static stretching may
be partially due to neuromuscular factors such as altered
motor control strategies and/or changes in reflex sensitiv-
ity. Thus, simultaneous examination of EMG and MMG
may provide information regarding the relative contribu-
tions of neural (EMG) and mechanical (MMG) factors to
stretching-induced decreases in isokinetic PT.

Processing MMG signals recorded during 
dynamic muscle actions
During voluntary isometric muscle actions, the MMG sig-
nal is generated by a nonlinear summation of the
mechanical activities from the unfused activated motor
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units [4-6,114] and, in most cases, various sources of
noise (e.g. movement artifact created by displacement of
the muscle and/or limb) do not have a large influence on
MMG amplitude or frequency. This is not always the case
during dynamic muscle actions. For example, movement
artifact is often present in biological signals such as the
surface EMG [115-117], electroencephalogram (EEG)
[118], and electrocardiogram (ECG) [119], and it has
been suggested [120-122] that large limb and/or muscle
movements may also influence the MMG signal. In addi-
tion, changes in muscle length and the thickness of the tis-
sue between the muscle and the MMG sensor could affect
MMG amplitude and frequency during a dynamic muscle
action [1,2,25]. Thus, the MMG signals recorded during
dynamic activities are typically nonstationary [123] and
may require different signal processing methodologies
when compared to isometric muscle actions. Specifically,
there are three factors that are particularly important
when analyzing MMG signals recorded during dynamic
muscle actions: a) filtering the signal to attenuate various
sources of noise, b) choosing the length of the epoch(s)
(i.e. window) to select from the recorded signal, and c)
using the appropriate method to analyze the signal's fre-
quency content.

One of the most important considerations in filtering
MMG signals is selecting the appropriate cutoff frequen-
cies. Most previous studies have used analog and/or dig-
ital bandpass filters with cutoff frequencies between 1 and
250 Hz [9,68,124-130] when processing MMG signals
recorded during isometric muscle actions. Other investi-
gations, however, have used filters with different cutoff
frequencies to reduce various types of noise in the MMG
signal. For example, Mealing et al. [84] used a 3 Hz high
pass filter to attenuate arterial sounds, while Goldenberg
et al. [83] used a high pass filter with a cutoff frequency of
14 Hz to reduce the influence of tremor on the MMG sig-
nal. In addition, Weir et al. [131] used a 60 Hz notch filter
to remove potential powerline interference from the
MMG signal. Filters have also been used to isolate specific
frequency components of the MMG power density spec-
trum. For example, Petitjean and Bellemare [132] used a
30 Hz high pass filter to examine the high frequency com-
ponents of MMG signals from the diaphragm muscle. It
was suggested [132] that the filtered signals may provide
information regarding the resonant frequency of the mus-
cle being investigated [101]. During dynamic muscle
actions, however, filters have been used primarily to atten-
uate movement artifact (see Figure 7). Movement artifact
is a source of low frequency noise in many biological sig-
nals [115-119]. For high frequency signals, filtering the
movement-related noise usually results in less attenuation
of the original signal because the major portions of the
spectra from the noise and the signal of interest do not
overlap substantially [133]. For example, the influence of

movement artifact is often reduced in surface EMG signals
by high pass filtering with a cutoff frequency between 20
and 30 Hz [115]. In most cases, this does not severely
attenuate the original EMG signal because most of the
power in surface EMG is between approximately 40 and
160 Hz [134]. For lower frequency signals (such as
MMG), however, the low frequency cutoff should be care-
fully selected to attenuate as much noise as possible, yet
preserve the signal of interest. Petitjean et al. [64] used a
bandpass filter with cutoff frequencies of 10 and 60 Hz to
remove noise from MMG signals recorded during concen-
tric DCER muscle actions of the biceps brachii and bra-
chioradialis. Dalton and Stokes [26] used a bandpass filter
with cutoff frequencies of 8 and 160 Hz when processing
MMG signals from the biceps brachii recorded during
concentric and eccentric DCER muscle actions of the fore-
arm flexors. Most studies, however, have used a filter with
a 5 Hz high pass cutoff frequency to attenuate movement
artifact in MMG signals [120-122]. Theoretically, this
technique reduces the influences of body and respiratory
movements, as well as gross limb displacements [122].

Another important factor in processing MMG signals
recorded during dynamic muscle actions is choosing the
length of the epoch(s) that will be selected from the
recorded signal. For example, several studies from our lab-
oratory have examined the MMG responses from various
muscles during maximal concentric isokinetic muscle
actions. Concentric isokinetic exercise involves three main
phases of movement: a) acceleration, b) constant velocity,
and c) deceleration [135]. The constant velocity portion of
the movement is often referred to as the "load range" and
is characterized by a match between isokinetic velocity
and limb movement [135]. During the acceleration and
deceleration phases of the movement, however, there is
no quantifiable external load because the limb is acceler-
ating or decelerating [135]. Therefore, during the acceler-
ation and deceleration phases of movement, changes in
velocity could potentially affect the amplitude and/or fre-
quency contents of the MMG signal. Although this phe-
nomenon may be interesting in itself, it is important to
examine the MMG signal during the constant velocity por-
tion of the movement (i.e. load range) if the potential
effect(s) of changes in movement speed is to be avoided.
The technique used most often in our laboratory is to
select the MMG signal from the middle third of the range
of motion [35,37,48,71,95]. For example, during a con-
centric isokinetic leg extension performed across a 90°
range of motion, the MMG signal is selected from approx-
imately 120° to 150° of leg extension [35]. This proce-
dure has been used successfully for velocities ranging from
30 to 360°·s-1 and allows the MMG signal to be examined
across a standardized range of motion [35,37]. Alterna-
tively, if the dynamometer provides velocity data, then the
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MMG signal can be selected when the constant velocity
portion of the movement is achieved.

Another important consideration in processing MMG sig-
nals recorded during dynamic muscle actions is selecting
the appropriate method for analyzing the signal's fre-
quency content. Most previous studies have used Fourier-
based algorithms, such as the fast Fourier transform (FFT)
or discrete Fourier transform (DFT) [27,43,66,121,136],
although several investigations have also used the maxi-
mum entropy spectrum estimation (MESE) [5,9,76,137]
or autocorrelation [138] techniques. Perhaps the primary
factor in determining which method to use for frequency
analysis is whether or not the signal being analyzed is sta-
tionary. In particular, the FFT and DFT assume that the
input signal is stationary, and according to Bonato et al.
[139], wide-sense stationarity can be assumed for surface
EMG signal epochs between 0.5 and 2.0 seconds during
isometric muscle actions at constant force levels. Assum-
ing that similar conditions must be met for the MMG sig-
nal to be considered wide-sense stationary, the MMG
signal may indeed be nonstationary during dynamic mus-
cle actions. There are several factors that could potentially
influence the amplitude and/or frequency contents (and
the subsequent stationarity) of the MMG signal during a
dynamic muscle action. For example, Barry [1] reported
that during electrically-stimulated isometric twitches of
isolated frog gastrocnemius muscle, the amplitude of the
MMG signal increased with decreases in muscle length
and was greatest when the muscle was held at approxi-
mately 90% of the optimal length for force production.
Frangioni et al. [2] also examined isolated frog gastrocne-
mius muscle during electrically stimulated twitches and
found that the "characteristic frequency" (MPF divided by
the area under the power density spectrum) of the MMG
signal decreased when the muscle was held at shorter
lengths. Thus, changes in muscle length during a dynamic
muscle action could potentially influence MMG ampli-
tude and/or frequency, resulting in a nonstationary MMG
signal. Furthermore, changes in the thickness of the tissue
between the muscle and the MMG sensor may also affect
MMG amplitude and frequency. As stated previously, the
tissue between the muscle and the MMG sensor acts as a
low pass filter that attenuates the muscle fiber oscillations
and pressure waves that generate the MMG signal [4,25].
Jaskólska et al. [25] suggested that the filtering effect of
this layer becomes greater with increases in tissue thick-
ness. Thus, changes in the thickness of the tissue between
the muscle and the MMG sensor during a dynamic muscle
action could influence the amplitude and/or frequency
contents of the MMG signal, potentially affecting signal
stationarity.

Despite the limitations of using Fourier-based methods to
analyze nonstationary MMG signals, recent studies

[123,140,141] have found that the discrete wavelet trans-
form (DWT) and continuous wavelet transform (CWT)
(which do not assume signal stationarity) provided very
similar results when compared to the FFT. For example,
Beck et al. [123] reported that during 50 consecutive max-
imal concentric isokinetic muscle actions of the forearm
flexors at a velocity of 180°·s-1, the FFT and DWT resulted
in quadratic decreases in MMG center frequencies (MPF
and median frequency for the FFT and wavelet center fre-
quency for the DWT) for the biceps brachii. In addition,
the normalized MMG MPF, median frequency, and wave-
let center frequency values for the biceps brachii were sig-
nificantly intercorrelated (r = 0.671–0.935) [123]. Similar
results were found when comparing Fourier- and wavelet-
based methods for processing MMG signals recorded dur-
ing submaximal to maximal concentric [140] and eccen-
tric [141] isokinetic muscle actions of the forearm flexors.
Thus, these findings suggested that despite the assump-
tion of signal stationarity, Fourier-based methods are
acceptable for determining the patterns for MMG center
frequency during dynamic muscle actions (see Figure 8).

In addition to the potential confounding factors that may
influence the MMG signal during dynamic muscle
actions, changes in recruitment and/or firing rate could
also affect MMG amplitude and frequency. For example,
Theeuwen et al. [53] reported that during concentric mus-
cle actions of the forearm flexors performed against an
elastic load (i.e. torque production increased as the angle
between the arm and the forearm decreased), there was an
increase in the number of active motor units in the biceps
brachii (assessed with intramuscular EMG electrodes) as
the muscle shortened and produced greater torque. Fur-
thermore, Kossev and Christova [142] suggested that dur-
ing eccentric muscle actions of the forearm flexors, firing
rate modulation may be important in the biceps brachii
for changing torque production across the range of
motion. As stated previously, MMG amplitude could be
closely related to recruitment [12], while the MMG power
density spectrum may provide qualitative information
regarding the global firing rates of the unfused activated
motor units [5,13,14]. Thus, changes in MMG amplitude
and frequency across the range of motion during a
dynamic muscle action could reflect motor unit recruit-
ment and/or firing rate modulation.

Traditional Fourier-based methods, such as the FFT and
DFT, provide information only in the frequency domain
(i.e. all time domain information is lost). Thus, these
techniques are limited in terms of their ability to track
rapid changes in the frequency content of the input signal.
Joint time-frequency methods, such as the Wigner trans-
form and CWT, however, provide information in both the
time and frequency domains, and, therefore, are particu-
larly useful for analyzing nonstationary signals (see Fig-
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ures 9 and 10). For example, Barry and Cole [101] used
the Wigner transform to examine the patterns for MMG
MPF and peak frequency from isolated frog gastrocnemius

muscle during an electrically-stimulated tetanic contrac-
tion. It was suggested that alterations in MMG peak fre-
quency during the tetanus may have reflected changes in
the resonant frequency of the muscle. In addition, Karls-
son et al. [143] used the CWT to examine the patterns for
EMG instantaneous mean power frequency (IMPF) and
instantaneous magnitude (IM) across the range of motion
during maximal concentric isokinetic leg extensions at
velocities ranging from 0 to 180°·s-1. The surface EMG
signals were recorded from the rectus femoris and vastus
lateralis muscles. Karlsson et al. [143] suggested that
increases in EMG IMPF and IM across the range of motion
during a maximal concentric isokinetic muscle action may
"...reflect the successive recruitment of MUs [motor
units]." Although no previous studies have examined the
patterns for MMG amplitude and/or MPF across the range
of motion during a dynamic muscle action, the advent of
joint time-frequency methods has improved the ability to
analyze signals with rapidly changing frequency contents.
Future investigations, in which techniques such as the
Wigner transform or CWT are applied to MMG signals
recorded during dynamic muscle actions, may provide
information regarding the motor control strategies that
are used to increase or decrease torque production across
the range of motion.

Collectively, the results from these studies indicated that
in some cases, MMG signals recorded during dynamic
muscle actions could require different signal processing
techniques when compared to those during isometric
muscle actions. Specifically, a high pass filter with a cutoff
frequency of approximately 5 Hz may be necessary to
attenuate the potential influence(s) of movement artifact
on the MMG signal [120-122]. In addition, during con-
centric isokinetic muscle actions, the MMG signal should
be analyzed during the constant velocity portion of the
movement (i.e. load range) to avoid the acceleration and
deceleration phases [135]. Several studies [123,140,141]
have also provided evidence that despite the assumption
of signal stationarity, traditional Fourier-based methods
(such as the FFT or DFT) are acceptable for examining the
patterns of response for MMG center frequency during
dynamic activities, although joint time-frequency meth-
ods are required to examine potential changes in MMG
frequency across the range of motion during a dynamic
muscle action.

Miscellaneous
Although many studies have examined the potential for
MMG to be used as a tool for investigating motor control
strategies, several studies have also used MMG to examine
various aspects of muscle function, including post-exer-
cise muscle soreness [120], phonomechanical delay [64],
energy requirements during concentric, isometric, and
eccentric muscle actions [144], excess post-exercise oxy-

Attenuation of movement artifact with digital filteringFigure 7
Attenuation of movement artifact with digital filter-
ing. The top graph demonstrates a ten second sample of the 
unfiltered electromyographic (EMG) signal from the rectus 
femoris muscle during cycle ergometry at a power output of 
230 W. The middle graph shows the corresponding unfiltered 
mechanomyographic (MMG) signal from the rectus femoris 
muscle. The bottom graph demonstrates the MMG signal from 
the rectus femoris muscle after digital filtering with a zero 
lag, fourth-order Butterworth bandpass filter with cutoff fre-
quencies of 5 and 100 Hz. The MMG signal was detected 
with a contact sensor (HP 21050A) and sampled at 1,000 Hz.
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gen consumption (EPOC) [145], dehydration [146], and
hyperhydration [147]. In addition, Beck et al. [148]
recently compared a contact sensor (Hewlett-Packard
21050A) with an accelerometer (Entran EGAS FT 10) for
examining the MMG amplitude and MPF versus torque
relationships for the biceps brachii during isometric and
concentric isokinetic muscle actions of the forearm flexors
at a velocity of 30°·s-1. The authors [148] found that dur-
ing both the isometric and concentric isokinetic muscle
actions, the contact sensor and accelerometer resulted in
linear increases in normalized MMG amplitude with
torque, but the linear slope of the normalized MMG
amplitude versus isokinetic torque relationship for the
accelerometer was less than that of the contact sensor. Fur-
thermore, there were no significant relationships for nor-
malized MMG MPF versus isokinetic and isometric torque
for the contact sensor, but the accelerometer demon-
strated a quadratic or linear relationship for the isokinetic
and isometric muscle actions, respectively. The authors
[148] suggested that in some cases involving dynamic and
isometric muscle actions, a contact sensor and accelerom-
eter may result in different torque-related patterns for
MMG amplitude and/or MPF, thereby affecting the inter-
pretation of the motor control strategies involved.

Bajaj et al. [120] investigated the MMG amplitude
responses for the first dorsal interosseous during a series
of concentric, isometric, and eccentric muscle actions. For
each series of muscle actions, the subjects performed a sin-
gle abduction movement of the index finger (concentric
muscle action), followed immediately by a 2-sec isometric
muscle action of the first dorsal interosseous with the
index finger in the fully abducted position, and then a sin-
gle adduction movement of the index finger (eccentric
muscle action). These muscle actions were performed at
four different relative torque levels (0, 25, 50, 75, and
100% of the isometric MVC) prior to, immediately fol-
lowing, and 24 and 48 hours after a series of maximal
eccentric muscle actions of the first dorsal interosseous.
The authors [120] found that the MMG amplitude values
for the first dorsal interosseous (averaged across the type
of muscle action and percentage of the MVC) immediately
after the eccentric exercise were greater than the values
recorded prior to exercise and following 24 and 48 hours
of rest. It was suggested that the increase in MMG ampli-
tude immediately after the eccentric exercise may have
been due to greater physiological tremor and/or increased
edema in the muscle fibers of the first dorsal interosseous.
In addition, the authors [120] reported increased subjec-
tive pain ratings immediately after the eccentric exercise. It
was hypothesized [120] that the eccentric exercise may
have allowed for greater muscle fiber vibrations that
resulted in activation of "mechanosensitive deep tissue
nociceptors." Theoretically, activation of these receptors

could have contributed to the increased pain sensations
felt immediately after the eccentric exercise.

Petitjean et al. [64] examined "phonomechanical delay"
(the time interval between the onsets of the MMG and
acceleration signals) in the biceps brachii and brachiora-
dialis during submaximal concentric DCER muscle
actions of the forearm flexors performed against a 3-kg
weight. The concentric muscle actions involved accelerat-
ing the weight at slow (20–120 rad·s-2), intermediate
(120–240 rad·s-2), and fast (240–360 rad·s-2) angular
velocities. The authors [64] found that phonomechanical
delay for the biceps brachii and brachioradialis muscles
increased with acceleration, and it was hypothesized that
the onsets of the MMG signals may have reflected devel-
opment of tension in the contractile components of the
muscles. In addition, the phonomechanical delay values
were greater than those from previous studies during
supramaximal electrical stimulation of isolated frog gas-
trocnemius muscle [1], and intact tibialis anterior [149]
and thenar muscle [7]. Petitjean et al. [64] suggested that
the greater phonomechanical delay values for the biceps
brachii and brachioradialis may have been due to differ-
ences between submaximal voluntary and supramaximal
electrically stimulated muscle actions. Specifically, during
submaximal voluntary muscle actions, high threshold
fast-twitch motor units with short contraction times may
not be activated. During supramaximal electrical stimula-
tion, however, all muscle fibers are activated simultane-
ously, and, therefore, tension may be developed more
rapidly in the muscle [64].

Vedsted et al. [144] recently examined the MMG ampli-
tude responses for the biceps brachii during concentric,
isometric, and eccentric DCER muscle actions of the fore-
arm flexors at 10% and 20% of the isometric MVC. Muscle
tissue oxygenation was also measured from the biceps
brachii to provide information regarding the energy
requirements during concentric, isometric, and eccentric
muscle actions. The authors [144] found that the MMG
amplitude values for the biceps brachii were greater dur-
ing the concentric and eccentric muscle actions than dur-
ing the isometric muscle actions. There were no
differences, however, among the muscle tissue oxygena-
tion levels for the biceps brachii during the concentric,
isometric, and eccentric muscle actions. It was suggested
[144] that during the concentric and eccentric muscle
actions, low motor unit firing rates in the biceps brachii
could have resulted in less fusion of motor unit twitches
and a "...more distinct mechanical twitching..." that
allowed larger muscle fiber oscillations and greater MMG
amplitude values. During the isometric muscle actions,
however, high motor unit firing rates may have resulted in
greater fusion of motor unit twitches and reduced MMG
amplitude values. The authors [144] also suggested that
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selective recruitment of superficially located fast-twitch
motor units, particularly during the eccentric muscle
actions, may have allowed the active motor units to
"...influence more directly the MMG generation process."
Theoretically, this could also result in greater MMG ampli-
tude values.

McKay et al. [145] examined the responses for MMG
amplitude, MMG MPF, and MMG peak frequency for the
rectus femoris muscle prior to, and immediately following
a 30-min cycle ergometer workbout that was performed at
a power output that corresponded to 70% of the maximal
power output achieved during a VO2 max test. The
authors [145] reported that immediately after the cycle
ergometer workbout, the VO2 and MMG amplitude values
for the rectus femoris muscle were greater than the respec-
tive values recorded prior to exercise, but there were no
differences between the pre- and post-exercise values for
MMG MPF or peak frequency. In addition, MMG ampli-
tude and VO2 decreased exponentially during a 5.5-h
recovery period after exercise. It was hypothesized [145]
that the increased MMG amplitude and VO2 values after
exercise may have been due to greater motor unit mechan-
ical activities and oxygen utilization as the quadriceps
femoris muscles returned to the pre-exercise state. In addi-
tion, the similar decreases in MMG amplitude and VO2
during the recovery period after exercise suggested that the

mechanical (MMG) and metabolic (VO2) aspects of
recovery may be closely related.

Recent investigations have also examined the effects of
dehydration [146] and hyperhydration [147] on MMG
amplitude and MPF. Several studies [35,37,38,43,57]
have suggested that the MMG signal may be influenced, at
least partially, by movement of the fluid that surrounds
muscle fibers. Thus, experimentally-induced alterations in
the intracellular and extracellular fluid media (i.e.
through dehydration or hyperhydration) could poten-
tially affect the amplitude and frequency contents of the
MMG signal. Evetovich et al. [146,147] examined the
effects of dehydration and hyperhydration on maximal
concentric isokinetic forearm flexion PT, MMG ampli-
tude, and MMG MPF for the biceps brachii muscle. Isoki-
netic PT was measured at a velocity of 90°·s-1, and
dehydration was achieved through restriction of water
intake. The subjects were considered dehydrated if there
was a change in body weight of > 2.0% and the urine spe-
cific gravity was > 1.020 [146]. Hyperhydration, however,
was achieved through ingestion of glycerol, which results
in fluid retention in all water compartments of the body.
The hyperhydration state was ensured by examining
changes in body weight following glycerol ingestion, as
well as measuring the percent fluid retention [(volume of
fluid consumed - urine volume voided)/volume of fluid
consumed] [147]. The authors [146,147] found that nei-
ther dehydration nor hyperhydration had any effect on
isokinetic PT, MMG amplitude, or MMG MPF. It was sug-
gested that the MMG signal may be influenced more by
motor control strategies and the intrinsic contractile prop-
erties of muscle than by the fluids that surround muscle
fibers.

Collectively, the results from these studies [64,120,144-
148] indicated that MMG amplitude and MPF responses
may be influenced by the type of sensor that is used to
detect the signal, and MMG could be useful for examining
various aspects of muscle function during dynamic mus-
cle actions. Specifically, Beck et al. [148] found that in
some cases, a contact sensor and accelerometer resulted in
different patterns for MMG amplitude and MPF versus
isokinetic and isometric torque. Thus, the type of sensor
that is used to detect the MMG signal could affect the
interpretation of the motor control strategies involved.
Bajaj et al. [120] reported increased MMG amplitude val-
ues for the first dorsal interosseous muscle immediately
following eccentric exercise, and suggested that MMG
could potentially be used to examine the mechanisms that
underlie post-exercise muscle soreness. In addition,
Petitjean et al. [64] found that phonomechanical delay in
the biceps brachii and brachioradialis during concentric
DCER muscle actions of the forearm flexors was depend-
ent on the rate of acceleration. It was hypothesized that

Wavelet- vs. Fourier-based estimates of mechanomyographic (MMG) center frequencyFigure 8
Wavelet- vs. Fourier-based estimates of mechano-
myographic (MMG) center frequency. Example of the 
relationships for mechanomyographic (MMG) center fre-
quencies [wavelet center frequency (WCF), mean power fre-
quency (MPF), and median frequency (MDF)] for the biceps 
brachii muscle of one subject during 50 consecutive maximal 
concentric isokinetic muscle actions of the forearm flexors at 
a velocity of 180°·s-1. The relationships shown are the best-fit 
regression models for the MMG WCF, MPF, and MDF data. 
The discrete wavelet transform was used to calculate the 
MMG WCF values, and the fast Fourier transform was used 
to obtain the MMG MPF and MDF values.
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the onsets of the MMG signals may have reflected devel-
opment of tension in the contractile components of the
muscles. Vedsted et al. [144] reported that the MMG
amplitude values for the biceps brachii were greater dur-
ing concentric and eccentric DCER muscle actions of the
forearm flexors than during isometric muscle actions at
the same absolute torque level. It was suggested that when
compared to isometric muscle actions, lower motor unit
firing rates during concentric and eccentric muscle actions
may have resulted in less fusion of motor unit twitches
and greater MMG amplitude values. McKay et al. [145]
found that VO2 and MMG amplitude for the rectus femo-
ris muscle were elevated immediately after a 30-min cycle
ergometer workbout, but both parameters (VO2 and
MMG amplitude) decreased exponentially as the quadri-
ceps femoris muscles returned to the resting state. It was
suggested that in the resting state, MMG may be closely
related to oxygen utilization. Finally, Evetovich et al.
[146,147] found that dehydration and hyperhydration
had no effect on MMG amplitude and MPF for the biceps
brachii muscle. It was hypothesized that the MMG signal
may be influenced primarily by motor control strategies
and the intrinsic contractile properties of muscle than by
the fluids that surround muscle fibers. Thus, the findings
from these studies [64,120,144-148] supported the use of
MMG for examining various aspects of muscle function.
Future studies should continue investigating the unique
applications of MMG amplitude and frequency responses
with different experimental designs/methodologies to
continually reassess the uses/limitations of MMG.

Summary, conclusions, and future research
Each of the studies that were examined in the present
review has made an important contribution to MMG
research. Although MMG is growing in popularity in fields
such as biomechanics, exercise physiology, biomedical
engineering, and medicine, the literature base for MMG is
probably 20–25 years behind that of EMG. Thus, it is
important to continually examine the potential uses/
applications of MMG in a variety of experimental situa-
tions, including dynamic activities [6]. During dynamic
muscle actions, many factors such as changes in torque
production, muscle length, the thickness of the tissue
between the muscle and the MMG sensor, motor unit
recruitment, and firing rate can influence the amplitude
and frequency of the MMG signal. These factors add to a
list of mechanisms that may affect the MMG signal, which
is considered to be a complex signal [150], even during
isometric muscle actions. Thus, dynamic muscle actions
are often avoided in MMG research on the grounds that
during these activities, there are too many confounding
factors that could influence the MMG signal and render
the resulting data uninterpretable and unusable. There is
substantial evidence, however, to suggest otherwise.

Joint time-frequency analysis of a mechanomyographic (MMG) signal recorded during a concentric isokinetic muscle actionFigure 9
Joint time-frequency analysis of a mechanomyo-
graphic (MMG) signal recorded during a concentric 
isokinetic muscle action. (A) Example of the raw mechan-
omyographic (MMG) signal from the biceps brachii muscle 
during a maximal concentric isokinetic muscle action of the 
forearm flexors at a velocity of 30°·s-1. The MMG signal was 
detected by a contact sensor (HP 21050A) and was selected 
from the middle 50° of the range of motion (approximately 
110° to 160° of forearm flexion). (B) The relationship 
between MMG instantaneous mean power frequency (IMPF) 
and time for the MMG signal shown in (A). The MMG signal 
was processed with the continuous wavelet transform 
(CWT) algorithm and a Daubechies 10 wavelet with a center 
frequency of 684.2 Hz at the lowest scale. (C) The scalogram 
of the signal shown in (A) demonstrates the changes in the 
signal's frequency content across the range of motion.
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For example, Shinohara et al. [30] reported that MMG
amplitude for the vastus lateralis muscle increased line-
arly with power output during incremental cycle ergom-
etry, but there was only a small increase in MMG
amplitude during passive cycling in which one of the
investigators pushed the pedals of the cycle ergometer. In
addition, Cramer et al. [48] found that during maximal
concentric and eccentric isokinetic muscle actions of the
leg extensors at velocities of 60°·s-1, the potential for
cross-talk in MMG signals was relatively small, even for
muscles that are close to each other and have a common
innervation. Thus, these findings indicated that during
dynamic muscle actions, the MMG signal is generated pri-
marily by muscle activity, and the characteristics of the sig-
nal are specific to the muscle(s) being examined. This is of
premier importance if MMG can be used to provide valid
information regarding muscle function during dynamic
activities. Furthermore, MMG responses are also influ-
enced by the type of dynamic muscle action that is being
performed (concentric versus eccentric), as well as the
velocity of the movement, which provides further support
for the argument that during dynamic activities, the MMG
signal provides meaningful information regarding muscle
function. For the sake of brevity, this section will summa-
rize only the major findings from the investigations that
were examined in this review. The potential applications
of MMG research will also be addressed.

MMG amplitude and power output
One of the most consistent findings among the studies
that have examined the MMG signal during dynamic mus-
cle actions is the close relationship between MMG ampli-
tude and power output. This has been demonstrated
during both concentric [45] and eccentric [59] isokinetic
muscle actions, as well as during incremental cycle ergom-
etry [29-32]. Thus, these studies provided support for the
hypothesis of Bodor [44] that MMG amplitude may be
more closely related to power output than PT during max-
imal isokinetic muscle actions. A potentially useful appli-
cation of this phenomenon is in sports medicine and/or
rehabilitation, where MMG amplitude may provide infor-
mation regarding training-induced increases in muscle
power output. Future studies should test this hypothesis,
however, in various muscles and under controlled experi-
mental conditions.

Linear relationship between MMG amplitude and torque
Another particularly interesting finding is the highly lin-
ear relationship between MMG amplitude and torque
during concentric isokinetic and DCER muscle actions.
This has been reported for both the biceps brachii
[26,27,65] and vastus medialis [66,69] muscles, and is
unlike the MMG amplitude versus isometric torque rela-
tionship for most large limb muscles (such as the biceps
brachii and superficial quadriceps femoris muscles), in

Joint time-frequency analysis of a mechanomyographic (MMG) signal recorded during an eccentric isokinetic muscle actionFigure 10
Joint time-frequency analysis of a mechanomyo-
graphic (MMG) signal recorded during an eccentric 
isokinetic muscle action. (A) Example of the raw mechan-
omyographic (MMG) signal from the biceps brachii muscle 
during a maximal eccentric isokinetic muscle action of the 
forearm flexors at a velocity of 30°·s-1. The MMG signal was 
detected by a contact sensor (HP 21050A) and was selected 
from the middle 50° of the range of motion (approximately 
110° to 160° of forearm flexion). (B) The relationship 
between MMG instantaneous mean power frequency (IMPF) 
and time for the MMG signal shown in (A). The MMG signal 
was processed with the continuous wavelet transform 
(CWT) algorithm and a Daubechies 10 wavelet with a center 
frequency of 684.2 Hz at the lowest scale. (C) The scalogram 
of the signal shown in (A) demonstrates the changes in the 
signal's frequency content across the range of motion.

A

-0.7

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

A
m
p
li
tu
d
e
(V

)

B

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400 1600 1800

Time (ms)

M
M
G
IM

P
F
(H
z
)

C

0 200 400 600 800 1000 1200 1400 1600 1800

Time (ms)
Page 22 of 27
(page number not for citation purposes)



BioMedical Engineering OnLine 2005, 4:67 http://www.biomedical-engineering-online.com/content/4/1/67
which MMG amplitude often increases from 0% to
approximately 60–80% MVC and then plateaus or
decreases at higher torque levels [5,8,10,109]. The linear-
ity of the relationship between MMG amplitude and con-
centric torque suggests, however, that it could potentially
be used to develop a mechanical analog to the "efficiency
of electrical activity" (EEA) procedure of deVries [151].
Specifically, deVries [151] proposed that a decrease in the
linear slope coefficient for the EMG amplitude versus iso-
metric torque relationship indicated a reduction in the
electrical activity that was required to produce a given
level of torque and an improvement in muscle function.
The EEA technique has been used to examine issues such
as the time course of neural versus hypertrophic contribu-
tions to training-induced strength gains and the mecha-
nisms underlying the cross-training effect [151]. The
validity of the EEA procedure is dependent, however, on a
linear EMG amplitude versus isometric torque relation-
ship with a reliable slope coefficient [152]. Thus, future
studies should examine the linearity and reliability of the
MMG amplitude versus concentric torque relationship in
different types of muscles and subjects prior to applying
the EEA methodology to MMG.

MMG signal during fatigue
Furthermore, there is evidence to suggest that the time and
frequency domains of the MMG signal may provide infor-
mation regarding the motor control strategies that are
used during fatiguing dynamic muscle actions. For exam-
ple, Beck et al. [72] reported decreases in both MMG
amplitude and MMG MPF for the biceps brachii during 50
consecutive maximal concentric isokinetic muscle actions
of the forearm flexors at a velocity of 180°·s-1. Perry-Rana
et al. [71] also reported reductions in MMG amplitude for
the rectus femoris, vastus lateralis, and vastus medialis
during fatiguing maximal concentric isokinetic muscle
actions of the leg extensors at velocities of 60, 180 and
300°·s-1. It was suggested [71,72] that the decreases in
MMG amplitude and MPF may have been due to fatigue-
related reductions in motor unit firing rates (i.e. muscle
wisdom) and/or de-recruitment of fast-twitch motor
units. In addition, the MMG amplitude responses during
continuous cycle ergometry performed at constant, sub-
maximal power outputs were dependent upon the power
output at which the workbout was performed, as well as
the muscle that was being examined [85,87]. Specifically,
MMG amplitude for the vastus lateralis muscle decreased
during continuous cycle ergometry at power outputs
below 65% Wpeak[85,87]. At 80% Wpeak, MMG ampli-
tude remained stable for both the vastus medialis and vas-
tus lateralis muscles, and at 95% Wpeak, MMG amplitude
increased for the vastus medialis, but did not change for
the vastus lateralis [87]. It was suggested that decreases in
MMG amplitude for power outputs below 65% Wpeak
may have been due to fatigue-induced reductions in

motor unit firing rates. In addition, the lack of a signifi-
cant change in MMG amplitude at 80% Wpeak could have
reflected a balance between the influences of recruitment
(which can increase MMG amplitude) and decreases in
motor unit firing rates (which can reduce MMG ampli-
tude). Finally, the increases in MMG amplitude for the
vastus medialis muscle at 95% Wpeak suggested that
recruitment may have had a greater influence on MMG
amplitude than potential fatigue-induced decreases in
motor unit firing rates. Thus, the results from these studies
[71,72,85,87] suggested that MMG could potentially be
useful in clinical and rehabilitative settings for examining
the mechanisms that underlie neuromuscular fatigue. Fur-
thermore, future studies should consider examining the
MMG MPF responses during continuous, constant power
output cycle ergometry. Theoretically, MMG MPF could
provide information regarding changes in the global
motor unit firing rate during fatiguing cycle ergometry. It
may also be beneficial to examine the potential relation-
ships between MMG amplitude or MPF and power output
during fatiguing exercise.

MMG signal reflective of chronic and acute muscle 
adaptations
There is also evidence that the time and frequency
domains of the MMG signal may provide information
regarding the adaptations that occur during training pro-
grams and the acute effects of stretching on various
aspects of muscle function. For example, Cerquiglini et al.
[93] and Esposito et al. [96] reported increases in MMG
frequency for the vastus lateralis and gastrocnemius mus-
cles following a dynamic resistance training program,
which suggested that the frequency domain of the MMG
signal could be useful for examining the mechanisms that
underlie training-induced increases in muscle strength. In
addition, Evetovich et al. [106] found increases in MMG
amplitude for the biceps brachii following static stretch-
ing of the forearm flexors, but there was no change in
EMG amplitude. In contrast, Cramer et al. [105] reported
that static stretching of the leg extensors had no effect on
MMG amplitude for the rectus femoris and vastus latera-
lis, but there were stretching-induced decreases in EMG
amplitude for both muscles, as well as in the unstretched
limb. Both studies [105,106], however, reported decreases
in maximal concentric isokinetic PT following static
stretching. Thus, these findings suggested that simultane-
ous examination of EMG and MMG may provide infor-
mation regarding the relative contributions of neural
(EMG) and mechanical (MMG) factors to stretching-
induced decreases in concentric isokinetic PT.

Signal processing techniques for dynamic MMG
In addition, MMG signals recorded during dynamic mus-
cle actions could require different signal processing meth-
odologies when compared to isometric muscle actions.
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Specifically, a high pass filter with a cutoff frequency of
approximately 5 Hz may be necessary to attenuate the
potential influence of movement artifact on MMG ampli-
tude and frequency. During isokinetic muscle actions, the
MMG signal should be selected from the constant velocity
portion of the movement (i.e. load range) to avoid the
potential influence(s) of changes in velocity during the
acceleration and deceleration phases. In addition, the
advent of joint time-frequency methods, such as the
Wigner transform and CWT, has improved the ability to
analyze nonstationary signals. Future studies, in which
the Wigner transform or CWT are applied to MMG signals,
may provide information regarding the motor control
strategies that modulate torque production across the
range of motion during a dynamic muscle action.

Thus, the studies that were examined in this review have
extended MMG research beyond the original investiga-
tions of isometric muscle actions. Both dynamic and iso-
metric muscle actions have unique characteristics that
may affect the MMG signal differently. Furthermore, the
literature base for MMG during dynamic as well as isomet-
ric muscle actions is far from complete. In fact, there are
still many questions regarding the exact origins of the
MMG signal. Despite the differences between dynamic
and isometric muscle actions, it is apparent that MMG can
be used in both situations to provide valid information
regarding muscle function. Thus, these characteristics
refute the notion that during dynamic muscle actions, the
MMG signal is too complex to provide any meaningful
information. It is important for future research to con-
tinue examining MMG amplitude and frequency
responses during both dynamic and isometric muscle
actions in an effort to fully assess the potential uses/appli-
cations of MMG.
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