
BioMed CentralBioMedical Engineering OnLine

ss
Open AcceResearch
Reference signal extraction from corrupted ECG using wavelet 
decomposition for MRI sequence triggering: application to small 
animals
Dima Abi-Abdallah*1, Eric Chauvet1,2, Latifa Bouchet-Fakri3, 
Alain Bataillard4, André Briguet2 and Odette Fokapu1,2

Address: 1Laboratoire de Biomécanique et Génie Biomédical, UMR CNRS 6600, Université de Technologie de Compiègne, France, 2Université de 
Picardie Jules-Verne, IUT de L'Aisne, France, 3Laboratoire de RMN Méthodologie et Instrumentation en Biophysique, UMR CNRS 5012, UCB Lyon 
1-ESCPE, France and 4FRE 2678, Physiologie et Pharmacie Clinique, Université Lyon 1, France

Email: Dima Abi-Abdallah* - dima.abiabdallah@utc.fr; Eric Chauvet - eric.chauvet@u-picardie.fr; Latifa Bouchet-
Fakri - latifa.bouchet@iutb.univ-lyon1.fr; Alain Bataillard - alain.bataillard@univ-lyon1.fr; André Briguet - andre.briguet@univ-lyon1.fr; 
Odette Fokapu - odette.fokapu@utc.fr

* Corresponding author    

Abstract
Background: Present developments in Nuclear Magnetic Resonance (NMR) imaging techniques
strive for improved spatial and temporal resolution performances. However, trying to achieve the
shortest gradient rising time with high intensity gradients has its drawbacks: It generates high
amplitude noises that get superimposed on the simultaneously recorded electrophysiological
signals, needed to synchronize moving organ images. Consequently, new strategies have to be
developed for processing these collected signals during Magnetic Resonance Imaging (MRI)
examinations. The aim of this work is to extract an efficient reference signal, from an
electrocardiogram (ECG) that was contaminated by the NMR artefacts. This may be used for image
triggering and/or cardiac rhythm monitoring.

Methods: Our method, based on sub-band decomposition using wavelet filters, is tested on
various ECG signals recorded during three imaging sequences: Gradient Echo (GE), Fast Spin Echo
(FSE) and Inversion Recovery with Spin Echo (IRSE). In order to define the most adapted wavelet
functions to use according to the excitation protocols, noise generated by each imaging sequence
is recorded and analysed. After exploring noise models along with information found in the
literature, a group of 14 wavelets, members of three families (Daubechies, Coiflets, Symlets), is
selected for the study. The extraction process is carried out by decomposing the contaminated
ECG signals into 8 scales using a given wavelet function, then combining the sub-bands necessary
for cardiac synchronization, i.e. those containing the essential part of the QRS energy, to construct
a reference signal.

Results: The efficiency of the presented method has been tested on a group of quite
representative signals containing: highly contaminated (mean SNR<-5 dB) simulated ECGs that
replicate normal and pathological human heart beats, as well as some pathological and healthy
rodents' actual ECG records. Despite the weak SNR of the contaminated ECG, the performances
were quite satisfactory. When comparing the wavelet performances, one may notice that for a
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given sequence, some wavelets are more efficient for processing than others; for GE, FSE and IRSE
sequence, good synchronisation condition is accomplished with coif5, sym8, and sym4 respectively.

Conclusion: Sub-band decomposition proved to be very suitable for extracting a reference signal
from a corrupted ECG for MRI triggering. An appropriate choice of the wavelet function, in
accordance with the image sequence type, could considerably improve the quality of the reference
signal for better image synchronization.

Background
Magnetic Resonance Imaging (MRI) has become by far the
primary tool for gaining important insights into the func-
tional and metabolic bases of heart disease. However, the
observation of a moving organ, such as a beating heart,
requires synchronization: since an image cannot be
acquired in one heart cycle, its successive acquisitions
have to be accurately combined with the cardiac phase
motion. Such requirements depend on a reliable detec-
tion of the R-wave of the electrocardiogram (ECG) to
guarantee that consecutive image data collections always
start at the same point of the cardiac cycle. Still, a funda-
mental problem for monitoring a subject's cardiac activity
during MRI is the corruption of the ECG signal due to
adverse electromagnetic effects [1-4]. The oscillating mag-
netic fields may induce voltage artefacts which do not
reflect actual electrophysiological events. This effect is par-
ticularly pronounced in small animals MRI microscopy,
where strong and rapidly-switching gradients, leading to
elevated induced voltages, are needed to obtain high spa-
tial and temporal resolution. Conversely, a small animal's
ECG is just few millivolts in amplitude and with the spu-
rious signals often resembling the QRS spike, correct car-
diac gating is often greatly disrupted. Recent works have
proposed to improve motion gating strategies [5,6], how-
ever the system presently commercialized for small ani-
mal monitoring is still in its early development stage.

During cardiac MRI, the signal acquired by the ECG sen-
sor does not only contain the electrophysiological infor-
mation, it also includes some components generated by
the NMR environment, and the collected signal S(t) can
be modelled as [3]:

S(t) = Sel(t) + Sflow(t) + Smove(t) + SMR(t) + Srf(t)  (1)

Sel(t) represents the signal to be analysed (ECG). Sflow(t) is
induced by the magnetohydrodynamic effect, and Smove(t)
is due to subject-related sensor motions in the magnetic
field (respiration, heart beat and voluntary motion).
These two contaminating signals cover a range of several
Hz which may overlap the ECG spectrum. Radiofrequency
pulses are of several MHz (typically 64 MHz at 1.5 T) and
induce the Srf(t) noise in this frequency range or in the
order of the inverse of duration pulses, which is several
tens of kilohertz. SMR(t) is due to the temporal variations

of the magnetic field gradients which are typically
switched during some 10 ms, thus the corresponding
induced voltages are in a frequency range of several Hz to
kHz. The frequency distribution of the overall signal is a
major point to take into account if any filtering is to be
carried out, since the artefacts to be removed should be
distinguishable from the desired signal (ECG) which is at
several Hz. But given that there is some spectral overlap-
ping between the noise and the desired components of
the ECG, we turned to wavelet decomposition which has
proven to be particularly well suited for such cases [7-10].
ECG signals are characterized by a cyclic occurrence of pat-
terns (QRS complexes, P and T waves) with different fre-
quency content. Power spectral analysis of the ECG shows
that, P and T waves usually have an important spectral
density up to 10 Hz only, while most of the QRS power
lies in the 3–17 Hz band [11]. Moreover, NMR induced
noise and artefacts disturbing the ECG signal appear at
disparate frequency bands. Thus, a strategical approach
for detecting heartbeats is to analyze the different sub-
bands of the ECG [12], for this we make use of the wavelet
transform that can provide a description of the signal in
the time-scale domain, allowing the representation of the
temporal features of a signal at different resolutions. By
exploiting this powerful tool here, we aim to extract a ref-
erence signal from a contaminated ECG signal. This refer-
ence signal can be either used for subject heart rate
monitoring or for synchronization during MRI scans. The
proposed extraction method relies on a multidimensional
modeling technique and it consists in decomposing the
contaminated ECG signal into frequency sub-bands using
the wavelet transform. Since the wavelet shape must be
carefully adapted to achieve good event detection, the
choice of the wavelet function is at the center of this study.
The wavelets already used to detect QRS complex are con-
sidered again. Furthermore, some particular characteris-
tics of artefact noise generated by the NMR environment
are also taken into account. The extraction procedure is
applied to several signals using various wavelet functions,
to determine the most suitable wavelets to locate R peaks
according to the employed MRI sequence.

Methods
Experimental setup and data acquisition
The experimental setup involves a 2 Tesla OXFORD 85/
310 horizontal cryomagnet equipped with a 50 mT/m
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gradient system, and a MR compatible ECG sensor which
technical details are provided in [1]. This device is
designed to reduce the interaction sources: three bypasses
(100 pF capacitors) guarantee a reduction of RF contami-
nation of the ECG amplifier by the MR system. The ECG
is amplified and converted into an optical signal which is
transmitted out of the magnet bore by optical fibre and
then converted back to electrical. The experimental signals
were detected using three carbon electrodes (3M™ Red
Dot™ Radiolucent Electrode), then low-pass filtered (0.5 -
20 Hz) and sampled at 1 kHz. A digital signal processing
system (NI DAQCard-6024E, and a PC with Matlab) was
placed outside the Faraday cage for data acquisition,
processing and storage.

Ten seconds of signal were recorded during MR scanning
using three imaging sequences: Gradient Echo (GE), Fast
Spin Echo (FSE) and Inversion Recovery with Spin Echo
(IRSE). The scan parameters for theses sequences are out-
lined in Table 1 and they correspond to mice cardiac MRI
parameters.  Three types of data were recorded:

a) Noise generated by the NMR environment: two electrodes,
immersed in a conducting fluid (salt water) made it pos-
sible to collect noise signals corresponding to three NMR
sequences (figure 1). These signals, mainly due to gradient
artefacts, would then be analysed to select the wavelets for
ECG decomposition.

b) Corrupted simulated ECG: an ECG simulator (phantom
320 GmbH Mebsystem für Medizintechnik) placed out-
side the magnet provided signals that were driven inside
the MRI tunnel using carbon cables. These signals could
then be contaminated by the NMR artefacts, while the
imaging sequences were activated. The simulated signals
included 4 ECG types: Two Normal simulated ECGs
denoted "75 bpm" (simulation of a normal human ECG)
and "180 bpm" (simulation of a normal small animal
ECG: high frequency heart beat) where bpm represents
the beat number per minute. Two Pathological simulated
ECGs denoted "Bigeminy" (simulation of premature ven-
tricular contraction where an elevated ventricular prema-
ture beat follows each normal beat) and "Sinus
Arrhythmia" (simulation of variable R wave occurence
periods). The choice of the ECG signal types was directly
related to the study context, especially in the case of path-
ological signals that involve rather distorted characteris-
tics. Figure 2 shows the four simulated ECGs before
(recorded outside the NMR environment) and after
(recorded in the magnet bore) contamination by the
noise of the different sequences. For each signal, the con-
tamination level was evaluated, according to the sequence
noise, resulting in the following SNR mean values: -5.92

Table 1: Description of rodents and imaging sequence 
parameters

Weight Sequence parameters (TR/TE in ms)

GE FSE IRSE

rat 170 g – 550 g 150/5 1700/18 1900/30
mouse 30 – 32 g 385/10 370/10 370/10

Recorded noise signalsFigure 1
Recorded noise signals. Zoomed portions of the recorded noise during each of the three imaging sequences show various 
shapes. (a) IRSE noise (b) FSE noise, and (c) GE noise
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dB for GE, -5.07 dB for FSE, and -8.15 dB for IRSE. Such
poor SNR are due to the long cables necessary to drive the
signal from the simulator device to the MRI magnet bore.
They constitute after all, a very interesting aspect for eval-
uating the effectiveness of our algorithm.

c) Rodent bipolar ECG signals: They were collected, during
MR scanning, on anaesthetized mice and rats which
weight ranges are given in Table 1. Rodents were anesthe-
tized by intraperitoneal injection of sodium pentobarbital
(50 mg/kg, Sanofi, France).  ECG electrodes were posi-
tioned on the animal's thorax in a lead II configuration.
The ECG sensor was placed close to the animal, and short
cables were used to connect it to the electrodes, thus
avoiding additional artefacts. The animal was then
secured on a cradle, inside a birdcage RF coil, and placed
at the centre of the gradient set.

Selection of the wavelet functions
There is no absolute rule to determine the most adequate
analyzing wavelets; the choice must always be specific to
the application as well as to the analysis requirements
[13]. Since the characteristics of the noise generated by the
NMR environment vary greatly according to the excitation
sequence, one may have to test a large number of wavelets
in order to associate the most appropriate wavelet with
each imaging sequence. For this study, three wavelet fam-
ilies were retained that represent the most commonly
used families of orthogonal wavelets for detecting ECG
events: Daubechies, Coiflets and Symlets. The members of
the corresponding families to use were then picked out:
on the one hand by relying on a thorough investigation of
related literature. And on the other, by analysing noise
characteristics observed during the different excitation
sequences.

Simulated ECG recorded before and after contaminationFigure 2
Simulated ECG recorded before and after contamination. (a)75 bpm (b)180 bpm (c)Sinus Arrythmia (d) Bigeminy.
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a) Wavelet selection based on literature data
Among the wavelet families mentioned above, we selected
the members that have proven to be very efficient for ECG
denoising and/or QRS complex detection. Some of the
wavelets used in compression techniques, where the pres-
ervation of the ECG waveform morphology is of great
importance, were also retained. The Daubechies wavelets
have shown to be very adequate for noise reduction
[14,15], baseline wandering removal [16], and QRS detec-
tion [17], they are also widely used for ECG compression
[18-21]. Such applications have usually required the use
of db1, db3, db4 or db6. On the other hand, due to their
redundancy, the Coiflets insure minimum signal degrada-
tion and provide a convenient technique for QRS extrac-
tion [19], and data compression [22]. In particular, coif2
and coif3 were used for cardiac arrhythmia classification
algorithms [23,24]. Conversely, the Symlets were mainly
chosen for their resemblance to the ECG signal shape
[25]. Their efficiency has been reported for ECG denoising
and compression, particularly the sym3, sym 4 and sym6
wavelets [19,20]. According to this bibliographical report,
the first group of wavelets to be tested by the proposed
algorithm was composed of: db1, db3, db4, db6, coif2,
coif3, sym3, and sym4.

b) NMR noise resembling wavelets
For this second selection, the investigation was enlarged
to include wavelets generally used for denoising or detect-
ing events in various electrophysiological signals (Electro-
CardioGram, ElectroEncephaloGram, ElectroMyoGram,
ElectroOculoGram) We set aside the wavelets, members
of the three previously mentioned families, which have
been used for applications such as EEG, EOG and uterine
EMG denoising [26-30], respiration and arterial pressure
multiresolution analysis [26], foetal ECG extraction [31],
analysis of time-frequency characteristics of motor unit
action potentials [32], and EMG decomposition [33,34].
The gathered wavelets were then compared with the most
representative samples (temporal motifs reproduction) of

the noise signals, recorded during the three imaging
sequences. The most distinguishable noise samples
showed resemblance to db3, sym3, coif2, sym4, sym5,
sym7 wavelets; an illustration is given figure 3. It was also
possible to depict samples similar in shape to db4, coif3,
sym3, and sym6. To this wavelet group we added coif4
and coif5 which resemble coif3, as well as sym8 which
looks like sym6. By putting together those noise resem-
bling wavelets, with the set composed in (a) we get a
group of 14 wavelets to be tested with the elaborated algo-
rithm: {db1, db3, db4, db6, coif2, coif3, coif4, coif5, sym3,
sym4, sym5, sym6, sym7, sym8}.

The algorithm
The algorithm (figure 4) includes three main steps:

i) Frequency sub-band decomposition of the contami-
nated ECG signal based on discrete wavelet transform.

ii) Reference signal construction by merging the detail sig-
nals where the QRS complexes have the most important
frequency components.

iii) Trigger extraction by applying a threshold to the refer-
ence signal.

Frequency sub-band decomposition of the contaminated ECG
The sub-band decomposition is based on the orthogonal
discrete wavelet transform (DWT). Detailed description of
the theory and implementation of DWT is given in [35].
To summarize, the decomposition of the signal with DWT
is based on a partition in the frequency plane using a
quadrature mirror filter (QMF) bank [36]. The filter bank
is made up of pairs of digital high-pass and low-pass filters
organized in a tree structure. At each level, the signal is
decomposed into detail (high frequency components)
and approximation (low frequency components) coeffi-
cients and is then down-sampled. The detail coefficients
are afterwards stored and the decomposition continues by

Example of comparison between noise shapes and some waveletsFigure 3
Example of comparison between noise shapes and some wavelets. FSE, GE and IRSE sequences, which resemble the 
db3, sym3 and coif2 wavelets respectively.
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filtering the obtained approximation. At each level j, the
frequency axis is recursively divided into halves at the
ideal cut-off frequencies.

fj = 2-j.1/2T (where T is the sampling period)  (2)

The number of decomposition scales in this work was
determined referring to [11] where it was shown that most
of the QRS energy lies in the 4–17 Hz band. Accordingly,
the choice of the number of decomposition scales should
be performed in such a way as to isolate this particular
bandwidth. Thus, the contaminated ECG signals sampled
at 1 kHz were decomposed into 8 frequency sub-bands
resulting in the following filter banks bandwidth: 1.96,
3.91, 7.81, 15.63, 31.25, 62.5, 125, and 250 Hz. For each
level, detail signals were then reconstructed, using low-
pass and high-pass reconstruction filters with up-sam-
pling.

Extraction of the reference signal
Here 'reference signal', denoted as Sref represents an ECG
model where the QRS features have the major frequency

components. After reconstruction of the detail signals, the
reference signal could be performed by summing details
d6 and d7 resulting in a [3.91–15.63] Hz sub-band.

Trigger computation
The computation is based on a simple Schmitt trigger
principle. A double threshold comparator is applied on
Sref : It switches the output to a high state when the input
passes upward through a high threshold value ht. It then
prevents switching back to the other state until the input
passes through a lower threshold value lt. The comparator
thus produces a TTL signal that reflects the R wave recur-
rences and can be directly used for sequence triggering
and for mean heart rate estimation. Note that the high
and low threshold values are defined as a percentage of
the Sref amplitude maximum and can be adjustable by the
experimenter via a graphical interface.

Evaluation criteria
In order to achieve a quantitative evaluation of the algo-
rithm performances for each wavelet, two parameters,
usually employed to evaluate detection algorithms, were

Overview of the extraction algorithmFigure 4
Overview of the extraction algorithm. The contaminated ECG is decomposed into 8 scales; the reference signal is then 
constructed by adding together the 6th and 7th sub-bands signals. A simple trigger generates the cardiac rhythm as well as the 
synchronization signal. Hi-D and Hi-R are respectively the high pass decomposition filter and its associated reconstruction fil-
ter. Lo-D and Lo-R represent the low pass decomposition and reconstruction filters. cDj denotes the detail coefficients, and dj 
are the reconstructed detail signals.
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computed. The sensitivity (Se) and the positive predictive
value (+P) of the present QRS detection algorithm were
defined as:

where TP is the number of true positives, FN the number
of false negatives, and FP the number of false positives.
The sensitivity Se represents the percentage among real
beats of those that were correctly detected by the algo-
rithm. The positive predictive value +P reports the per-
centage among beat detections of those corresponding to
real beats. These two parameters can be combined into
one: the Diagnostic Quality Factor (DQF) given as the
geometric mean of Se and P+. Furthermore, the mean
DQF (mDQF) can be computed as the arithmetical mean
of a set of DQF values:

However this only gives a rough estimate of the perform-
ances, since Se and P+ contribute equally in the calcula-
tion, while in fact the weight of each should vary
depending on the considered application. In the case of
QRS detection for cardiac MRI synchronization, the
number of FP is more crucial than the FN. In fact, FP
detections deteriorate the image quality because acquisi-

tions are triggered at inappropriate moments, blurring the
image, whereas FN has no consequence on the image
itself; the missed QRS complexes only extend the image
acquisition duration. The ideal situation would be FP =
FN = 0 (Se = +P = 100%) where the best image quality
could be achieved in the shortest time. The purpose of this
algorithm was to seek the wavelet that yields a FP value
that tends to zero (+P tends to a 100%) with a minimum
of FN (maximum Se) according to the applied MRI
sequence.

Results
The algorithm performances were evaluated for each one
of the selected wavelets using both real and simulated ECG
signals. The test results for each signal type according to
the applied sequence and the analyzing wavelet is pre-
sented (Table 2). Wavelet performances appeared to vary
with the signal type as well as with the noise nature
(sequence type). The results were also averaged to attain a
global view of the performances of the whole wavelet
group according to every sequence (Table 3) as well as the
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Table 3: Averaged results for each MRI sequences

mDQF Simulated Rodent

GE 98.06% 100.00%
FSE 93.86% 100.00%
IRSE 72.34% 98.87%

For each sequence the Diagnostic Quality Factor is averaged over 14 
wavelets

Table 2: Performance results for each of the tested wavelets according to the applied imaging sequence

Simulated ECG Rodents ECG

GE FSE IRSE IRSE

FP% FN% Se +P FP% FN% Se +P FP% FN% Se +P FP% FN% Se +P

db1 0.00 1.67 98.33 100 2.33 8.54 91.46 97.47 1.67 57.48 42.52 93.33 0.00 9.46 90.54 100
db3 0.00 11.21 88.79 100 1.67 15.41 84.59 98.33 10.00 33.93 66.07 90.26 0.00 4.73 95.27 100
db4 0.00 4.87 95.13 100 0.67 7.00 93.00 99.13 12.33 38.03 61.97 87.00 0.00 2.70 97.30 100
db6 1.67 6.00 94.00 98.5 3.21 15.41 84.59 96.67 6.67 49.97 50.03 92.00 0.00 0.68 99.32 100

sym3 0.00 11.21 88.79 100 1.67 15.41 84.59 98.33 10.00 32.67 67.33 90.26 0.00 5.41 94.59 100
sym4 0.00 10.67 89.33 100 1.67 11.87 88.13 98.18 0.00 41.33 58.67 100 0.00 2.03 97.97 100
sym5 0.00 2.00 98.00 100 4.74 7.21 92.79 95.48 18.33 45.33 54.67 80.23 0.00 0.68 99.32 100
sym6 0.00 0.00 100 100 1.67 6.87 93.13 98.46 0.00 44.00 56.00 100 0.00 1.35 98.65 100
sym7 0.00 2.67 97.33 100 0.00 10.67 89.33 100 13.33 38.67 61.33 89.03 0.00 0.00 100 100
sym8 0.00 0.67 99.33 100 1.67 4.21 95.79 98.46 0.67 46.67 53.33 99.05 0.00 0.68 99.32 100
coif2 0.00 0.67 99.33 100 1.67 13.95 86.05 98.18 0.00 45.67 54.33 100 0.00 3.38 96.62 100
coif3 0.00 0.00 100 100 0.00 10.82 89.18 100 1.67 47.33 52.67 97.78 0.00 0.00 100 100
coif4 0.00 0.00 100 100 0.67 11.95 88.05 99.20 1.67 59.33 40.67 97.50 0.00 0.00 100 100
coif5 0.00 0.00 100 100 2.21 4.87 95.13 97.82 11.67 28.67 71.33 91.27 0.00 0.00 100 100

(All values are expressed in %)
FP %= FP/nQRS, FN%= FN/nQRS, nQRS = total number of QRS peaks in the signal
Page 7 of 12
(page number not for citation purposes)



BioMedical Engineering OnLine 2006, 5:11 http://www.biomedical-engineering-online.com/content/5/1/11
performances of each individual wavelet regardless of the
sequence type (Table 4).

Simulated signals
A total of 12 simulated signals (4 signals for each of the
three sequences) were processed with the proposed algo-
rithm using each of the 14 analyzing wavelets. For the GE
sequence, the algorithm achieved a perfect QRS detection
for all ECGs. For FSE and IRSE sequences, we noticed that
the heart beat frequency might affect the detection effi-

ciency. In fact, when fast heart beating rates ("180 bpm")
are involved, there is a higher probability that the noise
generated during gradient activation time may coincide
with the QRS complex, leading to confusion. On the other
hand, the beat irregularity had no major effect on the per-
formances. As for the "bigeminy" signals, the algorithm
successfully distinguished between real QRS complexes
and premature beats like illustrated in figure 5. In this
example, premature beats are very prominent, but due to
the fact that their energy contribution is weak in details 6
and 7, a correct QRS detection was obtained. Table 2
shows, for a given wavelet, and a given sequence, the eval-
uation criteria averaged on all 4 signal types. When com-
paring the wavelet performances according to the noise
type, one may notice that for a given sequence, some
wavelets are more efficient for processing than others (an
example is given figure 6). If one considers that a proper
synchronization condition is accomplished when +P
presents a high value while FN is low, the following can
be noted:

a) For a given wavelet, the best results are obtained for the
GE sequence. For the FSE sequence, the algorithm is
slightly less effective, but it is still better than the IRSE
case.

b) The wavelet performances do not only depend on the
noise level, but on its energy distribution as well. Despite
the fact that the FSE signals have better SNR than the GE
signals, the algorithm leads to lower error rates for all

Processing example of a simulated pathological ECGFigure 5
Processing example of a simulated pathological ECG. (a)Decomposition into sub-bands of a "Bigeminy" signal contami-
nated by the GE sequence noise (b) Extraction of the reference and synchronization signals.

Table 4: Averaged results for each wavelet

mDQF Simulated Rodent

db1 85.52% 98.38%
db3 87.55% 99.20%
db4 88.99% 99.55%
db6 84.82% 99.89%

sym3 87.80% 99.09%
sym4 88.04% 99.66%
sym5 86.45% 99.89%
sym6 90.20% 99.77%
sym7 89.02% 100.00%
sym8 89.82% 99.89%
coif2 88.43% 99.43%
coif3 88.73% 100.00%
coif4 85.48% 100.00%
coif5 92.38% 100.00%

For each wavelet the Diagnostic Quality Factor is averaged over 3 
sequences
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wavelets in the case of GE contamination. This can be
explained by the fact that the noise generated by the GE
sequence has relatively weak amplitude, spreading all
over the signal duration; whereas the high amplitude FSE
noise is concentrated in some localised parts of the signal.
Which is why, despite its weaker energy, the FSE noise
makes the QRS detection even harder, since its elevated
peaks may be mistaken for QRS complexes.

Roughly one may conclude that it is the Coiflet family that
achieves quite reliable detection. However, if we examine
each sequence individually, we can define, for each, a
group of the most efficient wavelets. For the GE sequence,
almost all of the wavelets yielded good results. Neverthe-
less, it was the sym6, coif3, coif4 and coif5 which were
able to achieve a perfect detection rate. As for FSE
sequence signals, we can say that processing with db4,
sym6, sym7, sym8 and coif3, led to the lowest error rates.
Finally, for the IRSE, sym4, sym6 and coif2 proved the
superiority of their performances.

Rodent ECGs
As opposed to the simulated signals where the simulator
had to be placed outside the MRI tunnel and long cables
used to drive the signals inside to be contaminated, the

rodent ECGs were detected on the animal placed directly
inside the tunnel. With this setup, the rodent signals were
less contaminated than the simulated ones. However, the
difficulty of synchronization in this case is due to the ani-
mal's physiology resulting in weak ECG amplitude and
very fast heart rate. Not to forget supplementary artefact
occurrences such as respiration. Figure 7 shows two illus-
trations of synchronization signal extraction from an ECG
of a healthy mouse and that of a hypertensive rat. The QRS
detection results on the rodent ECGs are summarized in
Table 2, they show that, for signals recorded during GE
and FSE sequences an ideal case of accurate detection (Se
= +P = 100%) was attained. For the IRSE sequence, which
is the most contaminated, the detections were less effi-
cient with, however, no false detection but a few missed
peaks, therefore slightly extending the image acquisition
duration. The wavelets that ensured perfect detection for
this sequence were the sym7, coif3, coif4 and coif5.

Discussion and conclusion
Since wavelet transform has long proven its efficiency for
QRS detection in standard ECG signals, we developed a
signal processing algorithm found on a wavelet-based fil-
ter bank decomposition strategy, that allows the extrac-
tion of an efficient reference signal from a contaminated

Wavelets performances differenceFigure 6
Wavelets performances difference. QRS detection for "75 bpm" signal recorded during the IRSE sequence: the same sig-
nal is decomposed using coif5 and sym5. One can clearly notice the superiority of coif5 (a) (that ensured perfect detection), to 
sym5 (b) (that detected 3 false peaks and missed one QRS).
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ECG, mainly for MRI synchronization. Considering the
technical aspects of the proposed algorithm, the following
remarks can be made:

(i) Selection of the wavelet functions : The efficiency in
extracting a given signal based on wavelet decomposition
depends greatly on the choice of the wavelet function and
on the number of decomposition scales [13]. In this
study, a straightforward approach for wavelet selection
was based on: 1°) Literature where wavelets have already
been used for ECG processing. Three wavelet families
Daubechies, Coiflets, Symlets were selected. 2°) Analysis
of MRI sequence generated noise signals, based on the
similarity between noise samples and some members of
the three considered families. These two approaches
resulted in an optimal group of 14 wavelets to be tested in
order to define the most appropriate wavelets for each
excitation sequence. Despite the fact that this selection
method has produced efficient results, one may notice
that it is more or less subjective.

(ii)Elaboration of a reference signal : the number of
scales was fixed according to ECG spectral analysis, while
considering the frequency components of the contaminat-
ing artefacts. The choice of the number and levels of the
details for the reference signal reconstruction was guided
by the work of Thakor et al. [11]. Only the sub-bands nec-
essary for cardiac synchronization (those containing the

essential part of the QRS energy) were taken into account:
the complete reconstruction of the ECG signal is unneces-
sary for gating applications. For an ECG sampled at 1 KHz,
the decomposition process over 8 levels perfectly isolated
the QRS complexes (details d6 and d7) from the undesira-
ble components of the contaminated ECG, such as the
NMR environment artefacts (d1 to d5), the P and T wave
(d8), the baseline drift and the respiration signal (a8). The
reference signal extraction was thus performed by com-
bining the scales spanning over the [3.91–15.63]Hz
range.

(iii) Algorithm performance : the efficiency of the pre-
sented method was tested on a group of quite representa-
tive signals: 1°) highly contaminated (mean SNR<-5 dB)
simulated ECGs of normal and pathological heart beats,
which provided a very interesting aspect for the algorithm
evaluation, given that the positions of the QRS in the sig-
nal were known a priori and hence could be compared to
the result of the extraction algorithm. 2°) real ECG signals
recorded on healthy and pathological rodents during car-
diac MR imaging where the high and fast switching gradi-
ents as well as animal physiology make QRS detection
rather difficult.

In order to quantitavely evaluate the algorithm, two coef-
ficients (+P and Se) were calculated for each wavelet and
each sequence. On the basis where the highest +P and

QRS detection on contaminated rodent ECGFigure 7
QRS detection on contaminated rodent ECG. (a) Mouse ECG recorded during an IRSE sequence and processed with 
coif3. Despite the low SNR and the very large base line drift, the algorithm succeeded in ensuring a perfect QRS detection. (b) 
ECG of a hypertensive rat with bundle branch block beat recorded during a FSE sequence, where one can clearly depict the 
effect of the pathology on the QRS morphology. After processing with the sym4 wavelet, the QRS are very well marked in the 
extracted reference signal.
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lowest false detections are sought, the process turned out
to be especially reliable for small animal signals. As for the
simulated ECGs, despite their weak SNR, the perform-
ances were quite satisfactory for both GE and FSE
sequences. However, the method was less efficient in the
case of the IRSE sequence, where the positive predictive
value was suitable, but the false negative detections rate
remained too high (>30%). This is certainly due to the
particularly unfavourable contamination conditions that
led to a very low SNR. As a matter of fact, the use of long
cables generates supplementary artefacts in the signal
which are not observable in the case of real simultaneous
ECG recordings. So even though the signals were recorded
during basic sequences (GE, FSE, IRSE) which contami-
nate the ECG less than more complex ones, such as echo
planar, the obtained noise level was somewhat compara-
ble to that of sophisticated sequences.

After having computed the evaluation criteria for all sig-
nals, we tried to establish which were the most efficient
wavelets for each sequence: For instance, all tested coif
wavelets, achieved perfect detection for the GE sequence,
whereas for the FSE, it was the sym8 that produced the
lowest error rates and the sym4 that yielded the most
acceptable results for the IRSE.

Globally, the results produced by the whole selected
wavelets set were quite acceptable, for all three considered
sequences. However, later applications of the method for
very complex sequences might necessitate the use of other
wavelets such as the biorthogonal ones, which have
already been suggested for QRS detection in extreme con-
ditions and for intensive care patients [37]. The algorithm
has proven to be very efficient for small rodents' signals
but further research is needed to investigate whether the
obtained results could be reproduced in human subjects.

In conclusion the proposed wavelet-based technique has
shown to be particularly efficient in extracting a good
quality reference signal for synchronization during MRI
examination. Given the fact that only the details essential
for synchronisation are used for the signal reconstruction,
both low and high frequency artefacts are correctly
removed; the synchronization problem caused by base-
line wandering is thus solved. The highest degree of accu-
racy of our algorithm was obtained when wavelet
functions deduced from noise analysis were used to
decompose the contaminated ECG. In an upcoming paper
we intend to investigate the real-time implementation of
the method, indispensable for the use in cardiac MRI
applications.
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