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Abstract
Background: We need a sensor to measure the convective heat transfer coefficient during
ablation of the heart or liver.

Methods: We built a minimally invasive instrument to measure the in vivo convective heat transfer
coefficient, h in animals, using a Wheatstone-bridge circuit, similar to a hot-wire anemometer
circuit. One arm is connected to a steerable catheter sensor whose tip is a 1.9 mm × 3.2 mm thin
film resistive temperature detector (RTD) sensor. We used a circulation system to simulate
different flow rates at 39°C for in vitro experiments using distilled water, tap water and saline. We
heated the sensor approximately 5°C above the fluid temperature. We measured the power
consumed by the sensor and the resistance of the sensor during the experiments and analyzed
these data to determine the value of the convective heat transfer coefficient at various flow rates.

Results: From 0 to 5 L/min, experimental values of h in W/(m2·K) were for distilled water 5100
to 13000, for tap water 5500 to 12300, and for saline 5400 to 13600. Theoretical values were 1900
to 10700.

Conclusion: We believe this system is the smallest, most accurate method of minimally invasive
measurement of in vivo h in animals and provides the least disturbance of flow.

Background
Radiofrequency (RF) catheter ablation has been used to
treat many types of cardiac arrhythmias such as atrial tach-
yarrhythmias (atrial tachycardia, atrial flutter, atrial fibril-
lation), atrioventricular nodal re-entrant tachycardia,
Wolf-Parkinson-White syndrome, symptomatic supraven-
tricular and ventricular tachycardia (fascicular VT, bundle
branch re-entrant VT, idiopathic VT, ischemic VT) [1-5]

with high success rate because of its controllability, high
efficacy, low complications and minimal invasiveness.
The technique of radiofrequency catheter ablation is to
deliver high-frequency alternating electric current from
350 kHz to 1 MHz through the electrode catheter to gen-
erate a thermal lesion in myocardial tissue [6]. The tissue
in direct contact with the catheter is heated by resistive
(ohmic) heating. Resistive heating in tissue is propor-
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tional to the power density [6]. The thermal energy from
the directly contacted tissue is then transferred to its vicin-
ity by means of conduction and forms an RF lesion. Flow-
ing blood near the tissue transfers heat away by
convection and is a major cause of heat loss from the RF
lesion. Convective heat transferred by the epicardial coro-
nary artery is considered a minor heat loss in RF catheter
ablation [6,7].

Hot wire/film anemometer systems have been used to
measure the blood velocity in vivo. Nerem et al. [8] used a
hot film probe to study the velocity distribution in the
aortas of dogs. Paulsen and Nissen [9] developed a safety
system for a hot-film anemometer for blood-velocity
measurement in humans. Yamaguchi et al. [10] per-
formed turbulence measurements in the center of the
canine ascending aorta using a hot-film anemometer.
Paulsen et al. [11] analyzed the dynamic properties of a
hot-film anemometer system for blood velocity measure-
ments in humans.

In order to improve the electrodes and success rate of RF
catheter ablation, researchers have used finite element
method (FEM) modelling to simulate the ablation
[7,12,13]. The value of the endocardial convective heat
transfer coefficient (h) is essential for the simulation of
heat loss from the endocardium to the blood pool in the
cardiac chambers [7,13]. Researchers have used values of
h ranging from 44 to 6090 W/(m2·K) for various loca-
tions in the cardiac chambers [7,13-15], however, none of
those values came from in vivo measurement in animals.
Because we did not find in vivo measurements of h in ani-
mals, we built our instrument, which is a Wheatstone-
bridge circuit connected to a thin film resistive tempera-
ture detector (RTD) sensor, similar to a hot-wire anemom-
eter circuit, and used it to measure the endocardial h first
in vitro and then in vivo [16].

Absolute accuracy in measuring heat transfer coefficient h
might be advantageous, but will be very difficult to attain
given the real geometry of the sensor and the operating
conditions envisioned for its use. Of equal value, and far
more realizable, is a sensor that can provide repeatable,
reasonably accurate estimates of local h, exhibiting the
variations in time and space expected in the in vivo appli-
cation. We will demonstrate the sensor described provides
repeatable results in in vitro experiments, which are con-
sistent with an estimated lower bound on h from heat
transfer correlations on an idealized geometry.

Methods
In order to obtain the value of h inside the cardiac cham-
bers, we performed in vitro experiments to ensure the
capability of our measuring system, to test for any leakage
current and to calibrate the system. The in vitro experiment

setting was consisted of a circulation system (Fig. 1), the
sensor (Figs. 2 and 3), the measuring circuit (Fig. 4) and
the data acquisition program. The circulation system sim-
ulated flow rates of blood from 0 to 5 L/min to provide
different flow rates for three different fluids (distilled
water, tap water and saline). The catheter sensor, whose
tip is a Pt thin film resistive temperature detector (RTD)
sensor, was placed in the fluid flow, and formed one arm
of the Wheatstone bridge circuit (the measuring circuit).
The electric power consumed by the sensor and the tem-
perature of the sensor were measured and saved using a
data acquisition program and were then analyzed to yield
h (using equation (16)).

A. Circulation system
Fig. 1 shows that the circulation system was composed of
a fluid bath, a centrifugal pump, a flow meter and a fluid
container. We measured flow with a rotameter Model
7200–0061 (King Instrument Co., Garden Grove, CA),
which has a full scale of 2 GPM (8 L/min) and 3% accu-
racy. The fluid bath maintained the temperature of the
fluid at 39°C (swine body temperature). From the fluid
bath, the pump pumped the fluid to the flow meter. A
valve at the flow meter was adjusted to vary the flow rate
from 0 to 5 L/min. The fluid then flowed to the container
through a 20 mm diameter, 500 mm long, solid PVC tube
with the heated sensor on the axis in the tube.

Since the tube was more than 20 times longer than the
diameter of the tube, this suggests that the expected lami-
nar flow was fully developed at the measuring point. As
the fluid flowed past the sensor, it dissipated heat from
the sensor and cooled the sensor by means of convection.
The higher the flow rate, the faster the heat was dissipated.

Because this system will be used to measure the endocar-
dial convective heat transfer coefficient, h, in vivo, it is
important that the measuring system (especially, the cath-
eter sensor) will not create any leakage current while per-
forming the h measurements. Since the electrical
conductivity (σ) of blood is around 0.60 to 0.67 S/m at 20
to 25°C [17], we must perform the in vitro tests in fluid
that has electrical conductivity similar to that of blood.
Therefore, three different types of fluid were used: distilled
water, tap water and saline. Distilled water (σ ≈ 10-4 to 10-

3 S/m [18]), which has a very low electrical conductivity,
was first used for the in vitro experiments (as control
experiments) in order to avoid having any leakage current
during the experiment. Tap water (σ ≈ 0.15 S/m [19]),
which has an electrical conductivity higher than that of
distilled water but lower than that of blood, and saline (σ
≈ 0.82 S/m [20]), which has electrical conductivity slightly
higher than that of blood, were later used in the experi-
ments in order to determine if any leakage current was cre-
ated from the catheter sensor as well as to observe the
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differences of h obtained from these fluids with different
electrical conductivity.

B. Measuring circuit
Fig. 4 shows our measuring system (similar to a hot wire/
film anemometer system) using a resistive temperature
detector (RTD) (Fig. 2), Rs, forming one arm of a Wheat-
stone bridge. This circuit maintained the resistance of the
sensor (Rs) at a constant value, hence holding the temper-
ature of the sensor constant (constant temperature
mode). During the measurement, the sensor was heated
approximately 5°C above the temperature of the flowing
fluid (distilled water, tap water and saline). The electric
power consumed by the sensor and the resistance of the
sensor during the experiment were recorded and analyzed
to yield the value of h.

The Wheatstone bridge had a resistive temperature detec-
tor (RTD) sensor in one arm of the bridge, and three wire-
wound resistors (1 W), and a precision potentiometer in
the other arms. A power operational amplifier supplied
the power to the circuit and the sensor. The resistance of
the sensor was maintained constant by the bridge at RS =

RR (G - 2)/(G + 2) where RR is the total resistance of the
upper right arm of the bridge, and G is the gain of the op
amp [21]. The sensor was electrically heated about 5°C
above the fluid temperature because if using this system in
vivo, higher temperatures may cause blood coagulation on
the surface of the sensor and may damage the surrounding
cells [6]. Therefore we restricted the temperature differ-
ence to 5°C also for the in vitro tests. Dissipation of the
heat occurred because the flowing fluid carried the
warmed fluid away from the surface of the heated sensor.
Increased velocity of the fluid reduced the fluid tempera-
ture next to the sensor and therefore the ohmic resistance
of the sensor. Restoration of the sensor to its original
working temperature was achieved by feedback controlled
by the op amp. The sensor current increased to increase
the power and the temperature of the sensor.

The voltage across the sensor (V1) and the voltage across
R1 and RS (VA) (see Fig. 4) were recorded by the data acqui-
sition program through the analog-to-digital converter
(ADC) (12 bit, 100 kS/s, 8 analog inputs). VA and V1 were
used to determine the current that flowed through the
sensor. V1 was also used to determine the resistance and

The circulation system consists of a pump connected to a flow meter, a container, which is the measuring site for the RTD sen-sor probe, and a fluid bath, which maintains the temperature of the fluid at 39°CFigure 1
The circulation system consists of a pump connected to a flow meter, a container, which is the measuring site for the RTD sen-
sor probe, and a fluid bath, which maintains the temperature of the fluid at 39°C

To the measuring circuit

Fluid bath (keeps the

temperature at 39° C)

Flow meter

Fluid container
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Pump

Direction
of the flow

RTD sensor (at the tip
of the catheter)
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the temperature of the sensor. Once we knew the value of
the current, the resistance and the temperature of the sen-
sor, we calculated h using Newton's law of cooling [22]:

q = hA(Ts - T∞) = Qh  (1)

where: q is the heat flow (W), Qh is the electric power con-
sumed by heating the sensor (W), h is the convective heat
transfer coefficient (W/(m2·K)), A is the sensor area (m2),
TS is the temperature of the heated sensor (K), and T∞ is
the temperature of the bulk fluid (K). However, since the
sensor we used was not a bare Pt thin film, we calculated
a correction.

C. Catheter sensor design
To measure in vivo h, we required a catheter that could be
externally steered and placed against cardiac chamber and
vessel walls. The sensor (model TFD, Omega Company)
was at the tip of a cardiac ablation catheter and Loctite
sealed the electric connection, covered the backside of the

probe and rounded the sharp edges of the sensor. Fig. 2
shows the structure of the thin film Pt sensor. Its size was
1.9 × 9.4mm with a sensing area of 1.9 × 3.2mm (after
covering the less-temperature sensitive area and the rough
edges with Loctite). Fig. 3 shows the structure of the cath-
eter with the sensor at the tip.

D. Temperature vs. resistance for the sensor
When electrically connecting the bare sensor to a catheter,
the overall resistance of the catheter sensor was greater
than that of the bare sensor because of the added resist-
ance of the lead wire. We used an adjustable temperature
water bath and a digital multimeter (model# HP34401A)
to plot the resistance versus the temperature shown in Fig.
5. The average resistance difference between the bare sen-
sor and the sensor with the lead wire was about 8.51 Ω.
The resistance differences of the lead wire in air (25°C,
room temperature) and in heated water (up to 45°C)
were less than 0.1 Ω. Using this information, we used the
DIN EN 60751 [23], resistance vs. temperature table. The

The RTD sensor has a thin film Pt layer overcoated with a glass layer and a ceramic substrate, (a) Top view of the RTD sensor, showing the line pattern of the thin film Pt, and (b) Cross-sectional view of the RTD sensor through line C, showing the thick-ness of the glass layer of 27 μm and the whole thickness of the sensor of 0.5 mmFigure 2
The RTD sensor has a thin film Pt layer overcoated with a glass layer and a ceramic substrate, (a) Top view of the RTD sensor, 
showing the line pattern of the thin film Pt, and (b) Cross-sectional view of the RTD sensor through line C, showing the thick-
ness of the glass layer of 27 μm and the whole thickness of the sensor of 0.5 mm.
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resistance of the catheter sensor was Rc = Rs + 8.51 Ω,
where Rs was the resistance of the bare sensor.

Results
Theoretical calculation of forced convection at the center 
of a 20 mm diameter tube
It was important to consider the closest theoretical predic-
tion possible in order to guide our experimental testing.
Therefore, we calculated the value of forced h for laminar
flow, constant heat flux [22], using:

where: Nu is the Nusselt number (dimensionless), k is
thermal conductivity (W/(m·K)), L is the length of the
heated area (parallel to the direction of the flow), (For our
catheter sensor, the length of the exposed, heated area was
3.2 × 10-3 m).

The average Nusselt number (Nu) for laminar flow, con-
stant heat flux from a flat plate heated from x = 0 to x = L,
and Re < 5 × 105 can be estimated from the following
equation [22]:

 = 0.664(Re1/2)(Pr1/3)  (3)Nu = ( )hL

k
2 Nu

The Pt sensor is placed at the tip of a catheter probe surrounded by epoxy, leaving the exposed area of 1.9 × 3.2 mmFigure 3
The Pt sensor is placed at the tip of a catheter probe surrounded by epoxy, leaving the exposed area of 1.9 × 3.2 mm. The 
turnable knob on the catheter handle controls catheter tip movement.

Sensor area

Biocompatible epoxy
(Loctite)

Catheter

Probe tip
1 mm

3.2 mm

7 mm

0.5 mm
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where: Re is the Reynolds number (dimensionless), Pr is
the Prandtl number (dimensionless), α is the Womersley
number (dimensionless), St is Strouhal number (dimen-
sionless), ρ is the density of fluid (kg/m3), μ is dynamic
viscosity (N·s/m2), ν is the kinematic viscosity = μ/ρ (m2/
s), CP is specific heat at constant pressure (J/(kg·K)), u is
the velocity of the flow at the sensor location (m/s)

F = Flow, D is the diameter of the tube (m), f is a charac-
teristic frequency of the waveform (in this case, the heart
rate) (Hz), At is the cross-sectional area of the 20 mm
diameter tube = π(0.01)2 = 3.1416 × 10-4m2.

For the calculation of , Re and h, the values of Pr, ρ, μ,
CP, and k at 37°C and 39°C are listed in Table 1. For the

in vitro experiments, the unsteadiness of the flow was
insignificant (with very small value of the Womersley
number) and could be neglected. However, in physiolog-
ical situations, a larger value of the Womersley number
would be obtained, thus equations (4) and (5) must be
adjusted according to the unsteadiness of the flow due to
the heart rate.

Theoretical calculation of free convection for a vertical 
plane
When placing a heated sensor in a still liquid, heat gener-
ated by the sensor is dissipated by free or natural heat con-
vection. The average value of free or natural convection,
caused by the fluid movement resulting from the change
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Circuit diagram of constant temperature measuring system, R1, R2, and R3 are wire-wound resistors with 1% tolerance, ±20 ppm/°C temperature coefficient. Rs is a resistive temperature detector (RTD)Figure 4
Circuit diagram of constant temperature measuring system, R1, R2, and R3 are wire-wound resistors with 1% tolerance, ±20 
ppm/°C temperature coefficient. Rs is a resistive temperature detector (RTD).
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of the fluid density due to the heating process, can be cal-
culated using [22]:

where the subscript f indicates that the properties in the
dimensionless groups are evaluated at the film tempera-
ture (Tf), where:

where: T∞ is the fluid temperature (°C), Tw is the wall tem-
perature (of the heated plane) (°C), and for constant heat
flux surface:

where: Grf is the Grashof number at the film temperature,
Prf is the Prandtl number at the film temperature, g is
acceleration of gravity (m/s2), β is the temperature coeffi-
cient of thermal conductivity (1/K), x is the length of the
exposed area of the heated sensor (= 3.2 × 10-3 m), ΔT is
temperature difference of the fluid and the wall (T∞ - Tw),
C is a constant, and can be evaluated by the value of Grf-
Prf, m is a constant, and can also be evaluated by the value
of GrfPrf, h is the local free convective heat transfer coeffi-
cient (W/(m2·K)).

For free convection from isothermal vertical planes, the
values of local h and Nuf can be analyzed according to

Table 2. Since the value of GrxPrf is lower than 104, we

used Fig. 7-7 of [22] (free convection heat transfer from
vertical isothermal plate, Nu vs. GrPr) to determine the

value of  without using the value of C and m.

The average convective heat transfer coefficient ( ) for
laminar region can be evaluated by [22]:

In a water bath with constant temperature of 39°C, a sen-
sor was placed vertically. The sensor was heated to a con-
stant 5°C above the water temperature. The free h was

hlocal = 1500 W/(m2·K) and  = 1870 W/(m2·K).

Table 3 shows the values of u, Re, Nu and . Note that at

zero flow rate,  is calculated using free convection equa-
tions.

Calculation correction
We calculated a correction for the sensor to obtain a more
accurate value of h since a glass layer covers the top of the
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Temperature vs. resistance of the bare sensor and the catheter sensor with the catheter wire immersed in the 37°CFigure 5
Temperature vs. resistance of the bare sensor and the catheter sensor with the catheter wire immersed in the 37°C
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Pt thin film. A thermal circuit analogous to an electric cir-
cuit was used for this correction. We treated the heat trans-
fer-rate (q) as a flow. We calculated the thermal resistances
from the thermal conductivity, convective heat transfer
coefficient, and thickness of the material and the area of
the material. The temperature difference is analogous to
the potential difference. The Fourier equation [22] may be
written as:

When the sensor is heated, the heat from the Pt thin film
conducts through this thin layer of glass, which is on the
top of the Pt film. The equivalent thermal resistance of the
glass layer is RG. The equivalent thermal resistance of the
ceramic layer is RC and the equivalent thermal resistance
of the Loctite layer is RL. Convection occurs on the surface
of this layer, and is included in this thermal circuit as
Rconv. Fig. 6 shows the one-dimensional structure of the
catheter sensor and the equivalent circuit of this system.
The value of RG, RC, RL and Rconv can be calculated using:

and 

where: dG is the thickness of the glass layer = 0.027 mm,
kG is the thermal conductivity of the glass = 1.38 W/
(m·K), dC is the thickness of the ceramic substrate = 0.45
mm, kC is the thermal conductivity of the ceramic = 6.06
W/(m·K), dL is the thickness of the Loctite = 1.00 mm, kL
is the thermal conductivity of the Loctite = 0.55 W/(m·K),
A is the surface area of the glass layer = the surface area of
the ceramic substrate = 3.2 mm × 1.9 mm = 6.08 × 10-6 m2

Heat from the layer of thin film Pt also conducts through
the ceramic substrate and Loctite layer as shown in Fig. 6.
The combination of the thermal resistance of the Loctite
layer (RL) and the thermal resistance of the ceramic sub-
strate (RC) is parallel to the thermal resistance of the glass
layer. Thus for the catheter sensor, we calculate h, using:

where A is the exposed surface area of the catheter sensor
= 1.9 mm × 3.2 mm

In vitro experimental results
Fig. 7 shows the value of h from 16 experiments (for each
flow rate) at various flow rates in three different types of
media: distilled water, tap water and saline. Table 4 shows
the average values of h and the standard deviations of the
values of h from each flow rate. All of the in vitro experi-
ments were performed at 39°C similar to the swine body
temperature.

The experimental results show that from 0 to 5 L/min, val-
ues of h in W/(m2·K) were for distilled water 5100 to
13000, for tap water 5500 to 12300, and for saline 5400
to 13600 (as shown in Fig. 7). At low flow rates (from 1 to
3 L/min), distilled water yielded the highest value of h
(8700 W/(m2·K) at 1 L/min, which was about 13%
higher than the lowest value of h obtained from tap
water). At the higher flow rates (from 4 L/min or higher),
saline yielded the highest value of h (13600 W/(m2·K) at
5 L/min, which was about 9% higher than the lowest
value of h obtained from tap water). No significant differ-
ences of h among these three media were found at any
flow rate.

It is important to consider the closest theoretical predic-
tion possible in order to guide our experimental testing.
Therefore, we compared the experimental results with the
theoretical values and found that at all flow rates, the h
results from the in vitro experiments of those three types of
media yielded a higher value of approximately 1500 W/
(m2·K) above the theoretical value.
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Table 1: The value of Prandtl number, density, dynamic viscosity, 
specific heat, and thermal conductivity of water at 37°C and 
39°C.

At 37°C At 39°C

Pr 4.6 4.4
ρ (kg/m3) 993.9 992.47
μ (N·s/m2) 6.9 × 10-4 6.7 × 10-4

CP (J/(kg·K)) 4174 4174
K (W/(m·K)) 0.63 0.63

Table 2: Constants for use with equation (6) for isothermal 
surface.

GrfPrf C m

10-1 – 104 Use Fig. 7-7 of [22] Use Fig. 7-7 of [22]
104 – 109 0.59 0.25
109 – 1013 0.10 0.33
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Discussion
We have built an instrument for the measurement of h
and tested it in distilled water, tap water and saline. The
measured h varied significantly with flow rate, as theory
suggests it should, but did not follow the square root
dependence on Reynolds number that was expected. The
present data varied approximately with the 0.3 power,
whereas theory suggests 0.5.

Because of the small size of the sensor, the Grashof or
Rayleigh Number and the Reynolds number (for the

forced convection flows) were small. Most of the correla-
tions were more reliable at the upper end of the Grashof
or Reynolds number ranges, hence the experimental data
agreed better with the theoretical calculation at higher
flows.

At the lower flow rate in stagnant liquid (at low Grashof
Number), the experimental flow regime is uncertain. The
natural convection correlation assumes a flat vertical sur-
face, no edge effects, constant fluid properties, and no
forced convection (fluid movement) at all, which are dif-
ficult to replicate. Most other experiments in natural con-
vection attempt to achieve relatively large Grashof
numbers, where the flow is strongly driven by free convec-
tion with negligible small amounts of forced convection.
However, in our case, Gr was small, so normally negligi-
ble small forced convection had a big effect and could not
be neglected.

The data changed slightly with the type of medium. All
three data sets were within ± 7% of the mean line (exclud-
ing the free convection results, which were not expected to
lie on the same lines as forced convection). No leakage
current was detected in all in vitro experiments, which sug-
gested that this system should be safe to perform the
measurement in vivo.

We did not measure h at the tube wall in vitro because the
tube wall was rigid and the sensor would have been forced
away from the wall into flow streamlines different from

One-dimensional heat transfer through the catheter sensor, (a) the equivalent structure of the catheter sensor, (b) the electri-cal analogyFigure 6
One-dimensional heat transfer through the catheter sensor, (a) the equivalent structure of the catheter sensor, (b) the electri-
cal analogy
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Table 3: Theoretical value of , Re, Nu, and u for laminar flow 

of the catheter sensor in a 20 mm diameter tube.

Flow (L/min) (m/s) Re Nu
(W/(m2·K))

0.0 0.000 N/A 4.47 1900
0.5 0.027 250 17.3 3400
1.0 0.053 500 24.4 4800
1.5 0.080 750 29.9 5880
2.0 0.106 1010 34.5 6790
2.5 0.133 1260 38.6 7600
3.0 0.159 1510 42.3 8320
3.5 0.186 1760 45.7 8990
4.0 0.212 2010 48.8 9610
4.5 0.239 2260 51.8 10190
5.0 0.265 2520 54.6 10740

h

u h
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those at the tube wall. This is the reason we measured h on
the axis, with known flow. Once we calibrated h on the
axis, we later used the sensor in vivo against the soft tissue
of the endocardium or vessels to measure h. The sensor

was small enough so that it indented the soft tissue to
place the sensor face close to the wall contours and
achieve minimal disruption of the flow streamlines at the
endocardium or vessel wall. This enabled measurement of

Table 4: The averages and standard deviations of h at different flow rates

Flow (L/min) Distilled water (W/(m2·K)) Tap water (W/(m2·K)) Saline (W/(m2·K))

Average SD Average SD Average SD

0.0 5100 500 5500 400 5400 400
1.0 9000 1200 8000 1100 8400 800
2.0 10100 1800 9500 1100 9700 1100
3.0 12000 1800 10300 800 10300 1400
4.0 12200 1900 11000 400 12400 1800
5.0 13000 1800 12300 800 13600 1700

In vitro experimental results of h at various flow rates in distilled water, pure water and saline performed at 39°CFigure 7
In vitro experimental results of h at various flow rates in distilled water, pure water and saline performed at 39°C.
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the value of h at the endocardium or vessel wall, which
was less than the value of h away from the wall.

Conclusion
We believe this system is the smallest, most accurate
method of minimally invasive measurement of in vivo h in
animals and provides the least disturbance of flow.
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