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Background
Diffusion tensor imaging (DTI) has become a promising technique for characterizing the 
effects of developmental, aging and pathological processes of the central nervous system 
(CNS) in the tissue micro-structure and organization [1, 2]. The powerful technique has 
been widely applied for oncology diagnosis and treatment [3]. However, the low quality 
image could affect the accuracy of diagnosis and the effect of the treatment. As a result, 
it is essential to devise a reliable method to reduce noise for DTI.

In the past decade, a number of approaches have been developed to reduce noise for 
DTI. In general, these methods can be categorized into two main types, including reg-
ularization of the complex tensor fields and denoising of the scalar diffusion weighted 
imaging (DWI) volumes. The straight forward strategy is to perform regularization 
directly on the tensor fields. There is a 3 ×  3 symmetric positive diffusion tensor at 
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each voxel for DTI [4]. Several regulation methods have been designed for the complex 
images. Frandsen et  al. [5] utilized the information of fiber orientations to develop a 
Bayesian method for regularizing the diffusion tensor field. However, the work proposed 
may be easily trapped in locally optimal solutions, which required a large of iterations to 
converge. Gur and Scochen [6] transferred the symmetric and positive-definite tensor 
into Riemannian space for regularization. To avoid the high computational complexity in 
Riemannian approach, an effective Log-Euclidean metric was proposed to regularize the 
tensor value images [7]. Regularization of complex tensor field has advantages of smaller 
bias and easier characterization.

In recent years, plenty of efforts have been made for reducing the Rician noise in DWI. 
Wirestam et al. [8] proposed a wiener like filtering method for high b-value DWI denois-
ing. Wiest-Daessléet al. [9] developed an efficient denoising method for DWI based 
on non-local means variants. Tristán-Vega et  al. [10] proposed an effective denoising 
approach by incorporating the joint information among DWI at different directions. 
Lam et al. [11] advanced a novel algorithm based on low rank and edge constraints to 
remove noise of DWI volumes. The promising theory of sparse representation was intro-
duced by Bao et al. [12] to denoise cardiac DTI, which effectively removed the noise with 
preserving the contrast. The performance of sparse representation applications has been 
demonstrated to be highly related to the dictionary. The predefined dictionary in the 
approach proposed by Bao et al. may not well capture the intrinsic features of images, 
which thus affect the denoising performance.

In this paper, we present a novel sparse representation based denoising method for 
3D DTI by learning adaptive dictionary with the context redundancy between neighbor 
slices. In order to capture intrinsic features of DWI images, dictionary learning is intro-
duced to learn adaptive dictionaries from the noisy images. With the context redun-
dancy among adjacent slices at the DWI volumes, higher redundancy could be achieved 
to train sparsifying dictionaries for better description of image content with and lower 
computation complexity. With training dictionary in a number of slices with the context 
redundancy, an adaptive dictionary is supposed to be obtained to enable sparser repre-
sentation of the selected slices. The proposed method incorporates the sparsity signal 
modeling and redundancy between adjacent slices for denoising 3D DTI. The perfor-
mance of our proposed method is evaluated on both simulated and real datasets with 
qualitative and quantitative comparisons.

Methods
Sparse representation

Sparse representation has become a powerful and promising modeling tool, which has 
been widely applied to the areas of machine learning, signal and image processing [13, 
14]. The model suggests that a given signal could be sparsely represented over a specific 
redundant dictionary. It can be describe as an optimization problem,

where x ∈ ℜn represents the signal, � ∈ ℜn×k(k > n) stands for the overcomplete dic-
tionary, ǫ is the bounded representation error and α is the representation coefficients. 

(1)min
α

�α�0 subject to ��α − x�22 ≤ ǫ
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The notation ‖α‖0 denotes the non-zero entries in the coefficients. The sparsity modeling 
has been demonstrated in multiple magnetic resonance imaging applications, including 
image reconstruction, segmentation and disease classification [15, 16].

DWI sequence denoising using sparse representation

In diffusion imaging, a sequence of DWI volumes is acquired to quantify the water dif-
fusion information at each voxel. The sparse representation based denoising method 
developed for DWI performed the processing on each 2D image independently with a 
predefined dictionary. The denoising model can be formulated as

where y is the noisy image, C is constant value and σ is the standard deviation of Rician 
noise. The optimization problem could be achieved by solving an unconstrained problem

where µ is the penalty factor.
The performance of sparse representation applications strongly depends on the spar-

sity level of the signal in the dictionary. Compared to predefined dictionaries from clas-
sical transforms, learned dictionary could enable maximally sparse representation of the 
input training signal, which has been demonstrated in several magnetic resonance imag-
ing applications [17]. Several dictionary learning approaches [18, 19] have been devel-
oped to obtain adaptive dictionaries for numerous applications of signal processing and 
computer vision. Among these methods, the effective K-SVD learning method proposed 
by Elad et al. [18] has been demonstrated to be effective and efficiency in plenty of appli-
cations. In this study, this K-SVD method will be employed to learn adaptive dictionary 
direct from the noisy DWI images.

In the K-SVD learning approach, dictionary is learned from image patches of the origi-
nal noisy image. The latent clean image then could be restored from the learnt diction-
ary. The above optimization problem will be changes to be

where x is the latent clean DWI images, Rij is a matrix to extract the image patches at 
location [i, j], αij is the corresponding representation coefficient, � and µ are the pen-
alty factors. The first term is the proximity between noisy and clean images. The sec-
ond terms denote the sparse representation approximation of image patches and the last 
terms is sparsity requirement of the representation coefficient.

The 3D DWI volumes have similar contents and structures between adjacent slices, 
which can be obviously seen from Fig. 1. The corresponding learnt dictionaries for the 
consecutive slices are expected to be similar. Such context redundancy could be took 
advantage for providing more samples for training dictionary. The corrupted structure in 
one slice may be restored using the information from adjacent slices. Therefore, instead 

(2)min
α
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of training dictionaries for each slice independently, one dictionary will be learnt for a 
number of slices to denoise these slices simultaneously. Eq. (4) can be rewritten as

where Y = [Y1,Y2, · · · ,YL] and L is the number of selected adjacent images for denois-
ing. Several greedy methods have been proposed to solve the NP-hard ℓ0 norm problem 
for achieving the approximation solutions. The ℓ0 norm can also be transferred to convex 
relaxation ℓ1 optimization, which can be efficiently solved [20]. The convex optimization 
has been demonstrated to produce better quality with learned dictionary. Thereby, the 
above optimization problem is converted to the convex problem as

By training dictionary from sufficient samples, a better dictionary is supposed to 
be obtained to capture the intrinsic underlying features of the selected slices. All the 
selected slices will be denoised simultaneously with the learnt dictionary. The diction-
ary learned from the current image sequence will be utilized as the initial dictionary for 
images of next image sequence. This will highly reduce the iterations of the dictionary 
training process and thus highly reduce the computing time compared to learning dic-
tionary on each 2D image independently.

Numerical solution for the denoising problem

The complex optimization problem in equation [5] is solved using an iterative block-
coordinate relaxation method. The dictionary � and latent clean image sequence X will 
be optimized through a number of training iterations. At each iteration, it consists of a 
sparse coding stage which obtains the sparse coefficients and a dictionary training stage 
that updates the atoms.

In the sparse coding process, the dictionary and latent clean image sequence X are 
fixed. An initial dictionary � is generated from a specific transform and the clean image 

(5)arg min
α,X



��Y − X�22 +
�

i,j,l

��RijlX −�αijl
��2
2
+

�

i,j,l

µijl

��αijl
��
0





(6)arg min
α,X



��Y − X�22 +
�

i,j,l

��RijlX −�αijl
��2
2
+

�

i,j,l

µijl

��αijl
��
1





Fig. 1 Consecutive slices of a diffusion weighted image volume. a–d are consecutive slices derived from a 
three dimensional diffusion weighted image
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is given by the noisy DWI image sequence. The discrete cosine transform is utilized as 
the initial dictionary in this paper. A number of sparse coding problems will be solved 
using the form

at image patches for each location [i, j] at the l-th slice. The efficient Lasso (least absolute 
shrinkage and selection operator) method is adopted to obtain the sparse representation 
of image patches over the dictionary [21].

During the dictionary training stage, each atom is improved sequentially with the 
K-SVD algorithm. For the m-th atom, we first identify the set of patches that use such 
atom. The representation error Em is then computed for the selected patches by remov-
ing the m-th atom. Singular value decomposition (SVD) is performed on the error 
matrix by Em = U�V . The first column of U is then chosen as the updated dictionary 
column. The representation coefficients are updated by the entries of V  at the same time.

After several iterations of calculating representation coefficients vectors and training 
dictionaries, these two parameters are fixed. The noise free DWI image sequence can be 
computed by minimizing Eq. (6), which transfers to optimization problem

This equation can be easily solved by weighting the represented image patches as

for each slice.

Results and discussion
Simulated datasets

Diffusion weighted imaging datasets were simulated using an diffusion tensor atlas of 
an adult mouse from the Biomedical Informatics Research Network Data Repository 
[22]. A sequence of DWI volumes was generated based on the DTI model in each voxel. 
Thirty-three DWI volumes were generated, including one volume with zero b-value and 
thirty-two images with a b-value of 1000  s/mm2 at different directions. Five slices of 
images were acquired with the spatial resolution of 256 × 256. Independent Rician noise 
was then added to the above produced clean images. The standard deviation of noise 
was set to 1/10 of the mean intensity in the center region of the DWI with zero b-value.

In the dictionary learning process, too large image patch size can lead to a small num-
ber of training samples, and too small image patch could lead to a high computational 
burden. The commonly utilized image patch size is ranging from 5 × 5 to 8 × 8 [18, 23]. 
In this experiment, the image patch size was 8 × 8 and the dictionary size is 64 × 256. 
The sparsity of the representation for each patch was set to 5 and the constant C value is 
1.2. Initial dictionary was given by the discrete cosine transform. Fifteen iterations were 
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performed to learn the dictionary over the images. The effectiveness of the proposed 
method is compared state-of-the-art multi-component nonlocal means (MNLM) algo-
rithm [24]. This method utilizes nonlocal means filters to images by filtering kernels on 
image blocks [25]. The parameters of the method have been experimentally optimized 
to produce the best denoising results. In addition, we also give the results of sparse rep-
resentation based denoising method (SR) by learning dictionary from current slice for 
comparison. Figure  2 shows the initial dictionary and the learnt dictionary from the 
stimulated DWI image sequence by K-SVD method. Compared to initial dictionary, the 
learnt dictionary can capture the intrinsic features, which can better represent the DWI.

The high dimensional structure of diffusion tensor makes it difficult for intuitive visu-
alization. For easy inspection, it is appropriate to assess the effectiveness by visualizing 
the original DWI image and scalar maps. For DTI, fractional anisotropy (FA) maps and 
colored FA maps are the two important maps in clinical use and scientific research. There-
fore, these three types of images are visualized for evaluation. The diffusion tensors were 
calculated using the least square method and the FA and colored FA maps were then 
computed from the DTI. Figure 3 shows one representative DWI image, corresponding 
fractional anisotropy (FA) maps and colored FA maps of the clean image, noisy image, the 
MNLM method, SR approach and our proposed method for the simulated data. The colors 
in the maps represent the principal diffusion direction of water at each voxel. Read, green 
and blue represent the directions of left–right, anterior-posterior and superior-inferior 
respectively. As can be seen, the denoising results from the MNLM method look good vis-
ually but with over-smoothing in several regions. Compared to MNLM, the results from 
SR and our proposed method obtain better results with recovering important features cor-
rupted by noise. This demonstrates the effectiveness of the sparse representation model. 
Compared to SR, the results derived from our approach have better contrasts with recov-
ering important features, which can be seen especially on the colored FA images.

We further performed quantitative experiments to evaluate the performance of our 
proposed DTI noise reduction algorithm. The FA errors were computed between the 

Fig. 2 Initial and learned dictionary for simulated datasets. a is the initial dictinoary and b is the learned 
dictionary
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clean FA maps and the results derived from the different denoising algorithms. The 
results of the three approaches are illustrated in Fig. 4. The MNLM obtains the worse 
result with largest bias (−0.027) and variance (0.056). Our approach achieves the lowest 
bias (−0.006) and variance (0.028).

Moreover, the root mean squared error is calculated to evaluate the robustness of dif-
ferent approaches under different levels of noise. The root mean squared error is defined 
for the estimated FA values, which is computed as

(10)RMSEFA =

√∑
q (FAq − F̂Aq)

2

Q

Fig. 3 Denoising results for simulated datasets. The first row is the original diffusion weighted image. The 
second and third rows are the fractional anisotropy maps. The column a is the original gold standard and 
the column b is the noisy data. The column c, d and e are the denoising results using the MNLM, SR and our 
proposed method

Fig. 4 Quantitative comparison of different denoising methods. a–d are the fractional anisotropy errors of 
noisy data and denoising results using MNLM, SR and our proposed method
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where Q is the total number of pixels of the non-background regions, FA and F̂A are 
the FA values estimated from the clean image and the images from different denois-
ing methods. Figure 5 gives the quantitative comparison of FA maps between different 
methods under different noise levels. As can be seen, the curves of the proposed method 
gain more accurate diffusion parameter estimation.

Both qualitative and quantitative experiments demonstrated the superiority of our 
proposed algorithm compared the two classical DTI denoising methods. The MNLM 
method utilized the nonlocal means filters, which may produce over-smoothing results. 
Compared to the SR algorithm, the context redundancy between adjacent slices is uti-
lized to train an adaptive dictionary, which can better describe the image content and 
intrinsic features. Therefore, the original clean images can be well obtained with higher 
contrasts using our proposed approach.

Real datasets

The performance of the proposed denoising method was also further evaluated on real 
DTI datasets. The datasets were obtained from the diffusion imaging group at the Dan-
ish Research Centre for Magnetic Resonance, the MR Department at the Copenhagen 
University Hospital [26]. In vivo monkey brain DTI datasets was acquired from a 4.7 T 
Varian Inova MR scanner using a diffusion weighted pulse gradient spin eco sequence 
with single line readout. DWI datasets included 3 image with b = 0 and 90 non-collinear 
directions on the unit-shell with two types of b-values 1931, 3091 s/mm2. Three slices 
were obtained with the matrix size =  256 ×  128, voxel size =  0.4 ×  0.4 ×  0.4 mm3, 
gap = 2 mm, repetition time = 5000 ms and echo time = 60 ms.

One b0 image and 31 images with nonzero b values were randomly selected from the 
93 images to evaluate the denoising algorithm. Due to the small size of the real images, 
the image patch size was set to 6 × 6 to enable a sufficient number of training samples, 
and the dictionary size was 36 ×  100. Figure  6 illustrates the denoising results of our 
proposed method for one slice of the vivo DTI data with two different b values. Scalar 

Fig. 5 Quantitative comparison of different denoising methods with different noise levels
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and colored FA maps were shown to evaluate the effectiveness. Gold standard cannot be 
available for the real datasets. However, qualitative improvement can be easily seen from 
these maps. Some structures were contaminated by noise before denoising, especially 
for higher b values. After noise reduction with our proposed method, better definition of 
these corrupted structures was achieved with better contrasts.

Conclusions
We have proposed an effective denoising method for 3D DTI by combining the sparse 
representation and dictionary learning. The proposed approach has two desirable 
advantages. At first, our method leverages the powerful K-SVD algorithm to learn adap-
tive dictionary for maximal sparse representation of the image. Compared to specified 
dictionary from traditional transforms, adaptive learned dictionary could better describe 
the image content and intrinsic features. Second, the context redundancy existed among 
adjacent slices of 3D DWI volume is incorporated into the sparse representation based 
denoising model to achieve higher sparsity with lower computational complexity. Similar 
structures are always existed in the neighbor slice of the three dimensional images. Such 
redundancy could be utilized for providing more samples for better dictionary learning. 
Both the qualitative and quantitative evaluations on stimulated and real datasets demon-
strate the performance of our proposed method for DTI noise reduction. The proposed 
approach well removes the noise in the DTI, which has high potential to be applied for 
clinical applications. One possible limitation of the proposed approach is the relatively 
high computational time compared to other classical denoising algorithm for the high 
dimensional DTI datasets. More time is required to optimize the dictionary in the sparse 
representation model. Our algorithm has high potential to be accelerated using the mul-
tiple cores and the advanced graphic processing unit. Information on patch based fea-
ture distinctness in different scales will also be considered to be incorporated to enhance 
the filtering performance [27, 28]. Besides, the powerful supervoxel technique has a high 
potential to be introduced to accelerate the denoising algorithm [29].

Abbreviations
DTI: diffusion tensor image; DWI: diffusion weighted image; FA: fractional anisotropy; SVD: singular value decomposition.

Fig. 6 FA maps of the denoising results for real datasets. The first and second rows are the denoising results 
for DTI datasets with b values of 1931 and 3091 respectively. The column a and b are the original fractional 
anisotropy maps and the denoised maps. The column c and d are the original and denoised color fractional 
anisotropy maps
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