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Abstract 

Background: Electrogram‑guided ablation procedures have been proposed as an 
alternative strategy consisting of either mapping and ablating focal sources or target‑
ing complex fractionated electrograms in atrial fibrillation (AF). However, the incom‑
plete understanding of the mechanism of AF makes difficult the decision of detecting 
the target sites. To date, feature extraction from electrograms is carried out mostly 
based on the time‑domain morphology analysis and non‑linear features. However, 
their combination has been reported to achieve better performance. Besides, most of 
the inferring approaches applied for identifying the levels of fractionation are super‑
vised, which lack of an objective description of fractionation. This aspect complicates 
their application on EGM‑guided ablation procedures.

Methods: This work proposes a semi‑supervised clustering method of four levels of 
fractionation. In particular, we make use of the spectral clustering that groups a set of 
widely used features extracted from atrial electrograms. We also introduce a new atrial‑
deflection‑based feature to quantify the fractionated activity. Further, based on the 
sequential forward selection, we find the optimal subset that provides the highest per‑
formance in terms of the cluster validation. The method is tested on external validation 
of a labeled database. The generalization ability of the proposed training approach is 
tested to aid semi‑supervised learning on unlabeled dataset associated with anatomi‑
cal information recorded from three patients.

Results: A joint set of four extracted features, based on two time‑domain morphol‑
ogy analysis and two non‑linear dynamics, are selected. To discriminate between four 
considered levels of fractionation, validation on a labeled database performs a suitable 
accuracy (77.6 %). Results show a congruence value of internal validation index among 
tested patients that is enough to reconstruct the patterns over the atria to located criti‑
cal sites with the benefit of avoiding previous manual classification of AF types.

Conclusions: To the best knowledge of the authors, this is the first work reporting 
semi‑supervised clustering for distinguishing patterns in fractionated electrograms. 
The proposed methodology provides high performance for the detection of unknown 
patterns associated with critical EGM morphologies. Particularly, obtained results of 
semi‑supervised training show the advantage of demanding fewer labeled data and 
less training time without significantly compromising accuracy. This paper introduces 
a new method, providing an objective scheme that enables electro‑physiologist to 
recognize the diverse EGM morphologies reliably.
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Background
Atrial Fibrillation (AF) implies that the electrical activity of the atria is highly disorgan-
ized, and any coherent mechanical contraction is missed. AF, which is the most common 
supraventricular arrhythmia, is associated with many cardiac conditions, including an 
increased risk of thromboembolic events, stroke and heart failure.

Catheter ablation has became an alternative to cure AF, and may avoid side effects of 
long term pharmacotherapy. Radiofrequency ablation treatment is the generation of tis-
sue injuries which block propagation of electrical impulses to prevent the formation and 
maintenance of fibrillatory conduction. Catheters for radiofrequency ablation are guided 
inside the heart chambers via cardiac mapping systems [1].

Although electrical disconnection of the pulmonary veins remains the mainstream 
procedure of catheter ablation, patients with persisten AF demand more extensive abla-
tion [2]. Recent approaches aim at guiding the ablation using electrical signals recorded 
inside the atria, called electrograms (EGM). These recordings are incorporated into 
an electroanatomical mapping system to visualize the 3D distribution of the electrical 
information through the anatomical atrial structure (electroanatomical atrial mapping 
– EAM). The main goal of EAM is to locate AF sources outside the region of pulmonary 
veins in cases of persistent AF.

Even though the mechanism of AF remains unclear, some studies have shown that the 
EGM morphology during AF may be correlated with different conduction patterns, e.g., 
conduction blocks, slow conduction, a collision of activation waves or reentries [3]. In fact, 
areas rendering EGM recordings with remarked high-frequency content or chaotic pat-
terns should be associated with AF [4, 5]. Thus, electrogram-guided ablation procedures 
have emerged as alternative strategy consisting of either mapping and ablating localized 
reentrant sources driving AF or targeting complex fractionated electrograms (CFAE) [6]. 
In accordance to [7], CFAE is formally defined as follow: (1) atrial electrograms that have 
fractionated electrograms composed of two deflections or more, and/or perturbation of 
the baseline with continuous deflection of a prolonged activation complex over a 10  s 
recording period; (2) atrial electrograms with a very short cycle length (≤120 ms) over a 
10 s recording period. This inexact and wide-sense statement of CFAE makes the decision 
of selecting the target sites for ablation to be dependable on the expertise of the electro-
physiologist, jeopardizing the effectivity of the CFAE ablation [8, 9]. To overcome these 
limitations, designation of different levels of fractionation (usually, between three and five) 
have been proposed based on the perturbation of baseline and the presence of continuous 
deflection [10, 11]. Every one of the fractionation levels and EGM morphologies remains 
not well described or is differently defined in the literature, making difficult their discrimi-
nation even for the electro-physicians. Therefore, there is a need for an objective scheme 
capable of distinguishing the diverse morphologies of EGM signals.

The extensive number of the feature extraction methods for the CFAE detection falls 
into the following categories: (i) features based on time-domain morphology analysis, 
e.g., measures of the cycle length [12], quantification of deflections [11], characterization 
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of baseline and wave similarity measure  [13], among others; (ii) based on frequency 
analysis, e.g., dominant frequency and regularity index [14]; and (iii) based on nonlinear 
dynamics, such as Shannon entropy  [15] and approximate entropy  [16]. All these fea-
tures aim at distinguishing each level of fractionation by building a single map encoding 
waveform differences of CFAE upon the anatomical structure of the atria [16]. Although 
most studied features have a simple implementation, they demand tuning of parameters 
that in practice should be heuristically fixed. Besides, because of the substantial sto-
chastic behaviour of CFAE, the extraction of a unique feature has been proved to be not 
enough to identify all distinct substrates perpetuating the arrhythmia [17]. To date, fea-
ture extraction from complex fractionated electrograms is carried out based on mostly 
the time-domain morphology analysis and non-linear features instead of handling the 
entire waveform directly. However, we employ their combination that has been reported 
to achieve better performance [18].

On the other hand, most of the inferring approaches applied for identifying CFAE lev-
els of fractionation are supervised. Examples are given in [19, 20], where sets of labeled 
signals must be used during the training process. Nonetheless, supervised learning is 
limited by the availability of marked CFAE, which in turn faces two restrictions: the 
lack of a standard for their objective description [17, 21, 22] and the fact that some of 
the CFAE properties may vary under the influence of different catheters or acquisition 
settings [23].

In order to overcome the above-described limitations, this work proposes an semi-
supervised clustering method of four levels of fractionation. In particular, we use a 
spectral clustering that groups a set of widely used atrial EGM features extracted from 
complex fractionated electrograms. We also introduce a new atrial-deflection based 
feature quantifying the fractionated activity. Further, we select, from the input feature 
set, the optimal subset that yields the best performance. For purposes of evaluation of 
the proposed clustering method, we carry out training for two scenarios: (a) External 
validation using a labeled database with four different classes of atrial EGM. (b) Inter-
nal validation in a semi supervised fashion that employs the feature set extracted in 
the external validation, aiming to perform semi-supervised clustering on an unlabeled 
dataset recorded from three patients. The obtained results indicate that the proposed 
method is suitable for automatic identification of critical patterns in AF. 

Fig. 1 Proposed methodology. Block scheme of the proposed methodology of clustering EGM features to 
locate critical EGM morphologies in AF
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This work is organized as follows: in "Methods" section methods of feature extraction, 
spectral clustering, and feature selection are described. "Results of clustering" section 
carry out the results of experiments using both cases of validation on labeled and unla-
beled databases. Lastly, we discuss all obtained results and provide conclusions in "Dis-
cussion" and "Conclusions" section, respectively.

Methods
With the aim at clustering EGM features for identification of ablation target areas, the 
proposed methodology comprises the following stages (see Fig. 1): (i) preprocessing, (ii) 
feature extraction, (iii) spectral clustering, (iv) feature selection, and (v) semi-supervised 
clustering for electro-anatomical mapping that displays the cluster labels in a color-
coded overlaid on the reconstructed 3D atrial geometry of a patient.

Tested EGM databases

Labeled EGM database (DB1)

This data collection holds 429 EGM recordings acquired from 11 AF patients, as estab-
lished and reported in  [20]. Intracardiac EGM recordings from a multipolar circular 
catheter were performed after pulmonary vein isolation with a sampling rate of 1.2 kHz. 
The database was independently annotated by two electrophysiologists, working at 
different centers, and with proved experience, according to predefined fractionation 
classes. Atrial EGM signals were checked visually and were labeled according the fol-
lowing fractionation levels (see Fig. 2): Non-fractionated EGM or level 0 (labeled as #0 ), 
mild, intermediate, and high (#1, #2, and #3, respectively). Besides, after visual inspec-
tion of the experts, the signals having the following particularities had been also sorted 
out: (i) signals with low quality with very low voltage, (ii) signals that are superimposed 

Fig. 2 EGM classes. Exemplary of signals from EGM DB1 showing the four considered fractionation levels 
(class labels): #0, #1, #2, and #3
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on the ventricular far-field components, (iii) signals remain non-stationary over the 
whole five-seconds recording.

Unlabeled EGM database (DB2)

This collection was obtained at the Hamilton General Hospital.1 Data were recorded 
from three patients having definite evidence of AF. The amount of 512 observations was 
acquired by sequential mapping during spontaneous AF before the circumferential abla-
tion. Namely, 223, 88, is the average time between and 201 signals were recorded from 
the patients labeled as 1, 2, and 3 respectively. After ablation, all patients restored the 
sinus rhythm. For EGM acquisition, the circular mapping catheter scheme with 20 poles 
(2-6-4  mm spacing) was used by means of the EAM system Ensite™NavX™(St. Jude 
Medical™). The catheter remained stationary during four seconds at each observation 
point. The data were adquired with a sampling rate of 2034.5 Hz. Besides the electrical 
data, the information about the anatomical model of the left atrial, acquired by the 
NavX™, were captured. The vertices and polygons to build the mesh that represent the 
atrial anatomic were also available. Additionally, the system provided the position of the 
electrode where every EGM was acquired. These information are used to construc an 
electro-anatomical map of the atrium for each patient.

Feature extraction from electrogram morphology analysis

To investigate the anatomic distribution of critical sources in patients with AF, several 
objective time-based measures are frequently performed, which essentially evaluate the 
salient organizational properties of the single atrial EGM recordings. Here, the following 
measures are considered (see Fig. 3):

  • Electrogram deflection time. Deflections are those perturbations of the EGM baseline 
having the peak to peak amplitude greater than a given sensibility threshold, ǫs ∈ R

+. 
At the same time, the interval between adjacent peaks should last less than a pre-
defined deflection width, ǫw ∈ R

+. Algorithm  1 computes a single vector of time 
deflections, ζ ∈ R

nd , based on maxima and minima detection computed from the 
EGM signal.

  • Fractionation interval. This parameter measures the period between two consecu-
tive deflections (detected within the time range ζ(j + 1)− ζ(j)) which must be larger 
than the defined refractory period ǫr ∈ R

+.
  • Complex fractionated interval. This interval covers uninterrupted electrical activ-

ity having consecutive deflection time values shorter than the effective refractory 
period of the atrial myocardium (70 ms [11]). Besides, all included deflections must 
exceed 20 % of the amplitude of the highest peak to peak deflection measured over 
the whole atrial electrogram. Algorithm 2 computes the output vector z ∈ R

N that 
represent the segments with fractionated electrical activity (see Fig. 3a).

  • Segments of Local Activation Waves (LAW). This p-samples window holds all events 
of the local depolarization and is centered on the local atrial activation times (see 
Fig. 3b, c). For the LAW calculation, each measured atrial electrogram is filtered by 

1 http://www.phri.ca/.

http://www.phri.ca/


Page 6 of 19Orozco‑Duque et al. BioMed Eng OnLine  (2016) 15:44 

a digital, zero-phase, third-order Butterworth filter with passband between 40 and 
250 Hz as proposed in [24]. Algorithm 3 performs detection of LAW windows.

Consequently, the following features are extracted from the time-based measurements:

  • Complex fractionated electrogram (CFE) index, ξ1 ∈ R
+, is the average time between 

fractionation intervals.
  • Fractionated activity, ξ2 ∈ R

+ describes the proportion of each EGM signal holding 
fractionated electrical activity, and is calculated by fixing the time instants when the 
sign of the envelope changes (i.e., z �= 0). Algorithm 2 computes the envelope z of 
the input signal x.

  • Variability of segments with fractionated electrical activity, ξ3 ∈ R
+ is the standard 

deviation of the width measured for the segments with fractionated electrical activ-
ity, w, (see Algorithm 2).

  • Deflection-LAW ratio, ξ4 ∈ R
+, is defined by the ratio ξ4 = nd/nw, where nd and nw 

are computed from Algorithms 1 and 3, respectively.
  • Similitude index, ξ5 ∈ R

+, is a wave-morphological resemblance between different 
local activation waves, quantifying the EGM regularity based on the degree of the 
LAW repeatability  [13]. This index is defined as follows: 

 where � is the Heaviside function [25], ǫ is a threshold adjusted to 0.8,  and si is the 
i-th detected LAW.

  • Dominant frequency index, ξ6 ∈ R
+. This spectral component is inversely propor-

tional to the cycle length. The dominant frequency is computed from the envelope g 
(see Algorithm 3) as the maximum peak of the Fast Fourier Transform power spec-
trum smoothed by the Hamming window.

(1)ξ5 =
2

(nw − 1)
E







nw
�

j=1

�(ǫ − arccos(si, sj)) : ∀i = 1, . . . , nw
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Non‑linear feature extraction from electrograms

Here, based on the non-linear dynamic theory, we also extract the following two non-
linear features:

  • The approximate entropy, ξ7 ∈ R
+, defined by the difference equation: 

 where m ∈ N is the embedded dimension, r ∈ R
+ is a threshold of minimum toler-

ance, ranging from 0.1 to 0.5 times the standard deviation of the signal. Here, the real-
value functional �m(r) ∈ R

+ is computed as: 

where notation E{·} stands for the expectation operator; � ∈ [0, 1] is the Heaviside 
function applied to the used measure of similarity between each couple of EGM 
lagged versions, xmi  and xmj :

where either lagged vector xmk = [x(k), . . . , x(k −m+ 1)] (with xmk ∈ R
m) holds the 

m consecutive samples of the original signal, x, starting at the i-th time instant.

(2)ξ7 = �m(r)−�m−1(r)

�m(r) = E

{

log
(

E

{

�(r − d(xmi , x
m
j )r) : ∀j = 1, . . . ,N −m+ 1

})

: ∀i �= j
}

d(xmi , x
m
j ) = max

k=1,2,...,m
(|x(i + k − 1)− x(j + k − 1)|),

Fig. 3 Intraventricular EGM morphology analysis. a Detection of atrial deflections. b Example of the adapta‑
tive threshold and c LAW detection
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  • The multifractal h-fluctuation index [26], ξ8 ∈ R, is defined as the power of the sec-
ond order backward difference of the generalized Hurst exponent h(q) ∈ R as fol-
lows [26]: 

where q ∈ N is the order for evaluating the partition function, providing 
qmin < 0, qmax > 0 and |qmin| = |qmax|; qmin is the minimum negative order q, and 
qmax is the maximum positive order q used in the estimation of multi-fractal spec-
trum through the multi-fractal detrended fluctuation analysis.

Consequently, we extract D = 8 features for identification and localization of critical 
sources in AF, resulting in the atrial EGM feature point ξ = [ξ1, . . . , ξD] that describes 
each electrogram.

EGM feature clustering for identification of ablation target areas

Spectral clustering of atrial EGM features

Let Ξ ∈ R
M=D be an input data matrix holding M objects and D features, where each 

row {ξ i ∈ R
D : i = 1, . . . ,M} denotes one single data point. The goal of clustering is to 

divide the data into different groups, where samples gathered within the same group are 
similar to each other. To discover the main topological relationships among data points, 
spectral clustering-based approaches build from Ξ a weighted graph representation 
G(Ξ ,K ), where each object point, ξ ⊆ Ξ , is a vertex or node and K ∈ R

M=M is a simi-
larity (affinity) matrix encoding all associations between graph nodes. In turn, each ele-
ment of the similarity matrix, kij ⊆ K , corresponding to the edge weight between ξ i and 
ξ j , is commonly defined as follows [27]: kij = K(ξ i, ξ j; σ), kij ∈ R

+, where function

is the Gaussian kernel, and σ ∈ R
+ is the kernel bandwidth. Notation � · �2 stands for the 

L2-norm. Although there are many available kernels (like the Laplacian or polynomial 
ones), the Gaussian function has the advantages of finding Hilbert spaces with universal 
approximating capability and of being mathematically tractable.

(3)ξ8 =
1

2|qmax| − 2

qmax
∑

q=qmin+2

(h(q)− 2h(q − 1)+ h(q − 2))2

K(ξ i, ξ j; σ) = exp
(

−�ξ i − ξ j�
2
2/2σ

2
)
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Hence, the clustering task now relies on the conventional graph cut problem that aims 
at partitioning a set of vertices V ∈ Ξ into C ∈ N disjoint subsets Vc, so that V = ∪C

c=1Vc 
and Vc′ ∩ Vc = ∅, ∀ c′ �= c. Since the graph-cut approaches demand high computational 
power, relaxation of the clustering optimization problem has been developed based on 
the spectral graph analysis  [28]. So, spectral clustering-based methods decompose the 
input data Ξ into C disjoint subsets by using both spectral information and orthogonal 
transformations of K . Algorithm 4 describes the well-known solution of the cut problem 
(termed NCut).

Selection of the optimal EGM feature set

Given an input feature matrix Ξ ∈ R
M=D, the aim of the feature selection stage is to 

find the optimal subset Ξ∗ that holds D′ < D selected features and provides the highest 
performance, measured in terms of the cluster validation. For searching Ξ∗, we imple-
mented the Sequential Forward Selection (SFS). At the first iteration, the SFS selects the 
feature with best performance. In the next iteration, all candidate subsets combining two 
features (including the one selected before) are evaluated, and so on. This procedure is 
carried out iteratively by adding all previously selected features and ceases when the fol-
lowing stopping criterion supplies the minimum value:

where µsc ∈ R[−1, 1], is the trade-off between the following two indexes of clustering 
performance: µ1 ∈ R[0, 1] is the Adjusted Rand Index that is an external counter check-
ing whether the inferred labels and a set of external labels resemble the same structure 
[29], and µ2 ∈ R[0, 1] is the equivalence mismatch distance that counts all pairs of labels, 

(4)µsc = −(µ1 − µ2),
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which have different assignation. Additional explanation about both cluster validation 
indexes is given in Appendix.

Results of clustering
For purposes of evaluation of the clustering quality, we carry out training using the 
selected feature set in two cases: a) External validation using a labeled database with 
four different classes of atrial EGM. b) Semi-supervised clustering that employs a small 
amount of labeled data, used in the first training case, to aid semi-supervised cluster-
ing on unlabeled dataset, associated with anatomical data, performed separately for each 
patient.

Parameter setting for feature estimation

In the beginning, each acquired EGM, x ∈ R
N, is firstly submitted to a 30–500 Hz band-

pass filter and then passed through a 60  Hz notch filter, being N = 6000 the signal 
length. Both procedures are performed by means of the NavX™system.

In order to accomplish the feature extraction stage from the EGM morphology analy-
sis, we detect deflections fixing ǫw = 20 ms as recommended in [11]. The parameter ǫs is 
set differently for each database: For DB1, ǫs = 0.01 of the normalized recording ampli-
tude. For DB2, we fix ǫs = 0.05  mV since there is just one patient under examination, 
making unnecessary the normalization of the recordings. Based on the detected set of 
deflections, the CFE index ξ1 is calculated assuming ǫr = 30 ms. Besides, the computa-
tion of similitude index ξ5 is carried out adjusting p = 90 ms [13].

For the extraction of the non-linear feature, ξ7, the following parameters are fixed, as sug-
gested in [16]: Embedded dimension m = 3 and a threshold r equal to 0.38 times the stand-
ard deviation of the signal. As explained in [16],The optimal value of r and m is the trade-off 
between the interclass percentile distance that minimizes the scatter in each class and the 
interclass minimum-maximum distance that maximizes the distances between the feature 
measures of the classes. Lastly, calculation of ξ8 is performed from the multifractal detrend 
fluctuation analysis, where the values qmin = −5 and qmax = 5 are fixed heuristically.

Clustering‑based feature selection

We carry out supervised spectral clustering on DB1 to discriminate between the four 
levels of fractionation (C = 4). As given in [30], we set the kernel parameter σ using the 

Table 1 The effect of the choice of features on spectral clustering

Notation (∗) points out on the selected feature subset, Ξ∗ , that reaches the lowest value of µsc

Optimal feature set µ1 µ2 µsc

ξ2 0.459 0.225 −0.234

ξ2 ξ8 0.514 0.197 −0.317

ξ2 ξ8 ξ7 0.491 0.205 −0.286

ξ2 ξ8 ξ7 ξ5 0.521 0.193 −0.327*

ξ2 ξ8 ξ7 ξ5 ξ1 0.495 0.206 −0.286

ξ2 ξ8 ξ7 ξ5 ξ1 ξ4 0.492 0.235 −0.257

ξ2 ξ8 ξ7 ξ5 ξ1 ξ4 ξ3 0.483 0.235 −0.248

ξ2 ξ8 ξ7 ξ5 ξ1 ξ4 ξ3 ξ6 0.450 0.243 −0.207
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tuning method based on the maximization of the transformed data variance as function 
of the scaling parameter. Further, we complete the feature selection stage that uses all 
available labels. As shown in Table 1, the most relevant feature is ξ2, while the selected 
optimal feature subset is Ξ∗ = {ξ2, ξ8, ξ7, ξ5} which is the one that reaches the best trade-
off value of the minimizing cost function µsc.

Figure 4 displays the boxplot diagrams that include the median values and the inter-
quartile ranges of each feature, calculated for all considered levels of fractionation. In 
the top row, the boxplot diagrams of the selected feature subset Ξ∗ illustrate the ability 
of each feature in separating the classes of fractionation levels. All selected features have 
almost non-overlapping boxplots. This fact favors the distinction of the fractionation 
levels, since their medians are separated enough from each other. In fact, the results of 
the carried out Spearman correlation test confirm this assumption. However, a detailed 
visual inspection of the diagrams shows that the class labeled as #0 (that is, non-frac-
tionated EGM) has the highest number of outliers. By contrast, the class #1 (mild frac-
tionation) holds no outliers at all. In the bottom row, the displayed boxplot diagrams are 
clearly overlapped, causing that this feature subset to be rejected. Note the poor perfor-
mance achieved by the features ξ3 (Variability of complex fractionated segments) and ξ6 
(dominant frequency index).

Clustering performance for the external validation

Here, experiments were focused on comparing the clustering results produced by the 
criterion of feature selection, proposed in Eq. (4), with the ground truth labels provided 
by DB1. Thus, Spectral clustering was carried out on the selected subset of relevant fea-
tures, Ξ∗. For the sake of comparison, we did the same for the complete EGM feature 
set Ξ, for the selected morphology-base features, for the selected non-linear features 

Fig. 4 Boxplots of the distribution of features values obtained on the DB1 for all considered levels of frac‑
tionation (0, 1, 2 and 3). Top row—the selected feature subset Ξ∗; bottom row— the rejected feature subset. 
Red crosses mark outliers. All selected features have almost non‑overlapping boxplots. This fact illustrates the 
ability of each feature in separating the classes. Results of Spearman correlation ρ between each feature and 
the classes of fractionation is shown
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and for the raw-waveform. Table  2 shows the achieved clustering performance meas-
ured in terms of sensitivity, specificity, and accuracy for each level of fractionation of 
DB1. All these performance measures were calculated by direct comparison between the 
labels provided by an expert and the labels yielded by the spectral clustering technique. 
Table 2a and b show the computed measures for spectral clustering on subsets Ξ and Ξ∗, 
respectively. As it can be seen, the use of the latter features improves the detection per-
formance remarkably. It is worth noting that the former set Ξ includes the CFE index, ξ1, 
defection ratio, ξ4, variability of complex fractionated segments, ξ3, and dominant fre-
quency index, ξ6; all these features are related to features extracted from EGM morphol-
ogy analysis.

On the other hand, the selected feature set Ξ∗ still supplies low sensitivity for the 
classes labeled as #0 and #3, as shown in the corresponding confusion matrix of 
Table  2(c). For getting a better insight into this issue, Fig.  5 displays 3D scatter plots 
allowing the visualization of the multivariate features ξ2, ξ7, and ξ8. As it can be seen in 
Fig. 5a, which shows the labels assigned by the expert panel, the expert’s markers tend to 
be more scattered just for the classes #0 and #3. Apparently, all these spread points are 
not taken into account by the clustering procedure, as this tends to locate labels within 
well-confined class boundaries, as shown in Fig. 5b.

Table 2 Performed external validating measures of  spectral clustering on  the labeled 
ground truth data DB1

(a) Performance using Ξ

Acc. Spec. Sens.

 47.55 93.47 84.31

53.34 76.00

85.05 11.48

100.0 1.88

(b) Performance using Ξ∗

Acc. Spec. Sens.

 77.62 98.91 71.24

85.87 78.66

88.61 84.45

97.07 75.47

(c) Confusion matrix using Ξ∗

#0 #1 #2 #3

 #0 113 36 1 3

 #1 1 66 8 0

 #2 0 18 115 15

 #3 0 0 14 39

(d) Accuracy of different sets

Morphology‑based Non‑linear Raw waveform

 69.46 % 70.86 % 36.6 %
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Semi‑supervised clustering of unlabeled clinical data

We apply transductive learning to infer the correct labels for the unlabeled samples 
adquired from the same patient (see DB2), where the cluster assumption holds. Conse-
quently, we assume that unlabeled data tend to form groups clearly separable so that the 
points of each partition should share one label. The detected EGM classes are handled 
for visualizing, in a color-coded map, the distribution of the EGM morphologies over 
the atria in the 3D mesh of the atrium. Thus, the electrophysiologists can locate more 
accurately the basic EGM classes that have highly fragmented morphologies. To this 
end, we use just the selected feature set, Ξ∗, that had been inferred by the above-super-
vised clustering procedure for the labeled data DB1. For the sake of visual inspection, the 
first row of Fig. 6 displays the estimated 3D scatter plots using the most relevant features 

Fig. 5 3D scatter plots of the most relevant features extracted from DB1: ξ2, ξ7, and ξ8. a Labeled by experts 
and b Inferred labels by clustering. Both plots resembles the same structure. Clustering tends to locate labels 
within well‑confined class boundaries

Fig. 6 Clustering scatter plots and electroanatomical maps for three patients (DB2): a– c  3D scatter plots for 
each patient of the most relevant features: ξ2, ξ7, and ξ8. Clusters are represented by colors and resembles 
the structure in all three examined patients. d– f: View of the posterior wall of the left atrium. The clustering 
results are used to display an electro‑anatomical maps for each patient. The maps show the distribution of 
reconstructed EGM patterns over the atrium. Critical sites with hith level of fractionation are color coded in red
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(ξ2, ξ7, and ξ8). As seen in Fig. 6a–c, the location of the clusters resembles the structure 
in all three examined patients.

To make clear the contribution of this transductive approach, we compare the inferred 
clusters by quantifying the similarity between partitions achieved for each case of train-
ing, supervised and semi-supervised. To this end, the Silhouette Index that ranges within 
the real-valued interval [−1, 1] can be calculated as the ratio of the intercluster cohesion 
versus to the intracluster separation [31]. Silhouette Index estimates the clustering con-
sistency for each patient, fixing the number of fractionated levels as C = 4. The calcu-
lated Silhouette Index is 0.471 for patient 1, 0.481 for patient 2 and 0.469 for patient 3, 
while the same score is 0.57 for DB1, meaning that all carried out partitions tend to be 
similar in terms of cluster consistency.

The bottom row of Fig.  6 shows three EAM in which all EGM patterns are display 
over a mesh of the left atrium. The mesh is reconstructed using the anatomical informa-
tion. EAM allows displaying on color scales the distribution of different EGM classes 
by their anatomical location at the atrial surface. In this work, the labels assigned by 
spectral clustering are used for setting the color scale regarding the level of fractiona-
tion. The color ranges from the blue that corresponds to non-fractionated signals to the 
red color standing for the highest level of fractionation. The obtained electroanatomical 
atrial mapping enables electro-physicians to recognize the location of diverse EGM mor-
phologies on the atrial surface.

Discussion
In this work, we propose a novel method to construct an semi-supervised-clustering-
based electroanatomical map to display the distribution of EGM patterns in the atrial 
surface. The proposed methodology of training includes the use of a reduced set of fea-
tures extracted from electrograms, providing a suitable performance. So, our method 
discriminates four EGM classes and benefits the ablation therapy since it provides an 
objective scheme that enables electro-physiologist to recognize the diverse EGM mor-
phologies reliably. In accordance with the results obtained in the above section, the fol-
lowing findings are worth mentioning:

  • In medical practice, the intracavitary mapping techniques are employed for the abla-
tion in patients suffering from AF. Nevertheless, electrophysiologists must target the 
critical regions as accurately as possible, aiming to increase the effectiveness of radi-
ofrequency ablation therapy. However, there is an incomplete understanding of the 
mechanism ruling the AF. Thus, the fractionation levels and EGM morphologies are 
often vaguely described or differently defined in the professional literature, making 
very hard their discrimination even for the electro-physicians. This aspect also com-
plicates the automated training. As a result, there a very few available EGM datasets 
with proper labels. Just, our proposed approach is based on semisupervised cluster-
ing when unlabeled data are employed in conjunction with a small amount of labeled 
data.

  • For localization of critical AF drivers in patients with AF, the baseline feature extrac-
tion method is grounded on the electrogram morphology analysis. Here, we consider 
the following five atrial-deflection based features: Complex fractionated electrogram 
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index, fractionated activity, variability, deflection-law ratio, similitude index, and the 
Dominant frequency index. Two non-linear features are also extracted: Approximate 
entropy and h-fluctuation index. We also carried out feature selection of the optimal 
subset, yielding the best possible performance of the clustering. Here, the sequential 
forward selection is implemented, for which we propose a stopping criterion based 
on the clustering performance. As a result, the following features are selected, ranked 
by relevance: fractionated activity ξ2, h-fluctuation index ξ8,, approximate entropy 
ξ7, , and similitude index ξ5,. The first feature, fractionated activity index, ξ2, is a time-
based measure relating to atrial deflections and describes the proportion of EGM 
signal holding all segments with fractionated electrical activity. Even though there 
are other similar indexes reported in literature [10, 32], they require some heuristical 
thresholds that in practice demand a considerable effort to tune. By contrast, the ξ2 is 
adjusted according to the effective refractory period of the atrial myocardium, which 
supplies more reliable physiological information. On the other hand, the following 
features extracted from electrogram morphology analysis were rejected: the complex 
fractionated electrogram index ξ1, the defection ratio ξ4, the variability of complex 
fractionated segments ξ3, and the dominant frequency index ξ6. Furthermore, the 
relevance of the baseline CFE index ξ1 (termed as CFE-mean in the NavX™system), 
which has been widely used in some commercial equipments, appears to be very 
poor, at least in terms of distinguishing among fractionation levels. Clinical stud-
ies report that it is unclear whether CFE-index is related with atrial substrates [17]. 
These results may be explained in the light of the highly non-stationary behavior of 
the EGM signals, making it difficult to achieve a confident estimation of the time-
domain measures performing only the electrogram morphology analysis.

  • Even that features extraction from fractionated electrograms is carried out based on 
mostly the time-domain morphology analysis  [11, 33] and non-linear features  [15, 
16, 34] instead of handling the entire waveform directly, we employ their combina-
tion that has been reported to achieve better performance [10, 20]. Our performed 
training results on the tested database clearly support this statement [see Table 2(d)]: 
selected morphology-based feature set (69.46 %), selected non-linear set (70.86 %), 
and selected joint set (77.62 %). For the sake of comparison, we also tested the train-
ing using the waveform based input, reaching a very low performance (36.6  %). 
Obtained results show that the mixture of non-linear and morphology features can 
more efficiently encode the properties of AF patterns. These findings are consonant 
with clinical studies that had been carried out for for simulation modeling  [15] or 
animal  [5] and human models  [35], making the combination of EGM features a 
promising way to discriminate arrhythmogenic substrates.

  • Atrial EGM signals are commonly labeled by three to five fractionation levels due to 
the influence of the baseline perturbation and continuous deflections [19]. For auto-
mating the labeling of ablation target areas, we make use of semi-supervised clus-
tering into four levels of fractionation. Although there are several basic clustering 
methods, we employ the spectral clustering technique that provides two advantages: 
performing well with non-Gaussian clusters and totally automated the procedure of 
parameter settings. Another aspect of consideration is the generalization ability of 
the used semi-supervised clustering, because it does not make strong assumptions 
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on statistics of the classes. This latter property supplies adequate performance at 
small patient-specific EGM sets.

  • To the best knowledge of the authors, the use of semi-supervised clustering for dis-
tinguishing among fractionated levels has not been discussed before. The primary 
goal of this approach is to make available an automatic training devoted to electro-
anatomical atrial mapping, avoiding as much as possible the manual classification 
of AF types and reducing the dependence of prior knowledge about the statistics of 
the classes. Since manual AF labeling is subjective and time-consuming, it can be 
achievable for small databases. External validation using a labeled ground truth data-
base with four different levels of fractionation achieved an accuracy of 77.6 %. This 
performance is comparable to the one (80.65 %) produced by the alternative super-
vised approach using a fuzzy decision tree in  [20]. However, the supervised meth-
ods of classification, trained with short training datasets, tend to be biased due to 
the subjective labeling of AF types suffers from poorly described patterns and strong 
assumptions on statistics of the classes. This is an important property in this appli-
cation due the lack of a standard definition of fractionated EGM. In fact, the gener-
alization ability of the proposed training approach is tested to aid semi-supervised 
learning on unlabeled dataset recorded from three patients. The relevance of locat-
ing EGM patterns is encouraged by several studies pointing out that some particu-
lar fractionated morphologies are likely to represent drivers of AF  [36]. Moreover, 
experimentation on isolated animal hearts has shown that the areas with highest 
fractionated EGM signals coexist in the periphery of the most rapid and less fraction-
ated places [4, 37]. This fact may lead to the localization of AF sources and implies 
that the localization of different patterns, over the patient atrial surface, can become 
an adequate diagnostic support tool for locating target sites for ablation.

  • The proposed methodology of training is devoted to automatic identification of dif-
ferent patterns in atrial EGM during AF. The commonly used systems to perform 
ablation (NavX system or Carto system) have a limited number of simultaneous EGM 
electrodes [11]. This fact implies that the EGM signals are asynchronous, and the 
reconstruction of action potential propagation around the whole atria is unfeasible. 
The proposed semi-supervised training allows inferring unknown patterns, which 
can be correlated with AF critical areas, so that it can improve the performance of 
the ablation therapy, even if the conventional mapping catheter is employed.

  • Although electrical isolation of pulmonary veins is the mainstream ablation pro-
cedure for AF, CFAE ablation together with pulmonary vein isolation has attracted 
attention in reducing the long-term recurrence of AF  [38]. Nevertheless, the latter 
ablation remains a debated issue due to the uncertainty of interpretation about many 
CFAE morphologies  [36]. In this regard, the proposed semi-supervised mapping 
method can favor the use of EGM-guided ablation due to its ability for locating the 
distribution of different fractionated EGM patterns over the atrial for persistent AF 
patients. Therefore, the proposed method could be used in clinical studies to estab-
lish a relationship between EGM patterns and drivers that maintain AF, aiming to 
guide ablation procedures in patients with persistent AF.

  • Lastly, we measure the computational complexity of the method in terms of process-
ing time. The feature extraction step lasts 2  s for each signals. Provided a testing set 
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that holds 220 EGM signals (the average amount of signals for a mapping procedure), 
the spectral clustering lasts 0.56 s, and the mapping construction takes only 0.47 s. 
This time was calculated using MatLab 2013a in a PC with Windows 8 (64 bits), Core 
I7 processor and RAM of 6 GB. In total, the proposed training algorithm takes a 
short period so that the method can be employed for clinical purposes.

Conclusions
This paper introduces a new method for semi-supervised clustering of fractionated elec-
trograms, providing an objective tool for reliably locating the distribution of different 
fractionated EGM patterns over the atrial. The obtained electroanatomical atrial map-
ping enables electrophysiologist to locate the critical EGM patterns as accurately as 
possible, aiming to increase the effectiveness of radiofrequency ablation therapy for per-
sistent AF patients.

Also, we introduce a new atrial-deflection based feature (termed fractionated activity) 
that does not demand any heuristical parameter tuning, providing an increased discrim-
ination ability in comparison to the other state-of-the-art features. Furthermore, our 
carried out feature selection allows coming to the conclusion that some used in practice 
features (like the CFE index) have questionable effectiveness to localization of critical 
sources in patients with AF. Also, the use of semi-supervised clustering facilitates the 
automatic detection of fractionation classes with accuracy comparable to other similar 
results reported in the literature, avoiding the manual labeling of AF classes that is sub-
jective and very time-consuming.

As the future work, the authors plan to improve the performance of the discussed 
semi-supervised clustering of features extracted from fractionated electrograms. 
Besides, a more detailed study should be carried out to discriminate different patterns 
over the atrial surface to be further associated with the fibrillatory conduction. We also 
plan to conduct clinical assessment of the effectiveness of the proposed method as a new 
electro-anatomical mapping tool to guide ablation procedures in AF.
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Appendix: Measures of cluster validation
The Adjusted Rand Index (ARI) is an external counter that checks whether the labels 
of the used clustering procedure, V , and a set of external labels, V ′, resemble the same 
structure. ARI counts each pair-wise verification affiliating objects to the following sub-
sets: Subset a) objects labeled in the same cluster of V and V ′, b) objects labeled in the 
same cluster of V, but in different clusters of V ′, c) objects labeled in the same cluster of 
V ′, but in different cluster of V; and d) objects labeled in the different cluster of both V 
and V ′. Provided the above subsets, ARI is rated as follows [29]:

ARI has the lowest expected value zero for independent clusterings and maximum value 
1 for identical clusterings. At the same time, we minimize the equivalence mismatch dis-
tance, termed Mirkin Index, that counts all disagreements pairs b and c as follows:
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