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Background
The knee joint is one of the most important and complicated joints, serving as the junc-
tion for activities of human lower extremities [1]. Knee valgus and varus morbidity is at 
the second top place in children lower limb deformity diseases, and can cause abnor-
mal gait function [2]. It is known that knee valgus can cause malalignment, while mala-
lignment raises the risk of knee osteoarthritis. Damage from mechanical stress without 
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complete self-repair is the primary cause of osteoarthritis. The stress sources include 
misalignments of bones, mechanical injury and excess body weight et al. [3]. However, 
few studies report the contact stress and force distribution on tibial plateau of valgus 
knee of children.

Given the complicated anatomical structure and the variety of movement patterns of 
the knee joint, it is not sufficient to delineate the detailed biomechanics of the individual 
knee joint only using experimental methods [4]. The finite element (FE) analysis method 
is considered as a useful tool to predict stress and strain in complicated systems in bio-
mechanics and bioengineering [5]. Since Brekelmans et  al. [6] applied the FE analysis 
method to orthopedic research in 1972, it has become an important tool in the study 
of biomechanics [6]. Bendjaballah et al. applied computed tomography (CT) image and 
measurement methods to construct the knee joint FE model in 1997 [4]. Peña et al. [7] 
employed CT image and magnetic resonance (MR) image to create a more complete 3D 
model including knee ligaments in 2006, and Guo et al. [1] used FE analysis method to 
simulate knee joint stress in gait cycle in 2009 [1, 7]. In recent years, some researchers 
constructed FE models of bones and soft tissues only using MR images [8–10]. Some 
researchers use healthy adult lower limb model to study the knee injury mechanisms 
and some others focused on how the injury will affect the knee [11–13]. All these studies 
above focused on the adult subjects by comparison with the other researchers’ findings.

Lancianese et al. [14] employed 3D FE analysis method and kinematic measurement 
method to investigate the stresses in the proximal tibias of overweight children knees 
[14]. Their results have demonstrated that the patterns of total force distribution on 
proximal tibia of overweight children were different from those of normal weight chil-
dren. However, only tibia and tibial cartilage was included in their concise FE model, and 
their results were not effectively evaluated.

Changes in contact forces (CF) and contact centers on the cartilage articulating sur-
face have been indicated as important markers in the prevention/initiation/progression 
or alternatively in the evaluation of treatment stages of joint disorders [15]. The magni-
tude and location of CF on tibia plateau during gait cycle have been considered as mark-
ers for risk of osteoarthritis [15]. Engel et al. reported that the valgus alignment might 
lead to higher loading of the lateral compartment, and the unequal load distributions 
may result in an accelerated progression of cartilage degeneration within the knee joint 
[16]. There is still lack of studies to examine the CF and contact centers on tibial plateau 
of children, especially obese children with valgus knee. The magnitude and location of 
CF on tibial plateau can not be identified only by the 3D motion capture system meth-
ods, and the FE analysis methods provide an alternative way to explore the problem.

This study was designed to analyze the CF and their locations on tibial plateau of an 
obese child with valgus knee and a healthy child by FE analysis methods. The results 
from FE model were compared with results from kinematic method using 3D motion 
capture system and a force plate.

Methods
An obese boy with valgus knee [age: 8 years; height: 1.41 m; weight: 47 kg; body mass 
index (BMI): 23.64 kg/m2] and a healthy boy (age: 7 years; height: 1.30 m; weight: 28.5 kg; 
BMI: 16.86 kg/m2) participated in this study. BMI > 20.4 is classified as obesity based on 



Page 311 of 321Sun et al. BioMed Eng OnLine 2016, 15(Suppl 2):158

Group of China Obesity Task Force for children with age of 7~8 [17]. The femur-tibia 
angle of the left valgus knee from the obese child is 13°. A 64-layer screwing CT machine 
(Somatom Sensation Cardiac 64, Siemens Corporation, Germany) was used to obtain 
the CT scan images of the knee valgus child’s left knee. A 3.0T MR machine (United 
Imaging uMR770, Shanghai, China) was used to obtain the MR scanning images of the 
healthy child’s left knee. The kinematic data of the lower limb and the ground reaction 
forces (GRF) during walk were recorded simultaneously by a 3D motion capture system 
(Qualisys, Sweden) and a force plate (Kistler Corporation, Switzerland). Sample rates 
were 200 Hz for the motion capture system and 1000 Hz for the force plate. All the sys-
tem was calibrated before test.

Kinematic measurement methods

Twenty-one markers were attached to the skin and six motion capture cameras were 
set to record their motion. According to Helen-hyes model, two markers were fixed on 
the right and left anterior superior iliac spines. One other marker is placed on superior 
aspect at L5-sacral interface. Other twelve markers were placed on the following loca-
tions: the medial/lateral femoral condyle and medial/lateral ankle for both legs; the space 
between the second and third metatarsal heads of both feet; the right and the left heels. 
Four markers were placed on midthigh and midshank for both legs. These 19 markers 
were used for measuring the lower extremity kinematics. In addition, two other markers 
were fixed on shoulder joints to observe the participants’ body movement (Fig. 1).

Before the collecting data, the subjects were instructed to walk several times across 
the force plate to get familiar with the entire experiments. At beginning, they stepped on 
the force plate and kept static stance for 30 s. Then they walked on a 5-m long walkway 
in the gait laboratory across the force plate with natural speed. After starting recording 
data, we kept three trails at least when the children stepped on the force plate with their 
left feet. The subjects finished all the experimental procedures with bare foot. The natu-
ral speed is 1.023 ± 0.116 m/s for the knee valgus child, and 0.701 ± 0.048 m/s for the 
healthy child.

Inverse dynamics method was used to calculate the equivalent forces applied at the 
knee joint and the ankle joint during stance and walking [18, 19]. The first and second 
peaks of vertical GRF of stance phase were examined. Based on the force analysis dia-
gram (Fig. 2), the translational kinetic equations were derived as followed:

(1)Rx1 = Rx2 +m1a1cx,

(2)Ry1 = Ry2 + m1g + m1a1cy,

(3)Rx2 = Rx3 + m2a2cx,

(4)Ry2 = Ry3 + m2g + m2a2cy.

(5)a1cx = (atoex+ aHeelx)/2,

(6)a1cy =
(

aToey+ aHeely
)

/2,
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Fig. 1 Kinematic measurement experiments using motion capture system and force plate. a A healthy sub‑
ject under static stance situation. b An obese knee valgus subject under walking condition. c and d Shows 
the data collection progress. P1 and P2 in figure c are the first peak and second peak of vertical GRF

Fig. 2 Force decomposition diagram. Force Rx1, Ry1 are the force components of ground reaction forces 
recorded by the force plate. a Shows the foot and figure b shows the calf
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It is assumed that the x and y components of foot and calf ’s accelerations are towards 
OX and OY directions. According to Leva et al. the foot and calf ’s weight account for 
1.37 and 4.33% of body weight, respectively [20]. At the first/second peak of vertical GRF 
of stance phase, the acceleration atoex, atoey, aheelx, aheely and akneex, akneey are the accel-
eration components of the toe, heel and knee, which are recorded by Qualysis system. 
The a1cx and a1cy are the acceleration components of foot, while the a2cx and a2cy are the 
acceleration components of shank. Rx1, Ry1 are force Fx, Fz of GRF recorded by force 
plate (Figs. 1, 2). Force Rx2 and Ry2 are the force components burdened by ankle. Force 
Rx3 and Ry3 are the force components of knee calculated by Qualysis.

Finite element model

The 3D FE model of valgus knee was constructed using CT image, while the normal knee 
model was constructed using MR images. The scanning layer thickness was 1.0 mm, and 
the distance between layers was 1.0 mm. The scope of the scan was from the distal femur 
to proximal tibia.

The bony structure and soft tissue boundaries in CT and MR images of the knee joint 
were identified and segmented using MIMICS v16.0 (Materialise, Leuven, Belgium). The 
meniscus, tibial cartilage, femoral cartilage, collateral ligaments and anterior/posterior 
cruciate ligaments were reconstruction based on the images and other studies [1, 4, 11, 
21]. The 3D model was then imported into Rapidform XO3 (Rapidform corporation, 
USA) to reduce noise. The solid model was assembled and meshed into 3D 4-node tet-
rahedral elements using ABAQUS v6.13-4 FE package (Hibbitt, Karlsson and Sorensen, 
Inc., Pawtucket, RI) to create the final FE model and conduct the engineering analysis 
(Fig. 3). The model of the valgus knee joint contains 36,897 nodes and 1,65,106 elements, 
and the model normal knee joint has 78,278 nodes and 1,18,756 elements. The results 
of convergence test for the element size showed that the errors were below 10%. As the 
inertia affects not significant at the stance phase of gait [22], it was neglected for the sim-
plification of problems while quasi-static analysis was applied in the FE model.

All materials were assumed isotropic, homogeneous and linearly elastic for the pur-
pose of analyzing contact stresses [21]. The elastic modulus and Poisson ratio are shown 
in Table 1 [11, 13, 14, 23–28]. Femoral cartilage with tibia cartilage and femoral carti-
lage with meniscus were considered as frictionless surface to surface contacts including 
finite sliding. The other contacts were applied as tied contacts to simulate the junction 
of the knee joint [1, 13]. The proximal end of the femur was fixed and the tibia and fibula 
bear the load of Ry2. A plate was added on the distal end of the tibia and fibula. Knee 
joint angle and ankle joint angle were set according to kinematic results for natural walk. 
Contact center locations were measured using maximum strain method [29]. The distri-
bution and nephogram of von-Mises stresses and contact stresses on tibia plateau were 
calculated.

(7)a2cx = (aKneex+ aHeelx)/2,

(8)a2cy =
(

aKneey+ aHeely
)

/2,
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The paired t test was used to compare the results between the traditional kinematic 
measurement method and the 3D FE analysis method. The statistical analysis was ana-
lyzed by software SPSS 21.0.

Results
For the knee valgus child, the knee joint CF (Ry3) calculated from the traditional kin-
ematic measurement method during static stance was 204.04  N, and it was 221.08  N 
(187.16  N on medial plateau cartilage and 33.92  N on lateral plateau cartilage) from 
the FE analysis method (Table 2). The maximum von-Mises stresses were 0.95 MPa on 
medial plateau, and 0.35  MPa on lateral plateau. The maximum contact stresses were 
2.19 MPa on medial plateau, and 0.74 MPa on lateral plateau (Table 3). The Rx1 and Ry1 
of GRF were −4.04 ± 36.72 N and 496.89 ± 35.16 N at the first peak of vertical GRF of 
stance phase; and were −6.40 ± 4.98 N and 533.63 ± 4.91 N at the second peak. The 

Fig. 3 Finite element model and model geometry of the knee joints. a Finite element model of the knee 
valgus child’s left knee. b Finite element model of the healthy child’s left knee. c The model geometry of 
natural walk with knee flexion angle 1 and ankle flexion angle 2. Loads were applied on the distal end of the 
tibia and fibula

Table 1 Material parameters of the finite element model

Structure Elastic modulus (MPa) Poisson’s ratio References

Femur 17,000 0.3 Kim et al. [23]

Tibia 12,200 0.3 Limbert et al. [24], Lancianese et al. [14]

Fibula 15,500 0.24 Berteau et al. [25]

Patella 15,000 0.3 Kiapour et al. [11]

Cartilage 5 0.46 Li et al. [26]

Meniscus 59 0.49 LeRoux et al. [27]

Ligament 6 0.4 Siegler et al. [28], Peña et al. [13]
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total knee CF (Ry3) were 470.60 ± 34.98 N at the first peak and 505.66 ± 2.90 N at the 
second peak by the kinematic measurement method while Ry3 were 484.06 ± 35.20 N 
(78.73  ±  10.00  N on medial cartilage; 405.33  ±  25.87  N on lateral cartilage) and 
521.20 ± 7.34 N (500.60 ± 4.34 N on medial cartilage; 20.60 ± 3.02 N on lateral carti-
lage) respectively by the FE model (Table 2).

The knee angle and ankle angle were 22.29° ± 1.15° and 1.66° ± 8.00° at the first peak 
of vertical GRF during stance phase, and were 9.41° ±  6.25° and 18.14° ±  6.51° at the 
second peak. At the first peak, the maximum von-Mises stresses were 0.75 ± 0.06 MPa 
on medial plateau and 2.22 ± 0.14 MPa on lateral plateau, while the maximum contact 
stresses of tibial plateau were 1.24 ± 0.10 MPa on medial plateau and 4.77 ± 0.28 MPa 
on lateral plateau. At the second peak, the maximum von-Mises stresses were 
1.64 ±  0.06  MPa on medial plateau, 0.46 ±  0.04  MPa on lateral plateau, while maxi-
mum contact stresses of tibial plateau were 3.07  ±  0.02  MPa on medial plateau, 
0.80 ± 0.09 MPa on lateral plateau (Table 3).

For the healthy child, the knee joint force (Ry3) was 123.73  N by traditional kin-
ematic measurement method, and was 121.81  N (26.68  N on medial cartilage and 
95.13 N on lateral cartilage) by FE analysis method (Table 2). The maximum von-Mises 
stresses were 1.04 MPa on medial plateau, and 1.82 MPa on lateral plateau. The maxi-
mum contact stresses were 1.68 MPa on medial plateau, and 3.77 MPa on lateral pla-
teau (Table 3). The Rx1 and Ry1 were −3.17 ± 21.55 N and 264.50 ± 5.86 N at the first 
peak of vertical GRF of stance phase and were 5.68 ±  20.18 N and 282.47 ±  11.70 N 

Table 2 Total contact forces (CF) on  tibial plateau calculated from  FE analysis method 
and kinematic method

Ry1 is the vertical ground reaction force (GRF) and Ry3 is the knee joint force calculated by the traditional kinematic 
measurement methods. The total CF represents the contact forces calculated by the finite element analysis method. The 
ratios were obtained from ‘Ry3/Total CF’. The total CF is consisted of the CF on medial tibial plateau and the CF on lateral 
tibial plateau

Ry1 (N) Ry3 (N) Total CF (N) Ratio Medial CF (N) Lateral CF (N)

Valgus stance 230.3 204.04 221.08 0.92 187.16 33.92

Valgus peak 1 496.89 ± 35.16 470.60 ± 34.98 484.06 ± 35.20 0.97 ± 0.01 78.73 ± 10.00 405.33 ± 25.87

Valgus peak 2 533.63 ± 4.91 505.66 ± 2.90 521.20 ± 7.34 0.97 ± 0.02 500.60 ± 4.34 20.60 ± 3.02

Control stance 135.82 123.73 121.81 0.98 26.68 95.13

Control peak 1 264.50 ± 5.85 241.22 ± 4.28 243.54 ± 10.13 0.99 ± 0.02 68.83 ± 2.69 174.71 ± 7.44

Control peak 2 282.47 ± 11.69 254.63 ± 9.25 263.91 ± 12.12 0.97 ± 0.01 140.87 ± 6.40 123.04 ± 5.76

Table 3 Maximum von-Mises stresses and maximum contact stresses of the tibial plateau 
of different conditions

All units of data in the form are MPa

von-Mises stresses/
medial

von-Mises stresses/
lateral

Contact stresses/
medial

Contact stresses/
lateral

Valgus stance 0.95 0.35 2.19 0.74

Valgus peak 1 0.75 ± 0.06 2.22 ± 0.14 1.24 ± 0.10 4.77 ± 0.28

Valgus peak 2 1.64 ± 0.06 0.46 ± 0.04 3.07 ± 0.02 0.80 ± 0.09

Control stance 1.04 1.82 1.68 3.77

Control peak 1 3.57 ± 0.02 2.52 ± 0.06 4.85 ± 0.06 4.11 ± 0.04

Control peak 2 3.44 ± 0.37 3.16 ± 0.51 6.65 ± 0.17 5.56 ± 0.11
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at the second peak. Ry3 were 241.22 ± 4.28 N at the first peak and 254.63 ± 9.25 N at 
the second peak by the traditional kinematic measurement method, while Ry3 were 
243.54 ± 10.13 N (68.83 ± 2.69 N on medial cartilage; 174.71 ± 7.44 N on lateral car-
tilage) and 263.91 ± 12.12 N (140.87 ± 6.40 N on medial cartilage; 123.04 ± 5.76 N on 
lateral cartilage) respectively by the FE model (Table 2).

The knee angle and ankle angle were 16.60° ± 4.28° and 6.80° ± 1.81° at the first peak 
of vertical GRF, and were 19.27° ± 1.82° and 18.87° ± 1.91° at the second peak. At the 
first peak, the maximum von-Mises stresses were 3.57 ± 0.02 MPa on medial plateau, 
and 2.52 ± 0.06 MPa on lateral plateau, while the maximum contact stresses of tibial pla-
teau were 4.85 ± 0.06 MPa on medial plateau, and 4.11 ± 0.04 MPa on lateral plateau. At 
the second peak, the maximum von-Mises stresses were 3.44 ± 0.37 MPa on medial pla-
teau, and 3.16 ± 0.51 MPa on lateral plateau, while maximum contact stresses of tibial 
plateau were 6.65 ± 0.17 MPa on medial plateau, and 5.56 ± 0.11 MPa on lateral plateau 
(Table 3).

The p-value of paired t test is 0.12 (>0.05) after adjusted the weight of calf. All the con-
sistencies of results from two methods are greater than 0.92.

For the valgus knee, the average locations of contact centers were 27.70 mm for medial 
cartilage and 12.95  mm for lateral cartilage from the tibia plateau center at the first 
peak of vertical GRF of stance phase in medial–lateral direction, and were 24.32 and 
12.95  mm at the second peak. For the normal knee, the average contact centers were 
19.26 mm for medial cartilage and 12.50 mm for the lateral cartilage from the tibial pla-
teau center at the first peak, and were 18.51 and 14.47 mm at the second peak (Table 4). 
The tibia plateau center was defined as the center of medial–lateral direction and ante-
rior-posterior direction. The nephograms of von-Mises stresses and contact stresses 
were showed in Figs. 4 and 5.

Discussion
The CF calculated from FE analysis method were consistent with the forces calculated 
from the 3D kinematic measurement method in both valgus knee and normal knee. The 
maximum contact stresses and von-Mises stress shifted to lateral plateau at the first peak 
of vertical GRF of stance phase in valgus knee model. However, the maximum contact 
stresses were on medial plateau at the first peak in the normal knee model in this study. 
Previous studies for normal adult subjects have shown that maximum contact pressures 

Table 4 Locations of  contact centers in  medial–lateral direction at  the first/second peak 
of vertical GRF

A1/A2, B1/B2 represent the locations of contact centers at the first/second peak of vertical GRF for valgus knee model and 
normal knee model in this study. C1/C2, D1/D2 represent the adult normal knee and osteoarthritis knee model results at 25 
and 75% of stance phase in Marouane’s study [29]

Medial contact  
center (mm)

Lateral contact  
center (mm)

Medial contact  
forces (%)

Lateral contact 
forces (%)

A1/A2 27.70/24.32 12.95/12.95 16.22/96.05 83.78/3.95

B1/B2 19.26/18.51 12.50/14.47 28.26/53.38 71.74/46.62

C1/C2 24.50/23.50 11.50/16.00 74.54/78.93 25.46/21.07

D1/D2 21.50/19.50 12.0/12.50 76.97/81.00 23.03/19.00
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were on medial plateau, which means that the abnormal distribution of stresses on tibial 
plateau was possibly caused by knee valgus [1, 29].

In our study, the forces on the medial side and the forces on the lateral side at the first 
peak were 16.22 ± 0.01 and 83.78 ± 0.01% of total CF in valgus knee model, and were 
96.05 ± 0.01 and 3.95 ± 0.01% for second peak (Table 4). The pattern of force distribu-
tion was the similar with the results from Lancianese et al. [14] that the CF on proximal 
tibia were less on medial side (47.39%) than on lateral side (52.61%) for overweight chil-
dren with valgus knee at the first peak of vertical GRF of stance phase. The differences 
of percentages of the two studies might be because of different knee valgus angles and 
different BMI condition. The average BMI of Lancianese’s subjects were 17.9 ± 2.2 kg/
m2, while the BMI of the knee valgus subject in this study was 23.64 kg/m2. However, 
the knee valgus angle and nephograms about distribution of contact stresses were not 
provided in Lancianese’s study. The results from a FE knee model for a healthy adult 
have shown that 74.54 and 25.46% of total CF are on medial plateau and on lateral pla-
teau at 25% period of stance phase, and 78.93 and 21.07 at 75% period of stance phase 
[29]. It indicates that the CF of proximal tibia is more on medial side than on lateral side 
for healthy subjects. In contrast, the pattern of forces distribution of normal knee in this 
study was that the forces on medial plateau and on lateral plateau were 28.26 ± 0.01 and 
71.74 ± 0.01% at the first peak of stance phase, and were 53.38 ± 0.01 and 46.62 ± 0.01% 
at the second peak of stance phase. The possible reason for the differences between our 

Fig. 4 Nephograms of von‑Mises stresses and contact stresses of valgus knee model. From top to bottom 
are results of static stance, first peak and second peak of vertical GRF of stance phase during natural walk for 
valgus knee model. a Shows nephograms of von‑Mises stresses. b Shows nephograms of contact stresses
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study and Lancianese’s study might be the different ages and different velocities. The 
ages of subjects were 12.2 ± 1.6 years, and average velocity is 1.20 m/s in Lanecianese’s 
study [14]. The age of the healthy subject in our study is 7 years, and the average velocity 
is 0.701 m/s. Results from our study has shown that the CF shifted laterally much more 
in valgus knee model than those in normal knee model at the first peak of vertical GRF 
of stance phase. The possible reason is that in order to keep body stable, the center of 
gravity has to be shifted laterally when the body is decelerating at the first peak of verti-
cal GRF of stance phase. Considering the structure of valgus knee and the excessive body 
weight, the lateral tibial plateau bears more forces at the first peak than at the second 
peak, because the center of gravity started to shift to the other limb at the second peak.

The locations of contact centers shifted laterally for 3.38 mm on medial plateau and 
0 mm on lateral plateau from first peak to second peak of vertical GRF of stance phase 
for the valgus knee model, while it shifted laterally 0.75 and 1.97 mm for normal knee 
model in this study. Marouane et al. [29] reported that the locations of contact centers 
moved laterally about 2.00 mm on medial plateau and 0.05 mm on lateral plateau from 
25% period to 75% period of stance phase from osteoarthritis knee model, but 1.00 and 
4.50 mm from normal adult knee model (Table 4). The pattern of changes of locations in 
the valgus knee model is similar to that in the osteoarthritis knee model by Marouane 
et  al. [29]. The locations of contact centers changes more on medial plateau than on 

Fig. 5 Nephograms of von‑Mises stresses contact stresses and of normal knee model. From top to bottom 
are results of static stance, first peak and second peak of vertical GRF of stance phase during natural walk for 
normal knee model. a Shows nephograms of von‑Mises stresses. b Shows nephograms of contact stresses
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lateral plateau in the valgus knee model while the locations of contact centers changes 
more on lateral plateau than on medial plateau in normal knee model.

The subject in this study bears excessive body weight with lower limb malalignment. 
The results about the abnormal force distribution of the valgus knee of child could cause 
potential medical problems in the long term. More studies should be carried out to focus 
on the development of valgus knee of children especially for obese children in the future.

There are some limitations to present study. First, we chose the first and second peak 
of vertical GRF during stance phase, which could be generalized to the other period 
of stance phase. Second, westerners’ or adults’ material mechanical parameters were 
applied in this study, which might cause influence on results because of race differences 
and age differences. Besides, quasi-static analysis was applied in the FE model with 
neglecting the inertia, which may not be ideal. Lastly, only two subjects (one with valgus 
knee and one with normal knee) were included in this study, and more subjects should 
be recruited for related studies in the future if possible.

Conclusions
The results from this study have shown the obvious differences of mechanical properties 
between the valgus knee and the normal knee. Maximum stresses shifted lateral plateau 
in knee valgus children while maximum stresses were on medial plateau in normal knee 
children at the first peak of vertical GRF of stance phase. The locations of contact cent-
ers on medial plateau change more than that on lateral plateau, while the locations of 
contact centers on medial plateau changed less than that on lateral plateau for healthy 
child from the first peak to second peak of vertical GRF of stance phase. It suggests that 
valgus knee could be the reason for abnormal knee load that may cause knee problems 
in obese children with valgus knee in the long term. This study may help to understand 
biomechanical mechanism of valgus knees of obese children.
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