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Abstract 

Background: Blood continuously flows through the blood vessels in the human body. 
When blood flows through the smallest blood vessels, red blood cells (RBCs) in the 
blood exhibit various types of motion and deformed shapes. Computational modelling 
techniques can be used to successfully predict the behaviour of the RBCs in capillaries. 
In this study, we report the application of a meshfree particle approach to model and 
predict the motion and deformation of three‑dimensional RBCs in capillaries.

Methods: An elastic spring network based on the discrete element method (DEM) is 
employed to model the three‑dimensional RBC membrane. The haemoglobin in the 
RBC and the plasma in the blood are modelled as smoothed particle hydrodynamics 
(SPH) particles. For validation purposes, the behaviour of a single RBC in a simple shear 
flow is examined and compared against experimental results. Then simulations are 
carried out to predict the behaviour of RBCs in a capillary; (i) the motion of five identical 
RBCs in a uniform capillary, (ii) the motion of five identical RBCs with different bending 
stiffness (Kb) values in a stenosed capillary, (iii) the motion of three RBCs in a narrow 
capillary. Finally five identical RBCs are employed to determine the critical diameter of a 
stenosed capillary.

Results: Validation results showed a good agreement with less than 10% difference. 
From the above simulations, the following results are obtained; (i) RBCs exhibit dif‑
ferent deformation behaviours due to the hydrodynamic interaction between them. 
(ii) Asymmetrical deformation behaviours of the RBCs are clearly observed when the 
bending stiffness (Kb) of the RBCs is changed. (iii) The model predicts the ability of the 
RBCs to squeeze through smaller blood vessels. Finally, from the simulations, the critical 
diameter of the stenosed section to stop the motion of blood flow is predicted.

Conclusions: A three‑dimensional spring network model based on DEM in combina‑
tion with the SPH method is successfully used to model the motion and deformation 
of RBCs in capillaries. Simulation results reveal that the condition of blood flow stop‑
ping depends on the pressure gradient of the capillary and the severity of stenosis of 
the capillary. In addition, this model is capable of predicting the critical diameter which 
prevents motion of RBCs for different blood pressures.
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Background
RBCs develop within the bone marrow [1]. When a RBC is initially produced, it contains 
a nucleus inside the cell. However, RBCs eject their nuclei in the early stages of maturity 
before entering into the main blood stream [2, 3]. Healthy RBCs exhibit a biconcave dis-
coidal shape with a mean diameter of about 8 µm and a mean thickness of about 2 µm 
at rest [4]. In the cardiovascular network, blood continuously flows through millions of 
blood vessels, including smallest blood vessels (capillaries), which are even smaller than 
the mean diameter of an average healthy RBC. Due to the complex three-dimensional 
geometric structure of RBCs, they exhibit various types of motion and deformations 
when they flow in the capillaries [5]. Studying the motion and deformation of RBCs is 
somewhat difficult due to the micro-dimensions of RBCs and the complexity of blood 
vessels. In this context, numerical modelling techniques have high potential for explain-
ing and predicting the behaviour of RBCs in the capillaries. Among numerical modelling 
techniques, recently developed meshfree particle methods (MPM) are most effective for 
analysing problems with large deformations, such as those associated with RBCs [6]. In 
particular, smoothed particle hydrodynamics (SPH), one of the popular and well-estab-
lished meshfree particle approaches, has been used widely by researchers for analysing 
micro-scale hydrodynamics problems [7, 8]. In addition, spring network models are 
extensively used to model the elastic membrane of RBCs. However, the combination of 
these two techniques to model RBC flow has not been properly considered, which is one 
of the innovations in this study.

Recent developments in computational and numerical techniques have made solving 
the behaviour of RBCs in three-dimensional domains possible. Imani et al. [9] developed 
a three-dimensional numerical model to simulate the malaria infected red blood cell 
(IRBC). In their model, all blood components are modelled by discrete particles, while 
the malaria parasites inside the RBCs are represented by cluster of rigid particles. For 
this simulation, the biconcave shaped healthy RBC and the spherical shaped IRBC are 
used to qualitatively examine the behaviour of RBCs in a narrow 6 µm square channel. 
Results revealed that IRBC cannot flow through the narrow channels since the IRBCs 
are stiffer and less deformable [9]. The membrane of the IRBC is modelled by a two-
dimensional spring network and the RBCs are considered as two-dimensional disks in a 
three-dimensional channel. However, the motion and deformation of the RBCs is highly 
three-dimensional, as the cells exhibit three-dimensional deformations in microvessels 
[10]. This model was not able to capture the three-dimensional behaviour of the RBCs. 
Tsubota and Wada [11] proposed a three-dimensional spring network model to estimate 
the elastic membrane force of a RBC membrane during its tank treading motion. In their 
model, the RBC membrane is discretised into triangular elements. Assuming a simple 
shear flow, a small external force was introduced on each node to reproduce the tank 
treading motion. This model was further improved by Nakamura et al. [12] to simulate 
the mesoscopic blood flow. However, they assumed that RBCs do not disturb the sur-
rounding flow and a one-way coupling was implemented for the flow-RBC by pre-defin-
ing the macroscopic flow field.

Nagayama and Honda [13] developed a three-dimensional model to simulate the 
behaviour of the RBCs in blood vessels like capillaries the using moving particle semi-
implicit (MPS) method. They developed a momentum equation to define the motion of 



Page 351 of 370Polwaththe‑Gallage et al. BioMed Eng OnLine 2016, 15(Suppl 2):161

RBCs, considering the inter-particle force, viscous diffusion and external force without 
solving the Navier–Stokes equations. They studied the motion and deformation of multi-
ple RBCs in bent capillaries. However, this model was not employed to carry out a com-
prehensive study on motion and deformation of RBCs in capillaries. Pozrikidis [3, 14] 
developed a three-dimensional model to explain the flow-induced deformation of RBCs. 
The numerical instabilities of the model and the assumption of axisymmetric behav-
iour made the model impractical [12]. Recently, the dissipative particle dynamics (DPD) 
method was employed by Ye et al. [15] to develop a three-dimensional RBC model to 
predict the flow through a tube containing interacting RBCs. However, they employed 
only two RBCs with different properties in order to simulate and investigate the effect of 
the infected RBC on the motion and deformation of the other RBC.

In this paper, a set of (up to five) RBCs is employed to predict the motion and defor-
mation of RBCs more accurately. An advanced numerical modelling technique combin-
ing smoothed particle hydrodynamics (SPH) and the discrete element method (DEM) 
is used to model the motion and deformation of the set of three-dimensional RBCs in 
microvessels. The RBC membrane is modelled by a three-dimensional spring network 
using fundamentals of DEM and the RBC membrane is discretised into a finite num-
ber of particles. Each particle represents a finite mass with associated with density and 
pressure. The application of DEM allows to model the larger deformation of the mov-
ing RBCs. The forces acting on the RBC membrane are determined based on the mini-
mum energy concept [5, 16–18]. First, we investigate the motion and deformation of five 
identical RBCs through a stenosed capillary. Then, the effect of RBC membrane bend-
ing stiffness (Kb) on the motion and deformation of the RBCs in a stenosed capillary 
is explored. Specifically, this study aims to predict the asymmetric motion and three-
dimensional deformation of RBCs, when they have an uncharacteristic membrane bend-
ing stiffness due to infection by a disease like malaria. Furthermore, we explore how the 
motion and deformation behaviour of a set of RBCs in blood vessels with the diameters 
smaller than those of the blood vessels. Finally, the critical diameter for a stenosed capil-
lary to prevent the motion of RBCs is investigated. With the aid of this model the behav-
iour of three-dimensional RBCs is predicted, with particular focus on blood flow rate 
under pathological conditions.

Numerical model and solution methodologies
Three dimensional RBC model

The membrane of the RBC is modelled by a three dimensional spring network [5]. The 
RBC membrane is initially assumed to be a sphere with the radius of 3.1 µm. It is dis-
cretised into 954 mass points interconnected by 2856 springs as shown in Fig. 1. This 
number of mass points was chosen such that the minimum distance between two neigh-
bouring points is equal to 0.4 μm, which optimizes the computational cost against the 
accuracy of the solution [5]. In order to obtain a stable RBC membrane shape, the total 
energy of the RBC membrane is calculated using the energy functions related to the in 
plane deformation, bending of the membrane, membrane area and volume constraint. 
The forces acting on each particle are then calculated based on the principle of virtual 
work. Finally, the typical discoidal biconcave shape of the RBC membrane is obtained, 
when the total energy of the membrane is minimized.
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The energy generated due to the in-plane deformation, ES is calculated by:

where NS is the number of springs, equal to 2856, KS is the spring constant for stretch-
ing/compression, and Ln and Ln0 are the present length and original length of the nth 
spring respectively. Energy associated with the bending deformation, EB is calculated by:

where NB is the number of neighbouring triangles, equal to 2856, KB is the spring con-
stant for bending, and θn is the angle between the nth neighbouring triangles. Since the 
number of lipids per area of the RBC membrane is constant, the membrane area should 
be conserved locally and as a whole. The energy generated due to the local area changes 
(Ea) and total area changes (EA) are calculated by:

and
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Fig. 1 Three‑dimensional sphere used to obtain the biconcave shape of the RBC membrane
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respectively. Where An and An0 are the current and original areas of the considered tri-
angular element respectively, while A and A0 are the current and the reference value 
of the whole RBC membrane area. Here, A0 is equal to the average area of a healthy 
matured RBC. Ka and KA in Eqs. (3) and (4) are the area expansion moduli for local area 
and whole membrane area respectively. The total enclosed volume by the RBC mem-
brane is conserved and energy generated in the membrane, due to the change in total 
enclosed volume (EV) is calculated by:

where V and V0 are the current and reference volume of the RBC respectively. The refer-
ence volume is equal to the average volume of a healthy matured RBC. Finally, KV is the 
penalty coefficient to maintain the V as V0.

The total energy (E) of the RBC is then calculated by taking the sum of the above ener-
gies; E = ES + EB + EA + Ea + EV. Finally, the forces acting on each particle are deter-
mined based on the principle of virtual work as:

where Fi is the vectorial force acting on the ith particle and ri is the position vector of the 
ith particle.

In this study the reference volume of the RBC (V0) is set to 60% of the initial volume of 
the sphere and the reference area of the RBC (A0) is assumed to be the area of the sphere 
with the radius of 3.1 µm. When the total energy of the RBC is minimised the typical 
discoidal biconcave shape of a healthy matured RBC is obtained (see Fig. 2).

Smoothed particle hydrodynamics approach
In the body, RBCs contain haemoglobin and are suspended in plasma. In this study, hae-
moglobin and plasma components in the problem domain are discretised into a finite 
number of particles and treated by the smoothed particle hydrodynamics (SPH) method. 
The Lagrangian form SPH equation for the conservation of momentum,

is used to model the flow field. Here, v, m, p, ρ and µ are velocity, mass, pressure, density 
and dynamic viscosity of the SPH particles respectively. In the SPH method, any field 
function of the ith particle is approximated by the same field function values of neigh-
bouring jth particles. Finally, Fi and W are the external force acting on the particles and 
the smoothing function.
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Simulation results and discussion
The deformation behaviour of the RBC is examined when the RBC is subjected to a 
linear shear flow. In order to generate the linear shear flow, the RBC is placed into the 
plasma domain within a rectangular flow channel (see Fig. 3). Then, the top and bottom 
plates of the rectangular channel are moved at a same constant velocity, v but in oppo-
site directions. Periodic boundary conditions are applied to the inlet and the outlet of 
the channel, such that a particle leaving the outlet will re-enter the fluid domain through 
the inlet. However, the properties of that particle is recalculated, using the properties of 
the neighbouring particles at inlet. Due to the motion of the top and bottom plates of the 
flow channel, plasma particles start to move and generate a pressure acing on the RBC. 
As a result the RBC elongates and shows a deformed shape (see Fig. 4). The energy con-
stants of the RBC membrane and other parameters are set as in Table 1.

In this section, the deformation index (DI) of the RBC is defined as the ratio between 
the lengths of the RBC in z-direction to y-direction and is calculated for different shear 
stress values. Simulation results reveal that the DI increases with the shear stress as 
shown in Fig. 5. It agrees with the previous experimental results [19] with less than 10% 
difference. In this study Eq. (8) is used to calculate the shear stress (τ),

where µ and h are the dynamic viscosity of the plasma and height of the channel in 
y-direction respectively.

(8)τ =
2v

h
µ

Fig. 2 The discoidal biconcave shape of the RBC
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Fig. 3 Initial position of the RBC in the rectangular channel

Fig. 4 Deformed shape of the RBC under the linear shear flow
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Deformation behaviour of multiple RBCs through a stenosed capillary
In this study, five identical RBCs are used to simulate the motion and deformation 
behaviour of the RBCs in a stenosed capillary (see Fig.  6). For convenience, the RBC 

Table 1 Key simulation parameters for the model

Parameter Definition Value Reference

KS Spring constant for stretching/compression 1 × 10−6 N/m [11]

KB Spring constant for bending 1 × 10−10 N [12]

Ka Area expansion modulus for local area 3 × 10−3 N/m [12]

KA Area expansion modulus whole membrane area 2 × 10−3 N/m [12]

KV Penalty coefficient 50 N/m2 [12]

ΡRBC Density of the RBC membrane particles 1098 kg/m3 [25]

ΡCytoplasm Density of the cytoplasm particles 1050 kg/m3 [26]

ΡPlasma Density of the plasma particles 1025 kg/m3 [27]

µRBC RBC membrane viscosity 1 × 10−3 Pa s Set

µCytoplasm Cytoplasm viscosity 5 × 10−3 Pa s [28]

µPlasma Plasma viscosity 1 × 10−3 Pa s [28]

Fig. 5 Variation of DI of the RBC with the shear stress in a linear shear flow
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Fig. 6 Geometry of the stenosed capillary
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closest to the stenosed section is defined as the 1st RBC (the leading RBC), the RBC 
closest to the inlet boundary is defined as the 5th RBC (the last RBC); and other RBCs 
are numbered in order (see Fig. 6). The inlet and outlet diameters (di and d0 respectively) 
are set to 10.0 µm, while the minimum diameter of the stenosed area (dc) is set to 6.8 µm. 
The total length of the capillary (L) is 57.2 µm and the horizontal distance from the 5th 
RBC’s centre of mass to the inlet boundary (l1) and from the 1st RBC’s centre of mass to 
the narrowest part of the stenosed (l6) are 3.4 and 10.6 µm respectively (see Fig. 6). The 
radius of each round corner, R is set to 3.2 µm (see Fig. 6). The distances between two 
consecutive RBCs (l2, l3, l4, and l5) are set to 4 µm. The inlet pressure is set to 1000 Pa, 
while the outlet pressure is set to zero.

Due to the pressure gradient in the capillary, RBCs begin to flow with plasma and 
they deform before entering to the stenosed section of the capillary (see Fig.  7b; at 
t =  0.01 ms). However, at this stage, the 1st RBC shows more deformation compared 
with the following RBCs due to the hydrodynamic interaction between RBCs [20, 21]. 
The 1st RBC moves though the stenosed section at about t =  0.02  ms and it experi-
ences severe deformation during that time (see Fig. 7c). When t = 0.025 ms the 1st RBC 
exits from the stenosed section and it recovers typical deformed parachute shape. When 
t = 0.025 ms, the 2nd RBC moves through the stenosed section and similar to the 1st 
RBC, the 2nd RBC also undergoes a large deformation. Similar to the 1st and 2nd RBCs, 
all the RBCs experience severe deformation, when they pass through the narrowest sec-
tion of the capillary and they recover their typical deformed parachute shape after the 
stenosed section. Therefore, similar behaviour would be expected for the all the RBCs if 
they flow further after the stenosed section of the capillary.

Figure 8 shows the variation of the DI of five RBCs with time. As expected, due to the 
hydrodynamic interaction between RBCs, the 1st RBC shows the maximum DI (when 
t = 0.018 ms). The DIs of the following RBCs are lesser than that of the 1st RBC when 
they pass through the stenosed section.

Due to the hydrodynamic interaction between RBCs, a lower DI for the 3rd RBC it 
is expected compared to the 2nd RBC during motion through the stenosed section of 
the capillary. However, the maximum DI of the 3rd RBC does increase compared to the 
value of the 2nd RBC. Similarly, the 3rd, 4th and 5th RBCs show higher DIs compared 
with their preceding RBC in the stenosed section (see Fig. 8). It is not possible to explain 
this phenomenon with the aid of the hydrodynamic interaction between RBCs and fur-
ther studies have to be done to describe this behaviour (this phenomenon will be dis-
cussed and explained in next section “Effect of the initial set up of the problem domain 
on the deformation behaviour of RBCs through a stenosed capillary”. Moreover, the DI 
of the 1st RBC reduces significantly when it exits the stenosed section (see Fig. 8; after 
t = 0.018 ms). However, the DI gradually increases again with time (see Fig. 8) and the 
1st RBC shows higher DI compared with the other RBCs due to the hydrodynamic inter-
action between RBCs.

As can be seen in Fig. 9, a rapid growth in the mean velocities of the RBCs is observed 
when they flow through the stenosed section of the capillary. All the RBCs flow at almost 
similar highest mean velocities with only slight variations (see Fig. 9).
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Effect of the initial set up of the problem domain on the deformation 
behaviour of RBCs through a stenosed capillary
In order to explain the increase in the maximum DI of the RBCs compared with pre-
ceding RBCs when it passing through the stenosed section, further simulations are con-
ducted. In this study, a single RBC is employed with the different horizontal distances 
from the RBC’s mass centre to the inlet boundary (l1) (see Fig.  10). Consequently the 
horizontal distances from the RBC’s mass centre to the stenosed section (l2) is changed 
accordingly. Three cases are studied with l1 =  3.4, 11.4 and 19.4 µm. A capillary with 
the stenosed diameter of 6.8 µm is used and all the other simulation conditions are kept 
same as described earlier.

Fig. 7. Deformation of five RBCs when they flow in a stenosed capillary with the stenosed diameter of 
6.8 µm at a t = 0 ms, b t = 0.1 ms, c t = 0.2 ms, d t = 0.3 ms, e t = 0.4 ms and f t = 0.47 ms
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The change in the DI of the RBCs with time for the three different cases is analysed. 
The simulation results show that the RBC, initially positioned closer to the stenosed sec-
tion (l1 = 19.4 µm) experiences less deformation compared to the other RBCs, initially 
set farther away from the stenosed section (see Fig. 11). As can be seen in Fig. 11, the 
RBC relevant to l1 = 3.4 µm (initially set farther from the stenosed section) undergoes 

Fig. 8 Variation of the DI of five RBCs with time when they flow in a stenosed capillary with the stenosed 
diameter of 6.8 µm

Fig. 9 Variation of the mean velocity of five RBCs with time when they flow in a stenosed capillary with the 
stenosed diameter of 6.8 µm

l1 l2
Fig. 10 Geometry of the stenosed capillary with a single RBC
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a considerable deformation before it enters to the stenosed section. Moreover, this RBC 
is subjected to a further deformation while it passes through the stenosed section and it 
shows the maximum DI among the three RBCs. On the other hand, the RBC set closer to 
the stenosed section (l1 = 19.4 µm) does not have enough time to deform before enter-
ing to the stenosed section. The deformation of this RBC mainly occurs when it passes 
through the stenosed region. Therefore, it can be concluded that the RBCs set closer to 
the stenosed section experience less deformation compared with the deformation of the 
RBCs set farther away from the stenosed section.

In reality, the blood continuously flows and RBCs exhibit deformation (deformed 
shapes) at all times. However, for the numerical simulations, an initial condition (t = 0) 
is assumed. For the simplicity of this study, it is assumed that the RBC begins with its 
typical biconcave shape and there is no deformation at t = 0. For the above three cases, 
if the horizontal distance from the RBC’s centre to the stenosed section (l2) increases 
considerably, the maximum DI of all the RBC would have been same, when it passes 
through the stenosed section. However, it is computationally very expensive to increase 
the horizontal distance from the RBC’s mass centre to the stenosed section (l2), since it 
significantly increases the number of particles in the problem domain. The growth in the 
number of particles in the problem domain would take a longer time to solve the prob-
lem and it would be very inefficient. Therefore, the problem domain is controlled for the 
conditions as explained in earlier sections.

The variation of the maximum DI of five RBCs, when they pass though the stenosed 
capillary, can be explained (see Fig. 8) using the above argument. The 1st RBC of five 
RBCs shows the highest maximum DI when it passes through the stenosed section due 
to the hydrodynamic interaction between the RBCs. The maximum DI of the 2nd RBC is 
lower than that value of the 1st RBC as expected again due to the hydrodynamic interac-
tion between RBCs. However, the maximum DI of the 3rd RBC shows a greater value, 
compared with the 2nd RBC. This phenomenon happens due to the difference in the 
horizontal distance from the RBC’s mass centre to the stenosed section (l2). Initially (at 
t = 0) the 3rd RBC is set farther away from the stenosed section compared to the 2nd 

Fig. 11 Variation of the DI of three RBCs with time when the initial position of the RBC is changed in the 
capillary with the stenosed diameter of 6.8 µm
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RBC and the 3rd RBC takes longer time to enter the stenosed section of the capillary. 
During that time RBC experiences a significant deformation.

The increase in the DI of the 3rd RBC just before entering into the stenosed section 
of the capillary is thus higher than that value of the 2nd RBC. The DI of both RBCs 
increases significantly, while they pass though the stenosed region. However, due to that 
change in DI of the 2nd and 3rd RBCs just before entering the stenosed section of the 
capillary, the 3rd RBC exhibits higher maximum DI when it passes through the stenosed 
section compared with that value of the 2nd RBC. Similarly, trailing RBCs exhibit higher 
maximum DI compared with their preceding RBCs (except the 1st RBC). Therefore, it 
can be concluded that the initial horizontal distance from the RBC’s centre to the sten-
osed section (l2) is a crucial parameter in numerical simulations, when the simulations 
are carried out to capture the behaviour of RBCs in stenosed capillary. This parameter 
has to be chosen properly, to obtain reliable enough results without affecting the com-
putation cost too much. However, this study was limited to the conditions discussed for 
Fig. 7.

Deformation behaviour of the RBCs with different bending stiffness values in a 
stenosed capillary
In this study, the effect of RBC membrane bending stiffness on motion and deformation 
is studied. Five identical RBCs are used to simulate the motion and deformation behav-
iour of the RBCs in a stenosed capillary. A capillary with a total length of (L) of 57.2 µm 
is used for this study. The inlet (di) and outlet diameters (d0) of the capillary are set to 
10.0 µm. In this study the severity of the stenosed section is further increased in order 
to clearly compare the effect of the membrane bending stiffness of the RBC. The diam-
eter of the stenosed area (dc) is set to 5.2 µm. The inlet pressure is set to 500 Pa, while 
the outlet pressure is set to zero. The membrane bending stiffness of the RBCs changes 
when they are infected by diseases like malaria and cancers. In order to investigate the 
behaviour of diseased RBCs, the membrane bending stiffness of all the RBCs is changed 
from the typical value, Kb (1 × 10−10 N) to 0.1 Kb, 10 Kb, 20 Kb, 30 Kb and 40 Kb. The five 
identical RBCs and all the other simulation parameters are set as described earlier.

Simulation results reveal that the RBCs show nearly fully symmetrical deformed 
shapes (see Fig. 12a) throughout their motion in the stenosed capillary when the mem-
brane bending stiffness of the RBCs is decreased by ten times (0.1 Kb). However, they 
show local uneven deformation with wrinkles on the membrane (see Figs. 12a, 13) when 
they pass through the stenosed region and just after the stenosed section. On the other 
hand, the five RBCs with higher bending stiffness values do not show any wrinkles on 
the deformed membrane. However, the 1st RBC of five RBCs with bending stiffness 
of 10 Kb shows some asymmetric behaviour compared to the other four RBCs when it 
reaches the downstream of the capillary (see Fig. 12c at t = 0.152 ms). The asymmetric 
behaviour of that RBC is clearly evidenced when the RBCs have higher bending stiffness 
values; 20, 30 and 40 Kb (see Fig. 12d–f at t = 0.152 ms). Interestingly, the RBCs with 
the highest bending stiffness values (30 and 40 Kb) do not show observable deformation 
during their motion before the stenosed section (see Fig. 12e, f at t = 0.048 ms). How-
ever, they deform into bullet-like shapes when they pass through the stenosed region 
and the deformed RBCs are not symmetrical in shape (see Fig. 12e, f at t = 0.096 ms). 
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Furthermore, the RBCs show rolling motions after the stenosed region of the capillary 
(see Fig. 12e, f at t = 0.152 ms). Additionally, the RBCs with the highest bending stiffness 
value (40 Kb) exhibit complicated asymmetric deformed shapes when passing through 
the narrowest section of the capillary.

a t = 0.048 ms t = 0.096 ms                                                        t = 0.152 ms

b t = 0.048 ms                                            t = 0.096 ms                                                        t = 0.152 ms

d t = 0.048 ms                                            t = 0.096 ms                                                        t = 0.152 ms

c t = 0.048 ms                                            t = 0.096 ms                                                        t = 0.152 ms

e t = 0.048 ms                                            t = 0.096 ms                                                        t = 0.152 ms

f t = 0.048 ms                                            t = 0.096 ms                                                        t = 0.148 ms
Fig. 12 Deformation of five identical RBCs with the membrane bending stiffness of a 0.1 Kb, b Kb, c 10 Kb, 
d 20 Kb, e 30 Kb and f 40 Kb when they flow in a stenosed capillary with the stenosed diameter of 5.2 µm 
(Kb = 1 × 10−10 N)

Fig. 13 The deformed shapes of the five identical RBCs with the membrane bending stiffness of 0.1 Kb at 
t = 0.148 ms
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The RBCs are subject to the largest deformation when they pass through the stenosed 
section of the capillary. As a result of the deformation, the total membrane energy of the 
RBCs reaches a maximum value when they pass through the stenosed section of the cap-
illary. The average total membrane energy of a RBC is calculated when it passes through 
the stenosed section and plotted against the membrane bending stiffness (Kb) value of 
the RBC as shown in Fig. 14. It can be seen from Fig. 14 that the average total membrane 
energy of one RBC increases significantly with the membrane bending stiffness (Kb) of 
the RBCs, since Kb is dominant on the total energy of the RBCs. Furthermore, the RBCs 
with higher membrane energies are very unstable in terms of energy and they are vul-
nerable to rupture [22].

It is not possible to employ the DI to compare the amount of deformation, when RBCs 
show highly asymmetrical three-dimensional deformed shape. Furthermore, the average 
total membrane energy does not reflect the amount of bending or the DI of the RBCs, 
since the higher membrane bending stiffness values always contribute for higher total 
membrane energy of the RBCs. Therefore, the average membrane energy (Eb) is nor-
malized using membrane bending stiffness (Kb). Recalling Eq. (2), this Eb/Kb parameter 
expresses the amount of deformation or the deformability of the RBC. Therefore this 
parameter can be used to compare the deformability of RBCs, when they have different 
membrane bending stiffness values.

In this study, Eb/Kb is employed to compare the amount of deformation of the RBCs. It 
can be seen in Fig. 15, that the RBC with the lowest membrane stiffness (0.1 Kb) shows 
a very high Eb/Kb value compared to RBCs with the typical membrane bending stiffness 
(Kb). The Eb/Kb ratio decreases substantially when the membrane bending stiffness of 
the RBCs increases from Kb to 10 Kb (see Fig.  15). Moreover, Eb/Kb further decreases 
gradually with the membrane bending stiffness of the RBC when the membrane bending 

(9)
Eb

Kb
=

1

2

NB
∑

n=1

Ln tan
2

(

θn − θn,0

2

)

Fig. 14 Variation of the average total membrane energy of a single RBC with the membrane bending stiff‑
ness, when five identical RBCs flow in a stenosed capillary with the stenosed diameter of 5.2 µm (average is 
calculated using the maximum total membrane energy of five RBCs)
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stiffness of the RBCs increases from 10 to 50 Kb (see Fig. 15). However, that value reaches 
a more or less steady value, when the membrane bending stiffness increases from 50 to 
100 Kb. Therefore, irrespective of the membrane bending stiffness of the RBCs, RBCs 
deform a certain amount in order to pass through the stenosed section of the capillary. It 
can be concluded that the DI or the amount of deformation of the RBCs is governed by 
the diameter of the stenosed section. Moreover, in order to flow the blood through the 
cardiovascular network, all the RBCs deform and squeeze through stenosed sections, 
depending on the diameter of the stenosed section.

Deformation behaviour in narrow capillaries
It is generally known that the diameter of capillaries varies between 5 and 10 µm [23]. 
In this section, the motion and deformation of three RBCs are investigated in capillaries 
with even narrower sections, with diameters less than RBCs at rest. Three RBCs with 
identical properties are employed for this simulation in a capillary with the total length 
(L) of 60.0 µm and the length of the narrow section (l) of the capillary is set to 21.2 µm 
(see Fig. 16). The diameter of the narrow section (dc) is set to 6.0 µm, in order to rep-
resent a lung capillary. The radius of each round corner, R is set to 3.5 µm (see Fig. 16). 
The inlet (di) and outlet (di) diameters of the capillary is set to 10.0 µm as can be seen in 
Fig. 16, while the inlet and outlet pressures are set to 1000 Pa and zero respectively.

Fig. 15 Variation of the average Eb/Kb with membrane bending stiffness when five identical RBCs flow in a 
stenosed capillary with the stenosed diameter of 5.2 µm

L

l

dc
di do

R

RR

R

R R

RR
Fig. 16 The geometry of the capillary with narrow section
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Simulation results shown in Fig. 17 show that three RBCs initially deform into the par-
achute shapes before entering to the narrow section of the capillary. Interestingly, they 
exhibit bullet-like shapes when they flow through the narrow section of the capillary (see 
Fig.  17) while the bullet-like deformed shapes of the RBCs remain unchanged during 
their whole motion in the narrower section of the capillary. During that time the DIs 
of the three RBCs are similar to each other (see Figs.  17, 18). However, after the nar-
row section, the 1st RBC exhibits a more deformed shape with a higher DI, while the 
3rd RBC shows a rounder shape with a lower DI due to the hydrodynamic interaction 
between the RBCs. On the other hand, the 2nd RBC takes an intermediate DI compared 

Fig. 17 Deformation of three RBCs when they flow in a narrow capillary with the narrow section’s diameter 
of 6.0 µm at a t = 0.28 ms, b t = 0.72 ms, c t = 1.12 ms, d t = 1.36 ms, e t = 1.60 ms, f t = 1.96 ms and  
g t = 2.44 ms
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with the 1st and the 3rd RBCs. This difference in the DIs of the RBCs occurs due to the 
hydrodynamic interaction between the RBCs.

The mean velocities of the three RBCs gradually increase before the narrow section 
of the capillary (see Fig. 19). Three RBCs reach maximum steady mean velocities, when 
they flow through the narrow section. However, the mean velocities of the three RBCs 
drop back to lower values after the narrow section of the capillary. Initially, the mean 
velocity curves show very high fluctuations which reflects the unstable nature of the 
RBCs under theses simulation conditions. However, as can be seen from Fig.  18, the 
mean velocities of the three RBCs show stable values with less fluctuations when they 
leave the narrow section of the capillary. Therefore, it can be concluded that the RBCs 
have reached a stable shape in terms of energy and the particles used to represent the 
RBCs’ membrane do not move in order to minimise the membrane energy.

Fig. 18 Variation of the DI of three RBCs with time when they flow in a capillary with a narrow section

Fig. 19 Variation of the mean velocity of three RBCs with their position in the capillary when they flow in a 
capillary with a narrow section
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Critical diameter of the stenosed section to stop the motion of blood flow
The blood flow rate in a capillary reduces when the capillary has a stenosed section and 
it causes to reduce the overall blood rate through the cardiovascular network. Depend-
ing on the severity of the stenosis, there is a high risk of microvascular blockage, which 
may lead to completely stoppage of the blood flow in that capillary [24]. In this section, 
the critical stenosed diameter of a capillary is investigated to halt the blood flow in the 
capillary with the aid of five identical RBCs. In this study the diameter of the stenosed 
section is changed to 8.4, 7.6, 6.8, 6.0, 5.2, 4.4, 3.6 and 2.8 µm in the capillary and the 
radius of each round corner, R is adjusted accordingly. The inlet (di) and outlet diameters 
(d0) of the capillary are set to 10.0 µm, while the total length of the capillary (L) is set to 
57.2 µm. The inlet and outlet pressures are set to 1000 Pa and zero respectively.

The time taken by the 1st RBC to reach the outlet of the capillary is measured for each 
case. When the stenosed diameter of the capillary is 3.6 and 2.8 µm, no motion of the 
five RBCs is observed. However, the five RBCs start to flow very slowly in the capillary 
when the stenosed diameter of the capillary is 4.4 µm. As can be seen in Fig. 20, the time 
taken by the 1st RBC to reach the outlet of the capillary is about 1.3 ms and that is the 
slowest among all the other cases. Furthermore, when the stenosed diameter of the cap-
illary is changed from 4.4 to 5.2 µm, the time taken by the 1st RBC to reach the outlet 
of the capillary reduces significantly. Further increase in the stenosed diameter of the 
capillary reduces the elapsed time more. However, as can be seen from Fig. 20, the time 
taken by the 1st RBC to reach the outlet of the capillary reaches a nearly stable value 
when the stenosed diameter of the capillary increases further. With the aid of the Matlab 
curve fitting tool, the stenosed diameter of the capillary is predicted when the elapsed 
time tends to infinity. It is found from Fig. 20 that the time taken by the 1st RBC to reach 
the outlet of the capillary tends to infinity when the diameter of the stenosed section of 
the capillary is 4.004 µm. Hence, it can be concluded that the five RBCs do not show any 
motion in a stenosed capillary with inlet pressure of 1000 Pa and outlet pressure of zero 
when the minimum diameter of the stenosed section 4.004 µm. Therefore, 4.004 µm is 
the critical diameter for the stenosed capillary, which stops the blood flow for the above 
inlet and outlet pressures.
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Fig. 20 Variation of the time taken by the 1st RBC to reach the outlet of the capillary with different stenosed 
diameter values, when the inlet and outlet pressure are 1000 Pa and 0 respectively
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However, in reality, when the blood flow stops, the blood pressure builds up before the 
stenosed section. In order to investigate the effect on the pressure, the simulations are 
carried out for different inlet pressure values. Similar to the previous case, the critical 
diameter of the stenosed section of the capillary, which stops the blood flow, is found for 
different inlet pressure values. In this study the inlet pressure of the stenosed capillary is 
changed to 500, 1000, 1500, 2000 and 2500 Pa while keeping the outlet pressure of the 
capillary to zero. All the other parameters are kept constant.

Initially, the inlet pressure is set to 500 Pa and the diameter of the stenosed section of 
the capillary is changed to 8.4, 7.6, 6.8, 6.0, 5.2, 4.4, 3.6 and 2.8 µm. Then, the time taken 
by the 1st RBC to reach the outlet of the capillary is measured. Similar to the previous 
case, time taken by the 1st RBC to reach the outlet of the capillary increases when the 
stenosed diameter of the capillary decreases. However, the predicted critical diameter 
of the capillary with the inlet pressure of 500 Pa is 4.472 µm, which is higher than the 
predicted critical diameter (4.004 µm) of the capillary with the inlet pressure of 1000 Pa. 
However, when the inlet pressure of the capillary increases (i.e. 1500, 2000 and 2500 Pa), 
the critical diameter for the stenosed capillary, which stops the blood flow do not show 
significant variation (see Fig. 21; Table 2) compared with the predicted critical diameter 
of the capillary with the inlet pressure of 1000 Pa. (see Fig. 21; Table 2).
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Fig. 21 Variation of the time taken by the 1st RBC to reach the outlet of the capillary with different stenosed 
diameter values, for different inlet pressure values while the outlet pressure is zero

Table 2 The critical diameter of  the stenosed section of  the capillary for  different inlet 
pressures

Inlet pressure of the stenosed capillary (Pa) Critical diameter of the stenosed section (µm)

500 4.472

1000 4.004

1500 3.985

2000 3.992

2500 3.989
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Conclusions
A three-dimensional spring network model based on DEM is used in combination with 
the SPH method to model the motion and deformation of RBCs in capillaries. From this 
study, the below conclusions are drawn.

In numerical simulation, initial setting of the RBCs directly affects the deformation 
behaviour of the RBCs. The lengths of the capillaries should be long enough to obtain 
reliable enough results without affecting the computation cost too much.

When the membrane bending stiffness of the RBCs increase like in malaria infected 
RBCs they show highly asymmetrical deformed shapes and rolling motions. On the 
other hand, the RBCs with lower membrane bending stiffness values exhibit wrinkles on 
the membrane when they are deforming.

Irrespective of the membrane bending stiffness of the RBCs, RBCs deform a certain 
amount in order to pass through the stenosed section of the capillary.

The RBCs exhibit bullet-like shapes when they flow through the capillaries with nar-
rower sections, which are narrower than the diameter of the RBCs at rest. However, 
they show parachute shapes when the diameter of the section they are moving through, 
increases.

There is a certain critical diameter for a given stenosed capillary and for a given pres-
sure gradient which completely stops the motion of blood with RBCs, which leads to 
microvascular blockages.
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