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Background
Cardiovascular diseases are the leading causes of death in the world and disease inci-
dence is steadily increasing in recent years [1, 2]. Aortic dissecting aneurysm is one of 
the most catastrophic cardiovascular emergencies, especially in Stanford type-A aortic 

Abstract 

Background: This study is to investigate the influence of hemodynamics on Stanford 
type-A aortic dissection with different tear size and location, to provide some support 
for the relationships between the risks (rupture, reverse tearing and further tearing) and 
tear size and location for clinical treatment.

Methods: Four numerical models of Stanford type-A aortic dissection were estab-
lished, with different size and location of the tears. The ratio of the area between the 
entry and re-entry tears(RA) is various within the model; while, the size and the location 
of the re-entry in the distal descending aorta are fixed. In model A11 and A21, the 
entry tears are located near the ascending aorta. The RA in these models are 1 and 2, 
respectively; In the model B11 and B21, the entry tears are located near the proximal 
descending aorta and the RA in these models are again assigned to 1 and 2, respec-
tively. Then hemodynamics in these models was solved with numerically and the flow 
patterns and loading distributions were investigated.

Results: The flow velocity of the true lumen in model A21, B21 is lower than that in 
A11, B11, respectively; the time-averaged wall shear stress (TAWSS) of the false lumen 
in model A21 and B21 is higher, and for ascending aorta false lumen, A11, A21 are 
higher than B11, B21, respectively. False lumen intimal wall pressure of A11, A21 are 
always higher than the true lumen ones.

Conclusion: The variation of the RA can significantly affect the dynamics of blood 
within the aortic dissection. When the entry tear size is larger than the re-entry tear 
ones, the false lumen, proximal descending aorta and the wall near re-entry tear are 
prone to cracking. Entry tear location can significantly alter the hemodynamics of 
aortic dissection as well. When entry tear location is closer to proximal ascending aorta, 
false lumen continues to expand and compress the true lumen resulting in the true 
lumen reduction. For proximal ascending aorta, high pressure in false lumen predicts a 
higher risk of reverse tear.
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dissection which can be acutely complicated by rapid expansion, rupture and further 
tearing. Theoretically, once Stanford type-A aortic dissection diagnosed, the patient 
should do emergency surgery immediately, but restricted by geographical, economic and 
technological conditions, not all patients can receive treatment in time. Moreover, there 
is no uniform evaluation criterion to judge which specific condition in type-A dissection 
is more critical.

With the recent development of computer technology, computational fluid dynam-
ics (CFD) has been widely applied to study the dynamics of blood [3–6]. It provides 
a more effective way to elucidate the mechanism of some vascular diseases (such as 
aortic dissection) and to predict their progression. It was pointed out from previous 
studies that hemodynamic parameters such as flow velocity, wall pressure and wall 
shear stress (WSS) [7–10] have an important correlation with rupture. CFD helps 
to understand and predict various phenomena in the development of dissecting 
aneurysm.

There have been many studies on tears of aortic dissection, for example, Rudenick PA 
Study Group [11] established computer models with different intimal tear sizes, and 
simulated blood flow inside the dissection and found blood flows more slowly through 
the bigger tear, but the flow field in the false lumen is more complex; blood flows more 
quickly through smaller tear as well as simple flow field in the false lumen. Cheng [12] 
found that flow rate into the false lumen is dependent on both the size and the loca-
tion of the primary tear. Blood flow into the false lumen increases with increasing tear 
size and proximal location. Tse [13] thought that relatively high time-averaged wall shear 
stress (TAWSS, in the range of 4–8 kPa) may be associated with tear initiation and pro-
gression. Chen [14] found that, for patients with multiple tears, if stent-grafts occlude 
all re-entries, inter-luminal blood communication would be effectively reduced and thus 
induce thrombosis in the false lumen.

The purpose of this article is to reveal the hemodynamics influence of intimal tear size 
and location on Stanford type-A aortic dissection. We obtained the boundary conditions 
of the models from clinical data and lumped parameter model of the cardiovascular sys-
tem. The flow transport in the true and false lumens was solved numerically and the 
influence of hemodynamics on Stanford type-A aortic dissection of different tear size 
and location was investigated. We hope to provide some evidence on preoperative plan-
ning of type-A aortic dissection for medical personnel.

Methods
Acquisition and the numerical model

50 cases of aorta dissection with only one entry and one re-entry tear were selected. 
The parts of the aortic dissection model with tears were reconstructed based on the 
computed tomography angiography (CTA) data. The tear areas were established by a 
measurement tool (Magics17.0, MaterialiseInc., Belgium). The samples were from the 
ascending aorta thoracic near the aortic arch and the thickness measurement was com-
pleted by Electronic Outside Micrometers. The area of tears and the thickness of flap 
were measured, and the tear locations were computed. Statistics show that the cases 
with the area ratio of entry and re-entry tears (RA) is 1 nearly accounted for 50%, and 
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the cases with entry tear area larger than the re-entry tear accounted for 30% and the RA 
of which is close to 2. The average of flap thickness is 1.2 mm.

The numerical model of the aorta dissection was established based on the CTA data 
of a normal aorta (in-plane resolution of 512 by 512 pixels with a pixel size of 0.625 mm 
and slice thickness of 1 mm, total 600 images). Image segmentation and surface recon-
struction of the normal aorta were accomplished by a semi-automatic threshold-based 
segmentation tool (Mimics17.0, MaterialiseInc., Belgium). After smoothed, the format 
of aorta model was changed into X_T (a kind of parasolid model file format) from STL 
(stereolithography) by extracting surface function (Geomagic Wrap2015, Geomagic Inc., 
USA). Starting from the middle of the ascending aorta to the end of the thoracic aorta, 
along the aorta axis, aorta model was cut off a thin layer with 1.2 mm thickness as the 
dissection flap. The modification of tear size and location was performed using extruded 
boss feature by computer aided design (CAD) tool (SolidWorks2015, SolidWorks Inc., 
France). The final four models are shown in Fig. 1 and geometric model size is shown in 
Table 1.

Fig. 1 Four Stanford type-A aortic dissection digital models of different size and location of the tear (the size 
and location of the re-entry in the distal descending aorta are fixed). In model A11 and A21, the entry tears 
are located near the ascending aorta, and the RA are 1 and 2, respectively; In the model B11 and B21, the 
entry tears are located near proximal descending aorta and the RA are again assigned to 1 and 2, respectively

Table 1 Geometric model size for branches of blood vessels and tear

In all cases, each branch vascular and re‑entry tear are in the same size

Variable Diameter (mm)

Ascending aorta 31.14

Brachiocephalic 11.95

Left common carotid artery 3.64

Left subclavian artery 10.16

Descending aorta 22.32

Re-entry tear (circular) 8.00
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Meshing and elements

A semi-automatic adaptive meshing technique was employed in HyperMeshv10.0 (Altair 
HyperWorks, Troy, MI, USA) to optimize both computational efficiency and element 
quality. 4-noded tetrahedral elements were assigned to all models, and element size was 
set to 0.001 m. The grid was divided into various entrances, exit and intimal regions. The 
number of elements and node of models meshed as shown in Table 2.

Boundary conditions and flow models

The Navier–Stokes equations were solved numerically with a commercial finite-volume-
based computational fluid dynamics (CFD) solver (Fluent15.0, ANSYS,Inc., USA). Tran-
sient analysis was adopted to investigate the pulsatility of blood flow. The average systolic 
and diastolic blood pressure of 50 patients was obtained from the clinic. Time-dependent 
pulsatile waveform of pressure was acquired by fitting the average blood pressure into 
the curve of normal blood pressure to ensure a consistent trend in blood pressure. The 
pressure boundary conditions used in this study are consistent with the data in Rapezzi’s 
work [15]. Time-dependent pulsatile waveform of pressure at the ascending aorta inlet 
was shown in Fig. 2a. Time-dependent pulsatile waveforms of flow at the descending aorta 
outlet (Fig. 2b) and brachiocephalic artery outlet, the left subclavian artery outlet, the left 
common carotid artery outlet, respectively, were obtained from Olufsenet et al.’s [16] work.

Transient analysis was adopted to investigate the pulsatility of blood flow. It was 
treated that blood is incompressible, and blood has same kinematic viscosity and density 
of Newtonian fluid [17] with a dynamic viscosity of 3.5 m Pa and a density of 1050 kg/m3 
[18–20]. Aortic wall was assumed to be rigid and therefore no-slip condition was applied 
at the aortic wall. In this study, the blood flow in the aortic dissection is unsteady. The 
maximum Reynolds numbers (Remax) in our models is 3208, and the average Reynolds 
numbers (Reave) based on the average flow velocity (Vave) and average hydraulic diameter 
(Dh, ave) at peak systole is 944. The Womersley numbers (α) based on the Dh, ave is 23.9. So 
the blood flow is assumed to be laminar [21–23]. The calculation time step and cardiac 
cycle were set to 0.01 and 0.8 s, respectively. The maximum root mean square residual 
was given to be 10−5, and the maximum number of iterations per time step was set to 
200 to ensure adequate accurate results. To minimize the influence of initial flow condi-
tions, all simulations were carried out for four cardiac cycles to achieve a periodic solu-
tion, and the results presented here were obtained in the forth cycle.

RRT

Relative residence time (RRT) refers to the duration that a particle spends to flow through 
a certain area. If the residence time is short, it means the possibility of particle deposition 
in the vessel pipe wall is small. The inverse phenomena could be seen when the possibility 
of particle deposition is large. In the separated, recirculating flow, the RRT is highest [24].

Table 2 The numbers of elements and nodes of each model

A11 A21 B11 B21

Element 1,448,303 1,446,722 1,451,433 1,446,909

Node 252,569 252,209 253,060 252,262
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where oscillatory shear index (OSI) was calculated as Eq. 3 [25]:

where τw is wall shear stress, T is one cardiac cycle.

(1)TAWSS =
1

T

∫

T

0

WSS dt

(2)RRT =
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Fig. 2 a The figure shows the pulsatile waveform of the inlet pressure at the ascending aorta. b The figure 
shows the time-dependent pulsatile waveforms of flow at the descending aorta. c The whole aorta model 
with all boundary conditions shown
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Results
Flow velocity, patternsand ratio

Velocity vector plots at peak systole are presented in Fig.  3a, b. In all cases, the true 
lumen near the aortic arch appears vortex as with the blood flow pattern of the nor-
mal aortic arch. For A11 and A21 models, the false lumen blood flow appears vortex, 
and when the blood flow rate is lower, the phenomenon of vortex is more significant. 
This phenomenon is consistent with the blood flow pattern observed by the AD patient’s 
aorta Doppler color ultrasound examination [26]. For B11 and B21, stable blood flow 
can be seen in the false lumen.

In the whole pulse period, blood flow velocity of the true lumen is greater than in the 
false lumen. When the blood flows from the aortic arch to the thoracic aorta, the peak 
value of the velocity is deviated from the medial wall gradually, and the velocity is high 
near the proximal descending aorta. For all cases, flow velocity around the re-entry tear 
is high, and velocity increases with increasing entry tear size and proximal location as 
well. The blood vessel wall impacted more seriously by the blood flow with the higher 
velocity has more chance to be ruptured.

Table 3 illustrates the percentage of blood flow rate entering the true and false lumens. 
Results demonstrate significant variability of flow rate into the false lumen among the 
four models. Regardless of where the entry tear is, the entry tear size is larger, and the 
false lumen blood flow is more. This phenomenon confirmed to Cheng’s [12] findings.

Compared with A11 and A21 models, the flow ratio change of B11 and B21 models 
caused by the RA is smaller. The possible reason for this phenomenon is the location of 
entry tear. When the entry tear is near the proximal ascending aorta where blood flow 
velocity is very high and the blood flows straight to entry tear, therefore the influence of 
tear size is not so significant.

Pressure distribution

Pressure profile (Fig. 3c) of the aorta dissection wall is drawn at peak systole.The vessel 
wall pressure gradually decreases from the proximal to the distal end. False lumen wall 
pressure of A11, A21 is always higher than that of the true lumen, while the B11 and B21 
models is opposite; High wall pressure near proximal descending aorta may indicate that 
this site may be a dangerous area on the wall of aortic dissection. Continuous impaction 
on the wall may lead to structural damage and the stiffness and elasticity changes of the 
vascular wall could damage the vascular wall, so that rupture may occur eventually.

Pressure contours at systolic peak are presented in Fig. 4, showing two sides of intima 
(true and false lumens) pressure difference. However, the pressure does not gradually 
decrease from the proximal to the distal end like the pressure contours of vessel wall. 
It is found that the wall pressure distribution has a obvious zoning phenomenon, so we 
select six significant circle areas (the diameter is 16 mm) on the true and false lumen 
intima wall, as shown in Fig. 5A. We extracted the true and false lumen intima wall pres-
sure difference (the true lumen intima wall pressure minus the false lumen intima wall 
pressure) of these six areas during the whole cardiac cycle, as shown in Fig. 5B.

During the whole cardiac systolic period, the intima wall pressure difference changes a 
lot and shows a strong pulsation. Thus, sustained shrinking and stretching of intima will 
be caused by the periodic fluctuation to adapt the pressure changes at different times 
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Fig. 3 Velocity and wall pressure analysis at systolic peak. a, b Flow velocity vector map consists of two parts: 
ascending aorta with aorta arch section (a); descending aorta section (b). Slices cut tears in half and can 
display true and false lumen intuitively. Trends in flow velocity distribution among all models are similar; how-
ever, flow patterns of ascending aorta with aorta arch section in false lumen are quite different. c Pressure 
distributions. The vessel wall pressure gradually decreases from the proximal to the distal end in all models
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of the intima, easily leading to the emergency of the re-entry tears. At the same time, 
we found that the wall pressure of A11 and A21 models in false lumen almost always is 
higher than the true lumen ones,resulting that the false lumen has a trend of continual 
expansion and there is compression on the true lumen in the whole cardiac cycle, espe-
cially for A21 model.

Wall shear stress (WSS)

On account of the wall shear stress cannot be measured directly in clinic, it can be 
determined by calculating the gradient of velocity field which is got from CFD. How-
ever, a better representative of WSS is time averaged wall shear stress (TAWSS), which is 
obtained by averaging the WSS in a cardiac cycle.

From the TAWSS distribution trends (Fig. 6), the four models are basically the same, 
TAWSS from the proximal to the distal end of the aorta gradually decreases. The area 

Table 3 Percentage of flow rate into the true and false lumens in different AD cases

Flow ratio, % A11 (%) A21 (%) B11 (%) B21 (%)

False lumen 29.23 42.98 30.90 38.11

True lumen 70.77 57.02 69.10 61.89

Fig. 4 Intima wall pressure contour plots at systolic peak. A view of two sides of intima shows pressure differ-
ence in true and false lumen. The first line and the second line in the figure are the pressure distributions of the 
true and false lumens sides, respectively
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Fig. 5 A The selection of the key areas on both the true and false lumen sides of intima. The six areas are 
entry tear area near the proximal ascending aorta a, the middle of ascending aorta area b, entry tear area near 
the proximal descending aorta c, aorta ligament area d, the middle of descending aorta area e and re-entry 
tear area f. B The true and false lumen intima wall pressure difference of six key small circle areas in the whole 
cardiac cycle. (Horizontal coordinate: time/s; vertical coordinate: pressure difference/pa)
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around the tears partially appears high TAWSS, and TAWSS is higher when entry tear 
size is larger. Where near the proximal descending aorta on the true lumen wall. TAWSS 
is high, and A11 and B11 are higher than A21 and B21, respectively. Owning to more 
blood flows into the true lumen and great changes in the direction of the blood flow, the 
impact of blood flow on the wall near the proximal descending aorta is larger. The edges 
of the entry tears in all cases appear localized high TAWSS.

Throughout the whole cardiac circle, TAWSS difference between wall of the true and 
the false lumen is large. TAWSS of the false lumen is lower (<3. 0  Pa basically) while 
TAWSS of the true lumen has a greater value and variation range.

Relative residence time (RRT)

From the RRT distribution trends (Fig. 7), we found that for A11, A21 models, the area of 
high RRT is small and only distributesin the false lumen part of aortic proximal descend-
ing aorta. For B11, B21 models, high RRT regions mainly distribute on the false lumen, 
especially the ascending aorta part. Due to almost stagnant blood in the false lumen part 
of the ascending aorta when the entry tear near the proximal descending aorta, so it may 
be prone to thrombosis.

Discussion
This study emphasizes on the hemodynamics in Stanford type-A aortic dissection 
with different tear size and location, hemodynamic factors such as flow patterns, pres-
sure and WSS, which are difficult to measure in vivo, can be determined through CFD 
simulations.

The phenomenon of blood flow separation is that the blood flow in the lumen of the 
same artery (actually the true lumen and false lumen blood flow) is separated by the 
internal flow, as shown in Fig. 3. This phenomenon could be an indirect sign in the diag-
nosis of aortic dissection [27]. When the entry tear is close to the proximal location, the 
false lumen in the ascending aorta appears more turbulent. Also the unstable flow may 
lead to the intense impaction on vascular wall, and therefore, retrograde ascending aor-
tic dissection may occur.

Fig. 6 Time-averaged wall shear stress (TAWSS) contour plots in the four models. High TAWSS is found at the 
entry tear site and the proximal descending aorta of the true lumen
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The analysis on pressure distribution prompts us that vessel wall pressure distribution 
and incidence of aortic dissection may have some correlations. The results are consistent 
with that Prokop et al. [28] proposed aortic dissection intimal tear usually occurs on the 
wall where blood pressure is the highest. As well as that in 1830 Elliotson presented aor-
tic dissection is the most common site of intimal tear occurrence. The inner membrane 
rupture is horizontal while the outer membrane rupture is longitudinal.

Since a higher false lumen pressure plays a critical role in dilating the false lumen and 
generating an aortic aneurysm [29], the possible development of aneurysm may occur 
distally to the entry tear. For ascending aorta, high pressure in the false could have con-
tributed  to the retrograde ascending aortic dissection. Compared  to A11 and A21 
models, the false lumen wall pressure of B11 and B21 models is lower. This may be an 
inducement for the development of Stanford type-B aortic dissection into Stanford type-
A aortic dissection.

In the arterial system, the wall shear stress fluctuation is strong where the low shear 
stress, reflux and vortex occur. High wall shear stress (>10  Pa) was observed for all 
assessments in the location of the aortic proximal descending aorta. Endothelial cells are 
very sensitive to WSS, and the endothelial cells are susceptible to fatigue damage under 
strong shear stress [30, 31]. Local intimal tear occurs when a strong impact of blood 
flow. It is lead to gradual stripping intimal expansion in the artery, forming the true and 
false lumen. So flap only has a part of the media layers and the intimal layers. The WSS 
sensitivity should be different and maybe more sensitive than normal arterial wall. To 
prove this point, further work need to be done after the discussion.

Thrombosis is typical phenomenon for false lumen, seen in 50% of cases. If the inti-
mal tear occurs in the presence of thrombus in the aneurysm, blood clots in acute aor-
tic dissection true lumen could also be seen. If the false lumen is re-connected with 
the true lumen by re-entry tear, which would reduce the pressure in the false lumen 
to some extent. Then the false lumen increases blood flow leading to reduction of inci-
dence rate of thrombosis [13, 14]. However, considering lower speed of blood in the false 
lumen and narrowed true lumen, together with no additional endothelial cells on the 

Fig. 7 Relative residence time (RRT) contours plots of the four models. High RRT predicts larger possibil-
ity of false lumen thrombosis. RRT distribution trends and clinical phenomenon correlate well with areas of 
thrombus formation in the false lumen
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wall of the false lumen, the chance of thrombosis is relatively large in the false lumen. A 
larger prospective study may allow us to more accurately define which tear location is 
associated with spontaneous false lumen thrombosis.

There are limitations in this study that need to be improved by further researches. 
First: the study ignored the vessel wall deformation and the hemodynamic changes. In 
consideration of a better physiological approach, the simulation should be done with 
fluid–structure interaction. Second: only two different entry tear changes in the RA and 
location were involved in our research. To get more comprehensive and accurate conclu-
sion, we should select more subjects, change the tear numbers and the RA.

Conclusions
This study focuses on hemodynamic effects of different tear size and location of Stanford 
type-A aortic dissection. By the finite volume method, we use CFD(computational fluid 
dynamics) to do hemodynamic numerical simulation, then we accessed to aortic true 
and false lumens blood flow characteristics and hemodynamics changes of dissection 
development.

In this study, the following conclusions are obtained. First, the RA variation can signif-
icantly affect the hemodynamics of aortic dissection. Numerical simulation results show 
that the flow rate (velocity) in the true lumen is lower when the entry tear size is larger, 
and inversely, the flow rate (velocity)in the false lumen is higher. The false lumen,the 
proximal descending aorta and the wall near re-entry tear are prone to rupture more 
easily when the entry tear size is larger.

Second, entry tear location can significantly alter the hemodynamic characteristics 
of aortic dissection as well. When the entry tear is close to the proximal location, false 
lumen wall pressure is higher than the true lumen. Resulting that the false lumen have 
a continual expansion trend and there is compression on the true lumen. Wall pressure 
of the descending aorta in the true and the false lumen is unstable when the entry tear 
is near to the proximal descending aortic. Therefore, it may cause intimal fracture and 
further tearing. The ascending aortic false lumen TAWSS value is higher when the entry 
tear is close to proximal location, indicating that the risk of retrograde ascending aortic 
dissection needs attention.
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