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Background
Recently, wavelet transform (WT) that localizes features in time–frequency domain has 
been emerged widely in ECG signal de-noising [1]. Generally, removing noises based on 
WT can be divided in two mainly methods. The first method is based on WT modu-
lus maxima by holding the maximum information on the original ECG signal, which 
lead to a large amount of calculation [2], while the second method used by Donoho and 
Johnstone [3, 4] threshold the decomposed wavelet coefficients then reconstruct the sig-
nal using inverse wavelet transform. Although the efficiency of WT based thresholding 
method in ECG de-noising, it suffers from some shortcomings like aliasing that brings 

Abstract 

Background: Since the electrocardiogram (ECG) signal has a low frequency and a 
weak amplitude, it is sensitive to miscellaneous mixed noises, which may reduce the 
diagnostic accuracy and hinder the physician’s correct decision on patients.

Methods: The dual tree wavelet transform (DT-WT) is one of the most recent 
enhanced versions of discrete wavelet transform. However, threshold tuning on this 
method for noise removal from ECG signal has not been investigated yet. In this work, 
we shall provide a comprehensive study on the impact of the choice of threshold algo-
rithm, threshold value, and the appropriate wavelet decomposition level to evaluate 
the ECG signal de-noising performance.

Results: A set of simulations is performed on both synthetic and real ECG signals 
to achieve the promised results. First, the synthetic ECG signal is used to observe the 
algorithm response. The evaluation results of synthetic ECG signal corrupted by various 
types of noise has showed that the modified unified threshold and wavelet hyperbolic 
threshold de-noising method is better in realistic and colored noises. The tuned thresh-
old is then used on real ECG signals from the MIT-BIH database. The results has shown 
that the proposed method achieves higher performance than the ordinary dual tree 
wavelet transform into all kinds of noise removal from ECG signal.

Conclusion: The simulation results indicate that the algorithm is robust for all kinds 
of noises with varying degrees of input noise, providing a high quality clean signal. 
Moreover, the algorithm is quite simple and can be used in real time ECG monitoring.

Keywords: ECG, De-noising, Dual tree wavelet transform, Threshold tuning, Realistic 
noise

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

RESEARCH

El B’charri et al. BioMed Eng OnLine  (2017) 16:26 
DOI 10.1186/s12938‑017‑0315‑1 BioMedical Engineering

OnLine

*Correspondence:   
el.bcharri@gmail.com 
1 ESSI-LISTI Laboratory, 
National School of Applied 
Sciences, Ibn Zohr University, 
Agadir, Morocco
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0001-5714-0176
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-017-0315-1&domain=pdf


Page 2 of 18El B’charri et al. BioMed Eng OnLine  (2017) 16:26 

artifacts in the de-noised signal when the wavelet coefficients are processed [5]. In order 
to overcome those shortcomings, the dual tree wavelet transform (DT-WT) has been 
introduced with new properties that can enhance the reconstructed ECG signal [6]. The 
DT-WT was tested on ECG signal de-noising applying soft thresholding on magnitude 
nonlinearity [7]. However, the optimal decomposition level together with threshold 
value and function was not taken into consideration.

A substantial amount of studies focused their work on removing commonly known 
noise such as white noise. Generally, a reliable de-noising algorithm is able to remove 
noise from the acquired ECG signal, such as power-line interference, baseline wander, 
muscle noise and motion artifact and other noises with, which in different levels leads 
to misjudgment and deletion of standard ECG identification for the ECG feature extrac-
tion and decreases the degree of diagnostic accuracy. Moreover, with the modern tele-
healthcare systems involving transmission and storage of ECG, noise also arises due to 
poor channel conditions. A noisy ECG may hinder the physician’s correct evaluations on 
patients. Therefore, removing noise from ECG signal and pre-processing has become an 
exclusive requirement.

On the other hand, wavelet thresholding is a viable technique for noise reduction, the 
value of the threshold is usually application dependent and difficult to fix in practice. 
Wavelet threshold function mainly includes hard thresholding and soft thresholding. 
The basis of these methods is quite simple, and they are easy to use in practice. Hard 
thresholding can retain the abrupt information in the signal, but it may generate oscil-
lations in the reconstructed signal known as Pseudo-Gibbs phenomenon [8, 9]. Soft 
thresholding can further smoothen the signal than hard thresholding, and has a good 
continuity. However, the reconstructed signal may be distorted and has a blurred edge. 
Furthermore, the amplitude of the reconstructed signal will decrease significantly, in 
particular, the amplitude of the R wave in QRS complex will attenuate greatly, which is a 
crucial parameter for heart diagnosis. All these shortcomings are detrimental for cardio-
vascular diagnostic accuracy.

To overcome aforementioned limitations and to provide an efficient tool for the extrac-
tion of high-resolution ECG signals from recordings contaminated with background 
noise, the dual tree wavelet transform, which has elegant computational structure [10, 
11] is investigated in this paper. The results are obtained by performing extensive simu-
lation studies on threshold tuning. This threshold tuning is performed by varying the 
threshold value and function as well as the optimal decomposition level, which affects 
the algorithm performance on removing the noise. This performance is assessed by 
using a wide range of noises that are of major concern.

This paper is organized as follows; the “Methods” section is dedicated to the theoreti-
cal background on the dual tree complex wavelet transform. In this section, the materi-
als used and the proposed algorithm are also presented. For quantitative and qualitative 
assessments of the algorithm performance, a set of simulations is performed in the 
“Results” section. These simulations are discussed and explained in the “Discussions” 
section. Finally, the conclusion of this study is provided in the “Conclusions” section.
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Methods
Data acquisition

Synthetic ECG signal

In order to obtain free-noise ECG signal, a synthetic ECG signal is used. The dynami-
cal model used, which is introduced by McSharry [12], can generate a realistic artificial 
ECG waveform. The signal is created by coupling three ordinary differential equations. 
The user can settle various parameters including the ECG sampling frequency, number 
of beats, mean heart rate and waveform morphology. In this work, the default synthetic 
ECG parameters were taken.

Colored noises

To generate these noises, the DSP System Toolbox integrated in Matlab 2014 was used. 
These kinds of noises are random signals that respect a well-defined shape on the fre-
quency spectrum. Each colored noise name corresponds to the light wave frequencies of 
a particular color. The equation that characterizes colored noises is defined by:

where S(f ) represents the power spectral density function of a frequency f , σV  is the 
variance of the original signal; β is the slope that distinguishes each noise color as shown 
in Table 1.

ECG acquisition from ECG databases

To work with real ECG signal, two databases were used. The first database is the MIT-
BIH Arrhythmia Database [13]. It includes 48 annotated recordings. Each record lasts 
about 30  min and is sampled at a frequency of 360  Hz with 11-bit resolution over a 
10 mV range. The signals are extracted from two channel ambulatory ECG recordings. 
About 29 records are collected from a mixed population of inpatients; the remaining 
records are collected from outpatients. The second database used is the MIT-BIH noise 
stress test database [14]. This database can be classified into two classes of records. The 
first class includes 3 recordings of noise typical in ambulatory ECG recordings. These 
real noise records are baseline wander (BW), muscle artifact (MA), and electrode 
motion (EM) artifact. They are created using physically active volunteers and standard 
ECG recorders, leads, and electrodes while the second class contains 12 records that are 
created from two signals (118 and 119) of the MIT-BIH Arrhythmia database by add-
ing the EM noise. All the records contained in this database are about 30 min in length 
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Table 1 Colored noise type based on β value

β value Noise type

0 White

1 Pink (flicker noise)

2 Brown (Brownian motion)

−1 Blue

−2 Violet (purple noise)



Page 4 of 18El B’charri et al. BioMed Eng OnLine  (2017) 16:26 

having sampling frequency of 360  Hz with 12-bit resolution. We are interested in the 
first class since it gives us the ability to add calibrated amounts of real noise to any free-
noise ECG signal. All the ECG data along with further information about these records 
can be collected from the two described database via [13, 14], respectively.

Wavelet analysis

Wavelet transform

Since its inception, the WT has become the most powerful tool for analyzing signals in 
many fields of research including the analysis of non-stationary signals. Unlike the tra-
ditional Fourier transform (FT), WT provides a time–frequency analysis that can detect 
local, transient or intermittent components in the studied signal. It is a linear transform, 
which can refine a signal into multi-resolution representation using a scaled and shifted 
form of the mother wavelet. For practical applications, Mallat [15] has introduced a reli-
able and efficient algorithm to calculate the discrete wavelet transform (DWT).

Despite its success in several areas of research, the DWT suffers from several draw-
backs like oscillations around singularities, shift variance and lack of directionality. 
Besides, the aliasing issue appears when wavelet coefficients are threshold, which causes 
distortion to the reconstructed signal.

Dual tree wavelet transform

The DT-WT was introduced by Kingsbury [6] in 1998. It is one of the most improved 
versions of DWT that brings new fundamental properties that overcome the limitations 
encountered the DWT. The DT-WT is built using two separate real filters, which repre-
sent the dual tree, to give an analytic transform. The first tree produces the real part of 
the complex wavelet coefficient while the second produces the imaginary part. Based on 
FT representation, Kingsbury has proposed to construct the DT-WT that is expressed 
as:

with magnitude

and phase

where i =
√
−1, ψh(t) is a real and even function, whereas ψg (t) is an imaginary and an 

odd function. These two functions are implemented so that ψg (t) is the Hilbert trans-
form of ψh(t) in order to ensure the perfect reconstruction of the decomposed signal.

Wavelet thresholding

Wavelet threshold functions

The threshold function is used to reduce the noise in a signal by acting on the details 
wavelet coefficients. According to the selected threshold function, these coefficients are 

(2)ψ(t) = ψh(t)+ iψg (t)
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√
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shrunk or scaled. There are several types of threshold estimators. We can first distin-
guish the hard thresholding and soft thresholding proposed by Donoho and Johnstone 
[3, 4]. The other threshold functions are derived from the mainly soft thresholding. In 
this study, the following threshold techniques are tested on the algorithm. Their perfor-
mances are illustrated in Fig. 1. Their formulas are expressed as follows:

  • Hard thresholding.

  • Soft thresholding

  • Semi-soft thresholding (S–S)

  • Non-negative Garrote thresholding (N-NG)

  • Hyperbolic thresholding (HYP)

(5)R =
{

s, |s| ≥ Th
0, |s|Th

(6)R =
{

sign(s)(|s| − Th), |s| ≥ Th
0, |s| < Th

(7)R =
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Fig. 1 Threshold response applied to linear test signal (a) using the functions: b hard, c soft, d semi-soft, e 
non-negative garrote and f hyperbolic
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In these techniques, the variable R refers to the resulting signal from threshold func-
tion, s represents the wavelet coefficients and Th is the threshold value. In the case of 
semi-soft thresholding, this function introduces two threshold values Th1 and Th2, where 
Th1 < Th2.

Threshold value selection

Among the critical parameters, that affect the quality of noise suppression, is the thresh-
old value. According to the selected value, the de-noised ECG signal could either retain 
some interferences or have some distortion and discontinuities, depending on whether 
the threshold value was too small or overly large value. The common threshold values 
used in the literature [16, 17] are defined as follows:

  • Universal threshold

  • Universal threshold level dependent

  • Universal modified threshold level dependent

  • Exponential threshold

  • Exponential threshold level dependent

  • Minimax threshold

  • The modified unified threshold [17]

where N  denotes the length of the original signal, nj represents the length of the sig-
nal at j-th scale, while σj is the standard deviation on j-th decomposition level that is 
expressed as:

(10)Th1 = σ
√

2 logN

(11)Th2 = σj

√

2 log nj

(12)Th3 = σj

√

2 log nj
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(15)Th6 = 0.3936+ 0.1829×
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Here, MAD is the median absolute deviation and is defined as:

The value of σ is calculated from each level detail coefficients except the universal 
threshold case, which is calculated from the first level detail coefficients.

The proposed algorithm

Since we want to implement this algorithm in an embedded system in our future work, 
the noise reduction procedure established in this study is quite simple. This method 
benefits the power of time–frequency analysis that offers the DT-WT while using a 
minimum amount of computation. The proposed ECG signal de-noising algorithm using 
DT-WT is illustrated in Fig. 2 of which different steps are explained as follows:

Free‑noise ECG signal

To have a clean real ECG signal seems to be difficult. In our study, we first use the syn-
thetic ECG signal for visual performance evaluation of noise reduction algorithm. These 
signals can be assumed as nearly free-noise signals. Afterward, we process the other sig-
nals of the described databases.

Noise generator

To generate noise, we create a function in Matlab that can generate various types of 
noises, including white noise, colored noise (flicker, Brownian noise, blue, and pur-
ple), baseline wander noise (BW), electromyogram noise (EM), and motion artifact 
(MA). These interferences are inserted into a clean ECG signal with a desired value of 
signal-to-noise-ratio.

In addition, the function can also generate a combined noise (CN). This CN reflects 
the realistic noise case that prevents an ECG recording. It is a composition of EM, MA, 
and BW noise. Each of the three noises can be controlled as described in the following 
expression:

(18)MAD = median
(∣

∣dj −median
(

dj
)∣

∣

)

(19)CN =
wbw × BW+ wem× EM+ wma×MA

wbw + wem+ wma

Fig. 2 Flowchart of the proposed DT-WT de-noising algorithm
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where wbw, wem, and wma are the weights of baseline wander noise, electromyogram 
noise, and motion artifact, respectively. Each weight defines the added noise percentage. 
For example, if we choose wbw = 2, wem = 2, and wma = 5, means that motion artifact 
is the predominant noise in the noisy ECG signal.

DT‑WT ECG decomposition level

The decomposition level depends on the baseline wandering frequency, since it is the 
lowest noise frequency among other noises. To estimate the frequency of baseline wan-
der, the two ‘bw’ records of [14] are taken into consideration. The power spectrum of 
each record is calculated. From Fig. 3, we can observe that the frequency range of both 
records is approximately concentrated below fBL = 1 Hz. To select the appropriate 
decomposition level J , we used the formula described in [16]:

where the ceil(x) function rounds the element x to the nearest integer greater than or 
equal to that x, Fmax represents the highest frequency components that respect the 
Nyquist Theorem, whereas, fBL, which is equal to 1, is the baseline wander frequency. 
Since each database has its sampling frequency, Fmax will change its value from database 
to another.

Zeroing approximation coefficients

Since the decomposition level is determined, the approximation coefficients magnitude 
at level J  are set to zero to suppress the baseline wander noise.

Details magnitude threshold

The details coefficients representing the high frequency of the signal are quantified up to 
a level X. This level X is determined empirically through a set of simulations. To select 
the optimal values, all threshold values and functions presented in this work have been 
tested on the algorithm.

(20)J = ceil

(

log2

(

Fmax

fBL

))

Fig. 3 The corresponding power spectrum of the two ‘bw’ records of length 10 s from the noise stress test 
database
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Reconstruct ECG signal

The processed details coefficients at each level, all together with the vanished approxi-
mation coefficients at level J  are inversely transformed using the inverse dual tree com-
plex wavelet transform to get the clean ECG signal.

Evaluation parameters

To quantify the algorithm performance and compare it with other methods, we took the 
most significant and widespread parameters in literature. In the following expressions, 
xn(n) means the studied original signal x0(n) corrupted by noise, while xr(n) represents 
the de-noised signal that is reconstructed from the algorithm.

•  Mean square error

•  Signal-to-noise-ratio

This parameter measures the amount of noise in a signal. This noise is evaluated at two 
levels, the noisy input signal in the case of SNRin and the output reconstructed signal for 
SNRout.

The overall signal-to-noise-ratio is assessed using the SNR improvement.

From Eqs. (24) and (21), the greater the SNRimp is, the better de-noising performance 
is achieved. Conversely, as the MSE parameter is small as the distortion is low in the 
reconstructed signal.

Results
A set of analyses is performed to achieve the promised results. For simplicity and practi-
cal implementation reasons, the studied signal is decomposed using ‘farras’ filter [18].

Baseline wander removal

To validate the algorithm performance at the removal of baseline wander, we corrupt 
the synthetic ECG signal by ‘bw’ noise from the noise generator using −5 dB SNRin. The 
added noise value is selected in such a way that it can be seen in Fig. 4.

(21)MSE =
1

N

N−1
∑

n=0

[x0(n)− xr(n)]
2

(22)SNRin(dB) = 10 log10

(

∑N−1
n=0 [x0(n)]

2

∑N−1
n=0 [x0(n)− xn(n)]

2

)

(23)SNRout(dB) = 10 log10

(

∑N−1
n=0 [x0(n)]

2

∑N−1
n=0 [x0(n)− xr(n)]

2

)

(24)SNRimp(dB) = SNRout(dB)− SNRin(dB)



Page 10 of 18El B’charri et al. BioMed Eng OnLine  (2017) 16:26 

Threshold tuning

Fixing the random numbers at white noise generation, the threshold values and func-
tions presented in this paper are all tested and the SNRimp is then calculated as shown in 
Table 2.

In order to choose the suitable threshold function as well as the decomposition level, 
the SNRin and the decomposition level are ranged from −25 to 25  dB and from 1 to 
J level, respectively. The simulation is then performed under the white noise using the 
three favorable threshold functions that are semi-soft, hard and hyperbolic. By varying 
all these parameters, the SNRimp and MSE are represented in a surface as illustrated in 
Fig. 5a and b, respectively.

De‑noising results based on the optimized threshold

De‑noising results using the synthetic ECG signal

To assess the algorithm performance, the tuned parameters are used on the synthetic 
ECG signal using colored noises with input SNR 5 dB as illustrated in Fig. 6.

During ECG signal acquisition, we encountered an ECG signal contaminated by a real-
istic noise that includes baseline wander, motion artifacts and electromyogram noise. 
Hence, from Eq. 19, this realistic noise is applied to a clean ECG signal using input SNR 
−5 dB as illustrated in Fig. 7. The weights used are 5, 10, and 10 for wbw, wem, and wma , 
respectively.

For quantitative evaluation, the SNR improvement is computed for each type of noise 
applied to the synthetic ECG signal with input SNR 5 dB using the hyperbolic threshold 
function. Table 3 shows the results based on SNR improvement and MSE.
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Fig. 4 Baseline wander noise corrected ECG signal
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De‑noising results using MIT‑BIH signals

To materialize the algorithm performance, we took some ECG signals from the MIT-
BIH Arrhythmia database. The de-noising algorithm is then applied to signals 203, 109, 
119, 111 and 108 as shown in Figs. 8, 9, 10, 11 and 12, respectively.

Discussions
The simulation results are established in three separate steps. Before we discuss each 
subsection result, it should be noted here that to exhibit the algorithm performance and 
to provide a visual noisy ECG signal on all the figures, the input SNR noise is added with 
values representing a strong background noise. In the first subsection, we can distin-
guish the result of baseline wander de-noising since it is independent of threshold pro-
cess of the detail coefficients. The BW noise used here is a real noise and is taken from 
noise stress database [14]. From Fig. 4, it is obvious that BW noise is perfectly removed 
without introducing distortion to the original ECG signal.

Table 2 The SNR improvement for various threshold values and functions

Threshold function SNRin (dB) Th1 Th2 Th3 Th4 Th5 Th6 Th7

Soft −5 3.20389 8.98377 0.25384 1.62297 1.47873 8.25054 9.91075

0 3.20123 8.53072 0.25589 1.61892 1.47919 4.49104 8.72283

5 3.19821 7.74215 0.26424 1.63262 1.50036 −0.02684 6.82608

S–S −5 1.68416 3.31768 0.00031 0.02849 0.01377 8.51847 11.02541

0 1.67689 3.33545 0.00033 0.03438 0.01846 4.55702 10.40910

5 1.66978 3.50081 0.00042 0.05118 0.02850 −0.02684 9.22058

HYP −5 2.35838 5.39335 0.00599 0.23616 0.18567 8.49517 10.96391

0 2.35281 5.34901 0.00627 0.24495 0.19283 4.56183 10.45635

5 2.34758 5.38295 0.00713 0.27530 0.21732 −0.02684 9.39921

N-NG −5 2.80969 7.16647 0.01163 0.42158 0.34169 8.31101 10.62271

0 2.80490 7.04860 0.01217 0.43125 0.35085 4.50462 10.16068

5 2.80054 6.89711 0.01375 0.47023 0.38413 −0.02684 9.03560

Hard −5 1.42053 2.61142 0.00031 0.01829 0.00901 8.87432 10.86859

0 1.41609 2.60485 0.00029 0.02486 0.01048 4.67213 10.25426

5 1.40484 2.77515 0.00042 0.03542 0.02116 −0.02684 9.32698
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Fig. 5 Threshold tuning based on a SNR improvement and b MSE
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To choose the optimal threshold, all the previously described threshold functions and 
values are tested in the threshold tuning subsection. According to Table 2, the modified 
unified threshold value Th7 gives the best result over all other threshold values. It can 
effectively reduce all kinds of high frequency and low frequency noises while preserv-
ing the amplitude and characteristics of ECG signals. By against, the threshold functions 
exhibit low variation in SNR improvement. It may be noted that the hard, soft and semi-
soft functions slightly surpasses the two other functions. Once these threshold parame-
ters are settled, we vary both the decomposition level and the input noise to observe the 
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Fig. 6 Colored noise removal from the ECG signal using the tuned parameters on DT-WT
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suitable threshold level. We can see that the amount of added noise and the decomposi-
tion level greatly influence the choice of the threshold function. By analyzing the added 
noise percentage in Fig. 5a and b, the semi-soft function is most suitable for positive val-
ues of SNRin, while the hyperbolic function is most adapted when SNRin is negative. For 
the remainder of the simulations, the hyperbolic function is opted since it provides a low 
distortion in the entire range of SNRin. On the other hand, the threshold decomposition 
level is set empirically by selecting the level that affords a small MSE value regardless 

Table 3 ECG de-noising performance for various types of noise

ECG signal corrupted by 5 dB SNRin SNRimp MSE

Flicker noise 5.62309 0.00399

Brownian noise 14.83924 0.00048

Blue noise 13.19360 0.00070

Purple noise 14.65982 0.00050

BW noise 15.24564 0.00044

EM noise 5.65466 0.00397

MA noise 7.21953 0.00277

Combined noise 10.85304 0.00120
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Fig. 8 The de-noising result of the record no. 203 collected from the MIT-BIH Arrhythmia. a The original 
record. b The de-noised record

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

m
V

Time (s)

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

m
V

Time (s)

a

b

Fig. 9 The de-noising result of the record no. 109, lead V1 collected from the MIT-BIH Arrhythmia. a The 
original signal. b The de-noised signal
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the background power noise. From Fig. 5b, we can see that the optimal decomposition 
level is 3. Since the signal is decomposed to a level based on its sampling frequency, the 
coefficients of the details magnitude are threshold up to level (J − 4). This means that the 
threshold level will change according to the sampling frequency of the original signal.

The last subsection of results brings together all the set parameters to evaluate the 
algorithm performance. This evaluation is performed initially on the synthetic ECG 
signal. From Fig. 6, we can clearly see the efficiency of this method on colored noises. 
In the case of flicker noise, we can notice a minor distortion in the de-noised signal. 
However, the useful information of the signal remains intact. The combined noise that 
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Fig. 10 The de-noising result of the record no. 119 collected from the MIT-BIH Arrhythmia database. a The 
original ECG record noise free. b The contaminated ECG record with input SNR 10 dB using weights 10, 10 
and 15 for wbw, wem and wma. c The de-noised record
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Fig. 11 The de-noising result of the record no. 111 collected from the MIT-BIH Arrhythmia. a The original 
noisy ECG record. b The contaminated ECG record with 5 dB flicker noise. c The de-noised record
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represents the real noise is also tested on the synthetic ECG signal, as seen in Fig. 7. The 
input noise value, as well as the weights, were chosen to have a visual strong background 
noise. Although the ECG signal has strong background noise, the reconstructed signal 
preserves the QRS complex. The P and T waves have been slightly distorted in some 
parts of the signal.

To summarize noise removal from the synthetic ECG signal, we calculated the SNR 
improvement and MSE for all kinds of noises using 5  dB SNR input. For comparison 
purposes, this value of input noise is chosen as the one used in a recently published 
work [19]. From Table 3, we can observe that flicker, EM, and MA noises are difficult to 
remove from ECG signal. This inconvenience is remarkable through SNR improvement 
values.

The assessment is also expanded to signals from the MIT-BIH Database. In Figs. 8 and 
9, we worked with two noisy ECG signals. We can visually observe the effectiveness of 
the algorithm even when changing the lead as illustrated in Fig. 9. In Fig. 10, we chose 
the record no. 119 from MIT-BIH Arrhythmia database that has some ectopic beats. We 
corrupted this record by a real noise. We can note that these ectopic beats are preserved 
in the reconstructed signal. Figure 11 shows the de-noising process of the record no 111 
(Fig. 11a). We corrupted this noisy ECG signal by flicker noise (Fig. 11b), which is an 
electronic noise that is always present in some passive components like the resistors in 
the ECG recorder. We can observe that the algorithm can effectively remove this mixture 
of noises (Fig. 11c). In Fig. 12a, we took another noisy ECG signal from the MIT-BIH 
database. We apply the conventional white noise to this record as illustrated in Fig. 12b. 
We can clearly see the robustness of the algorithm on the white noise de-noising. We 
can notice a minor distortion in the de-noised signal (Fig.  12c). However, the clinical 
parameters like R peaks can be easily detected in the de-noised signal.
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Fig. 12 The de-noising result of the record no. 108, lead V1 collected from the MIT-BIH Arrhythmia. a The 
original noisy ECG record. b The contaminated ECG record with 5 dB white noise. c The de-noised record
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To compare the algorithm performance with the conventional WT and DT-WT based 
ECG de-noising methods, the proposed method was tested on the MIT-BIH arrhythmia 
database. The result of SNR formula used in [7] is computed on our proposed method 
and is listed in Table  4. According to the results and the biomedical specialists, it is 
obvious that our proposed algorithm can achieve higher performance than the stated 
methods.

Conclusions
In this study, threshold tuning of dual tree wavelet transform was applied to reduce 
noise in ECG signals. The initial simulations were conducted on synthetic ECG signal 
and were extended to MIT-BIH arrhythmia database. Threshold tuning was performed 
empirically based on the optimal threshold function, the optimal threshold value, and 
the suitable decomposition level. The study was extended to realistic and colored noises. 
The effectiveness of the proposed method was assessed through quantitative evalua-
tion and visual inspection using a set of simulations from the standard database. The 
proposed technique achieves outstanding results over ordinary DT-WT based ECG de-
noising methods in the presence of all kinds of noises. Furthermore, the proposed algo-
rithm is simple to embed in real time application and is able to be investigated in QRS 
identification as well, which is the purpose of our future work

Abbreviations
BW: baseline wander; CN: combined noise; DWT: discrete wavelet transform; DSP: digi-
tal signal processing; DT-WT: dual tree wavelet transform; ECG: electrocardiogram; EM: 
electromyogram; FT: Fourier transform; HYP: hyperbolic; Ma: motion artifact; MSE: 
mean square error; N-NG: non-negative garrote; S-S: semi-soft; WT: wavelet transform.

List of symbols

β: the slope of the power spectral density of colored noise; ∝ : represents the direct 
proportionality between two variables; σ : the standard deviation of the first detail 

Table 4 Comparison of the conventional WT and DT-WT based methods with the proposed 
DT-WT for MIT-BIH arrhythmia records

Record no. SNR

DWT DT‑WT Proposed

100 42.6534 45.8309 98.5023

101 48.4172 49.3955 100.1488

102 45.4918 49.8727 100.8777

103 52.2014 55.4198 106.6181

104 54.1384 57.5161 105.5597

105 62.8240 66.1887 97.0638

106 47.4558 51.8933 93.6908

107 54.5761 55.5218 105.0257

108 43.3222 48.1617 90.3493

109 51.2570 53.7656 113.8190

111 33.9796 37.2333 96.6799
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coefficients level; σj: the standard deviation of the detail coefficients at j level; σv: the var-
iance of a given signal; ψ(t): the analytic dual tree wavelet function; ψh(t): the real part 
of the dual tree wavelet function; ψg (t): the imaginary part of the dual tree wavelet func-
tion; |ψ(t)|: the magnitude (or modulus) of the dual tree wavelet function; ∠ψ(t): the 
argument (or phase) of the dual tree wavelet function; ciel: rounds a real number to the 
nearest integer greater than or equal to that number; dj: the detail wavelet coefficients of 
the j-th decomposition level; f : the frequency of a given signal; fBL: the baseline wander 
frequency; Fmax: the Nyquist frequency (sampling frequency); j: the j-th level (or scale) 
of the dual tree wavelet coefficients; J : the last decomposition level of the dual tree wave-
let transform; MAD: the median absolute deviation of a given signal; median: the median 
value of a given signal; MSE: the mean square error of an estimator; N : the length of the 
original signal; nj: the length of the j-th level of the dual tree wavelet coefficients; R: the 
reconstructed signal from a threshold function; s: the wavelet coefficients of a given sig-
nal; sign: an odd function that extracts the sign of the wavelet coefficients; SNRimp: the 
signal-to-noise-ratio improvement; SNRin: the input signal-to-noise-ratio; SNRout : the 
output signal-to-noise-ratio; Th: the threshold value; wbw: the weight of baseline wan-
der noise; wem: the weight of electromyogram noise; wma: the weight of motion artifact 
noise;; X : the threshold level of the algorithm (is defined empirically from Fig. 5); xn(n): 
the noisy ECG signal; x0(n): the original ECG signal; xr(n): the de-noised EC signal.
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