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Abstract 

Background: Nowadays, sleep quality is one of the most important measures of 
healthy life, especially considering the huge number of sleep-related disorders. 
Identifying sleep stages using polysomnographic (PSG) signals is the traditional way 
of assessing sleep quality. However, the manual process of sleep stage classification 
is time-consuming, subjective and costly. Therefore, in order to improve the accuracy 
and efficiency of the sleep stage classification, researchers have been trying to develop 
automatic classification algorithms. Automatic sleep stage classification mainly consists 
of three steps: pre-processing, feature extraction and classification. Since classifica-
tion accuracy is deeply affected by the extracted features, a poor feature vector will 
adversely affect the classifier and eventually lead to low classification accuracy. There-
fore, special attention should be given to the feature extraction and selection process.

Methods: In this paper the performance of seven feature selection methods, as well 
as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG 
and submental chin EMG recordings of 22 healthy males and females were used. A 
comprehensive feature set including 49 features was extracted from these recordings. 
The extracted features are among the most common and effective features used in 
sleep stage classification from temporal, spectral, entropy-based and nonlinear catego-
ries. The feature selection methods were evaluated and compared using three criteria: 
classification accuracy, stability, and similarity.

Results: Simulation results show that MRMR-MID achieves the highest classification 
performance while Fisher method provides the most stable ranking. In our simulations, 
the performance of the aggregation methods was in the average level, although they 
are known to generate more stable results and better accuracy.

Conclusions: The Borda and RRA rank aggregation methods could not outperform 
significantly the conventional feature ranking methods. Among conventional methods, 
some of them slightly performed better than others, although the choice of a suitable 
technique is dependent on the computational complexity and accuracy requirements 
of the user.

Keywords: Sleep stage classification, Feature selection, Rank aggregation, Feature 
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Background
Sleep occupies a significant part of human life. Therefore, the accurate diagnose of sleep-
related disorders is of great importance in sleep research. Sleep is a particular condition 
of the nervous system with noticeable features and brain activity phases. Although most 
people think that sleep is a passive and constant process, as a matter of fact, sleep is 
an active state. Human bodies move frequently during the night and the human brain 
is sometimes even more active than in the waking state [1]. Normal human sleep gen-
erally consists of two distinct stages with independent functions known as non-rapid 
eye movement (NREM) and rapid eye movement (REM) sleep. In their ideal situation, 
NREM and REM states alternate regularly, each cycle lasting 90 min on average. Accord-
ing to the American Academy of Sleep Medicine (AASM) [2], NREM is subdivided 
into three stages: stage 1 or light sleep, stage 2 and stage 3 or slow wave sleep (SWS). 
The evolution of sleep stages is complemented by gradual changes in many behavio-
ral and physiological occurrences. Sleep stages are commonly classified using multiple 
simultaneous physiologic parameters during sleep named Polysomnography (PSG) in a 
clinic or hospital environment. A collection of rules has been identified in the AASM 
to guide the practitioners. However, the visual process of sleep stage classification is 
time-consuming, subjective and costly. In order to improve the accuracy and efficiency 
of the sleep stage classification, researchers have been trying to develop automatic clas-
sification algorithms. The automatic sleep stage classification mainly consists of three 
steps: pre-processing, feature extraction and classification [3]. In the feature extraction 
stage, several temporal, spectral and nonlinear features are extracted from PSG signals. 
Nevertheless, some of these features may be irrelevant or have high mutual correlation 
increasing the complexity of the model without any real benefit. To face this challenge, 
feature selection and dimensionality reduction methods have been utilized.

In principle, a feature selection method has been used with the aim of selecting a subset 
of features in a way that the classifier can distinguish the differences between various classes 
of input data more effectively. The advantages of using feature selection methods make it an 
essential requirement for many classification applications. Reaching a more compact and 
simple model is the most important advantage offered by the feature selection process, that 
can reduce the necessary computational time for the classifier. Also, enhancing the gener-
alization ability, increasing the classification power through reduced overfitting level, less 
storage memory and simplified visualization are further benefits of feature selection in clas-
sification tasks. Several different types of feature selection methods exist in the literature. 
Among them, the most common methods are divided into three main categories: filter, 
wrapper and embedded methods. Filter methods perform feature selection by consider-
ing some intrinsic characteristics of the data and usually provide a rank or a score for each 
feature. Low scored features will be removed experimentally or according to a predefined 
threshold. Filter methods, besides being simple and fast, are independent of the classifier.

Wrapper methods on the other hand, embed a search algorithm in the space of pos-
sible features subsets. Then, various subsets are produced and evaluated by training and 
testing with the specific classification algorithm. Since, the number of possible subsets 
grows exponentially with the number of features, heuristic search algorithms are used 
for finding the optimal feature subset. The high computational complexity and the risk 
of over fitting are its main disadvantages. The main benefits of wrapper methods over 
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filter methods are taking into account feature dependencies and interaction between the 
selected subset and the specific classification method.

Embedded methods integrate the optimal feature subset selection with the classifica-
tion algorithm. They have less computational complexity compared to wrapper meth-
ods. The results of both wrapper methods and embedded methods are classifier-specific.

In sleep stage classification, filter methods are more common than wrapper and embed-
ded methods. Among the filter methods fast correlation based filter (FCBF), Fisher score, 
ReliefF, Chi square (Chi2), information gain (IG), conditional mutual information maxi-
mization (CMIM), minimum redundancy maximum relevance (MRMR) algorithms and 
R-square [4–7] are the most preferred ones. In addition to the traditional methods, a new 
filter method called ‘Mahal’ is proposed in [8] for facing the challenge of feature selection 
in small datasets with a large number of features for sleep stage classification. On the other 
hand, sequential feature selection algorithms including sequential forward selection (SFS) 
and sequential backward selection (SBS) are the most common wrapper methods used in 
the automatic sleep stage classification [9, 10]. Statistical hypothesis testing methods are 
also used in sleep stage classification applications for feature selection and dimensionality 
reduction. Examples of these methods are t test, ANOVA and Kruksal–Wallis test which 
are used for three different purposes: dimensionality reduction, feature selection and 
assessment of the discriminative capability of the selected feature set. To the best of our 
knowledge, there are no studies for comparing the performance of various feature selection 
methods from the same category in sleep stage classification. The studies done so far usually 
choose feature selection methods from different categories. For example in [11], one filter 
and three wrapper methods are used and the results are compared. Therefore, there is a 
need for comprehensive comparison of feature selection methods from the same category.

As mentioned before, feature ranking techniques provide a ranked list of features. 
Different feature ranking techniques may produce different rankings according to their 
specific criteria for assessing features and there is no universal ranking algorithm that 
considers all the measures. Therefore, motivated by ensemble methods in supervised 
learning [12], rank aggregation methods are proposed to combine different feature rank-
ing methods and achieve more stable ranked feature lists with similar or even higher 
classification performance [13, 14]. In order to perform ensemble feature selection, one 
needs to decide on the method to aggregate the results from different ranking methods. 
There are many rank aggregation approaches from the very simple ones to some more 
complex [14]. To the best of our knowledge, there are no studies done on feature selec-
tion based on rank aggregation methods in the sleep stage classification area.

In this paper different feature ranking and rank aggregation methods were compared 
within the sleep stage classification context. The main contributions of this paper are 
listed below:

1. A comprehensive feature set including Itakura Spectral Distance (ISD) [15] was 
extracted from PSG signals,

2. Similarity and stability of different feature ranking and rank aggregation methods 
were assessed,

3. Classification performance of different feature ranking and rank aggregation meth-
ods was compared.
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In this work, we present the extension of the results published in [4]. The paper is 
organized as follows: In the next section (“Methods”) the database, pre-processing, 
extracted features, feature selection techniques and classification algorithms will be 
described. In the following section related results will be shown. Discussion of the 
obtained results will be presented in the next section. On the last section, the conclu-
sions and future work directions are presented.

Methods
In this section the sleep stage classification methodology used in this work is described 
in detail. Figure 1 shows the block diagram of the proposed algorithm for comparing the 
feature selection methods.

Data

The data used in this study was obtained from Physionet Sleep-EDF Expanded Database 
[15]. The collection of data in this database comes from two studies. PSG recordings of 
the first study are named SC files (SC = Sleep Cassette). PSG recordings of the second 
study are named ST files (ST = Sleep Telemetry). In our simulations, we didn’t use SC 
files, since EMG data for first study was a zero-amplitude or no-data recording. There-
fore, we used ST files which are a collection of 22 PSG signals recorded in the hospital 
during two nights for about 9 h. Except for slight difficulty in falling asleep, subjects were 
healthy without any sleep related medication. The data were segmented into 30-s epochs 
and all epochs were scored according to R&K guidelines for human sleep staging. These 
recordings include EEG (Fpz-Cz and Pz-Oz), EOG (horizontal), submental chin EMG, 
together with the corresponding hypnograms.

Through careful analysis ST recordings, a number of issues were detected that made 
some of recordings unsuitable for being used in the evaluations. These issues are as 
follows:

  • Lack of stage 4 (according to R&K guidelines),
  • Artifacts such as severe movement or sensor misconnection,
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Fig. 1 Block diagram for comparison of feature selection methods
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  • Unsynchronized EEG data and hypnogram,
  • Lack of stage 3 epochs,
  • Severely corrupted EEG data.

As a results, six recordings were selected out of twenty-two and the corresponding 
hypnograms were converted from R&K to AASM. Pz-Oz channel EEG together with 
submental chin EMG and horizontal EOG each sampled at 100  Hz were used in the 
evaluations. Table 1 illustrates the number of stages available per subject.

Pre‑processing

Artifact free data is necessary for guaranteeing the reliability of sleep stage classification 
algorithms. In this work, the epochs with zero-energy were automatically detected and 
removed. The zero-energy epochs can appear due to the possible failure of recording 
device. Then, the EEG and EOG signals were band-pass filtered in the frequency interval 
of 0.3–35 Hz. This interval was selected according to the recommendations of AASM. 
For filtering, wavelet multi-level decomposition and reconstruction was used. This filter-
ing technique has a high fidelity to the original wide-band signal in contrast to the But-
terworth filtering that produces a highly distorted “valley” shape [16].

Feature extraction and normalization

In order to explore the information contained in PSG recordings, a set of features were 
extracted from EEG, H_EOG and submental chin EMG of each subject. This feature set 
includes 49 features that can be categorized into time, frequency, joint time–frequency 
domain, entropy-based and nonlinear types. As summarized in Table 2. In the follow-
ing, information will be provided about the different features used in this study and their 
brief description.

  • Statistical features (F1 to F8, F37 to F41, and F44 to F46): Understanding the evolu-
tion of PSG signals as stochastic processes can provide valuable information regard-
ing the sleep stage classification. In this study, the simple and most common statisti-
cal features [17] including mean, median, maximum and minimum values, skewness 
and kurtosis of each EEG, EOG and EMG epoch are used according to Table 2.

  • Zero crossing rate (F9): Zero crossing rate (ZCR) is simple and at the same time very 
effective feature especially in sleep stage classification. ZCR counts the signals sign-
change points on a segment of a signal. In this paper, the length of this segment is 
30 s.

Table 1 Summary of the data provided by six selected subjects

Wake REM S1 S2 SWS

Subject #1 146 122 101 527 136

Subject #2 41 159 71 351 284

Subject #3 85 226 120 392 180

Subject #4 40 143 47 266 152

Subject #5 149 80 102 428 218

Subject #6 131 142 135 378 198
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  • Hjorth parameters (F10 to F12): In 1960, Bo Hjorth [18] proposed normalized slope 
detectors (NSD) as indicators of statistical properties of a signal in time domain. 
NSDs include three features: activity, mobility and complexity. These features are 
widely used in the analysis and characterization of EEG. Hjorth’s NSD are calculated 
as shown in Table 3 with σ0 representing the variance of the signal, σ1 the variance of 
the first derivate and σ2 the variance of the second derivate of the signal.

  • Wavelet based features (F13 to F26): In order to analyze the stochastic nature of EEG, 
we chose the wavelet packet (WP) analysis since it provides a valuable joint time–fre-
quency domain analysis. In clinical applications, four main brain rhythms are associ-
ated with different states of sleep, including Delta (0–3.99 Hz), Theta (4–7.99 Hz), 
Alpha (8–13 Hz) and Beta (>13 Hz) [2]. According to the scheme proposed in [19], 
a WP tree with 7 decomposition levels was suitable to estimate the necessary fre-
quency bands of EEG rhythms with adequate accuracy. Then, features F13 to F26 
were extracted from the corresponding WP coefficients according to descriptions in 
Table 2.

  • Spectral entropy (F27): Spectral entropy, as a technique for measuring the irregu-
larity of EEG, is calculated by the entropy of the power spectrum. Suppose P is the 

Table 2 Summary of the features extracted from PSG recordings

Signal Category Feature name

EEG Time domain (F1 to F12) Statistical features (minimum value, maximum value, arithme-
tic mean, standard deviation, variance, skewness, kurtosis, 
median), zero-crossing rate, Hjorth parameters (activity, mobil-
ity and complexity) [32]

Time–frequency domain (F13 to 
F26)

Features extracted from wavelet packet coefficients including 
energy of α, δ, β1, β2, θ and spindle bands, total energy of all 

bands, energy ratio of ( α
δ+θ

, δ
α+θ

, θ
α+δ

, δ
θ
, α
θ
), statistical features 

(mean and standard deviation of coefficients in all of the 
bands)

Entropy (F27 to F30) Spectral entropy, Rényi entropy, approximate entropy, permuta-
tion entropy [32]

Non-linear (F31 to F36) Petrosian fractal dimension, teager energy, energy, mean curve 
length, hurst exponent [32], ISD

EOG Time domain (F37 to F41) Mean, maximum, standard deviation, skewness, kurtosis [58]

Non-linear (F42) Energy [58]

EMG Frequency domain (F43 to F46) Total power in the EMG frequency spectrum, statistical features 
of EMG frequency spectrum (maximum, mean, standard devia-
tion) [58]

Non-linear (F47 to F49) Energy, ratio of the EMG Signal energy for the current epoch and 
previous epoch, ratio of the EMG signal energy for the current 
epoch and next epoch [58]

Table 3 Hjorth parameters

Feature name Formula

Hjorth activity σ0
2

Hjorth mobility σ1/σ1

Hjorth Complexity
√

(σ2
/

σ1)
2 − (σ1/ σ0)

2
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normalized power spectrum of EEG in a predefined frequency range, [f1, f2] and 
∑

Pi = 1, the spectral entropy is calculated as:

In this study, Hsp is used in the following normalized form:

where Nf is the number of frequency bins in the frequency range [f1, f2] [20, 21].
  • Rényi entropy (F28): In 1960, Alfréd Rényi introduced Rényi’s general notion of 

entropy [22]. Since, Rényi Entropy unites several distinct entropy measures, it turned 
out to be theoretically interesting and found many applications in various research 
areas such as pattern recognition [23] and biomedicine [24]. Suppose Px(X) is proba-
bility distribution of random variable X. The Rényi entropy of order α for X is defined 
as:

  • Approximate entropy (F29): Approximate entropy is regarded as a measure of the 
randomness or equivalently regularity of a time series. Considering that time series 
with repetitive patterns are more predictable than those without repetitive patterns, 
approximate entropy reflects the likelihood that similar patterns existing in a time 
series will not be followed by more patterns from the same type [25, 26].
For calculating approximate entropy two parameters need to be predefined: first 
the pattern length m and second the similarity threshold r. Given the time series 
{xi}i=1...N , a sequence of vectors x(1) through x(N −m+ 1) is formed in which 
x(i) = [x(t), . . . , x(t +m− 1)]. Two vectors x(i) and x(j) are similar if their distance 
is less than r. The distance between two patterns is defined as the maximum differ-
ence between their corresponding components. Then, Cm

i (r) is defined as:

where Cm
i (r) expresses the patterns regularity of length m with a threshold value of r. 

Finally, approximate entropy is defined as [27]:

(1)
Hsp = −

f2
∑

f1

Pi log Pi

(2)
SpEn =

Hsp

logNf

(3)
Hα(X) =

1

1− α
log

∑

x

Px(X)
α

(4)
Cm
i (r) =

No. of j ≤ N −m+ 1

N −m+ 1

for d[x(i), x(j)] ≤ r

(5)

ApEn(m, r,N ) =
1

N −m+ 1

N−m+1
∑

i=1

ln(Cm
i )

−
1

N −m

N−m
∑

i=1

ln(Cm
i )
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  • Permutation entropy (F30): Permutation entropy was proposed by Bandt et al. [28] 
and is a simple complexity measure, that can be applied to any type of time series 
including regular, chaotic, noisy and time series from reality. In mathematical terms, 
consider that a time series is {xt}t=1...T . Through an embedding procedure, a set of 
vectors Xt = [xt , xt+1, . . . , xt+m] with the embedding dimension m is formed. Then, 
Xt is arranged in an increasing order. There will be m! different order patternsπ, also 
called permutations. If f (π) denotes the frequency of permutation in the time series, 
then its relative frequency would be:

Therefore, the permutation entropy is defined as:

where the sum runs over all m! permutations [28, 29].
  • Petrosian fractal dimension (F31): The fractal dimension has been widely used in the 

characterization of nonstationary biomedical signals like EEG for several applica-
tions in order to measure the complexity of sleep EEG. Petrosian algorithm can be 
used for a fast computation of fractal dimension by means of transforming the signal 
into a binary sequence [30]. Petrosian fractal dimension is calculated using the fol-
lowing formula:

In which N is the length of the EEG signal and NΔ is the number of sign changes in 
the derivative of the signal.

  • Teager energy (F32): Teager energy operator has been proved to be very useful in 
analysing signals from the energy point of view. It is defined as:

in continuous form, where ẋ(t) is the first derivative and ẍ(t) is the second derivative 
of x. The discrete form of Teager energy is [31]:

  • Energy (F33, F42, and F47 to F49): Energy is calculated as the average sum of the 
squares of all samples in a signal segment. Energy value of a signal increases with the 
increase of activity in the signal [32]. According to Table 2, both energy and energy 
ratio of different epochs of PSG recordings were used in this work.

  • Mean curve length (F34): Mean curve length was proposed with the purpose of 
reducing the complexity of Katz fractal dimension algorithm and provides results 
almost equivalent to it [33]. It is commonly used for identification of EEG activity, 

(6)
p(π) =

f (π)

T − (m− 1)

(7)
Hp(m) = −

∑

p(π)logp(π)

(8)

FDPetrosian =
log10N

log10N + log10(
N

N+0.4N�
)

(9)�(x(t)) = ẋ2(t)− x(t)ẍ(t)

(10)�(x[n]) = x2[n] − x[n− 1]x[n+ 1]
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including amplitude and frequency changes and also its dimensionality [34]. Mean 
curve length, in its discrete form, is calculated using the following formula:

considering x as the EEG data, n the epoch number and N the epoch length in 
samples.

  • Hurst exponent (F35): Hurst exponent, introduced by Harold Edwin Hurst [35], is a 
measure for long range statistical dependence of time series. Hurst exponent has a 
value in the range between 0 and 1 and is defined as:

where T is the duration of signal sample and R
/

S is the value of rescaled range.
  • Itakura Spectral Distance (F36): The Itakura Spectral Distance (ISD) is broadly used 

in speech processing applications to measure the distance (similarity) between two 
auto regressive coefficients (AR) processes [36, 37]. ISD was also used in automatic 
sleep classification to find the relation between EEG and EOG signals during differ-
ent epochs of sleep stages over the night [38]. In this paper, the ISD of sleep stages 
of EEG was measured. In order to calculate the distances, the AR coefficients were 
extracted from 50% of the wake epochs of each subject. Then, by getting the mean of 
the AR coefficients a representative model of the wake epoch was generated and the 
ISD between this model and the W (remaining 50%), S1, S2, SWS and REM epochs 
was calculated.

  • Spectral power (F43): Power spectrum density (PSD) represents the distribution of 
signal’s power as a function of frequency. The spectral power of a signal in a fre-
quency band is obtained by integrating PSD over the signal’s frequency range.

The physiological differences from subject to subject and equipment related variations 
have considerable impact on the features extracted from the PSG recordings. Moreover, 
since there are usually a wide variety of feature types extracted for characterizing sleep 
stages, the amplitude and unit of features will also vary. The features may also get the 
extreme values, i.e. extremely low or extremely high values. Data post-processing is an 
important step in this respect. The aim of feature post-processing is to enable classifica-
tion algorithms to uniformly handle the features with different units and ranges as well 
as reducing the influence of extreme values. Feature post-processing can be a scaling 
operation (normalization/standardization) or a feature transformation operation. In this 
work, each feature (xij) is independently scaled to have zero mean and unit variance (x′ij) 
using the following equation:

where x̄i and σxi are the mean and the standard deviation of each independent feature 
vector.

(11)

CL[n] =

nN
∑

i=1+(n−1)N

|x(i)− x(i − 1)|

(12)
H =

log
(

R
/

S

)

log(T )

(13)x′ij =
xij − x̄i

σxi
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Feature ranking methods

In this paper, to select a subset of features containing most of the original feature set 
information, we used seven different feature ranking methods: ReliefF, mini-mum 
redundancy-maximum relevance (MRMR-MID and MRMR-MIQ), Fisher score, Chi 
Square (Chi2), information gain (IG) and conditional mutual information maximization 
(CMIM). We have also implemented two different rank aggregation methods, Borda and 
robust rank aggregation (RRA), to evaluate their ability to produce better feature rank-
ings compared to conventional feature ranking methods. A brief description of the used 
feature ranking methods is provided below:

ReliefF

In 1992, Kira and Rendell [39] proposed an instance based method, Relief, for estimating 
features quality. In this method, for a randomly selected sample, two nearest neighbors 
were considered: one from the same class (nearest hit) and other from a different class 
(nearest miss). The quality estimated for each feature is updated according to the ran-
domly selected sample’s distance from the nearest hit and miss. The Relief method is 
restricted to two-class problems and is highly sensitive to noisy and incomplete data. 
An extension of Relief, called ReliefF [40], was proposed improving the original method 
by estimating the probabilities more reliably and extending the algorithm to multi-class 
problems. The ReliefF algorithm uses k-nearest hits and k-nearest misses for updating 
the quality estimation for each feature.

Minimum redundancy‑maximum relevance

MRMR [41] is a feature selection method which selects a subset of features with maxi-
mum relevance for the target class and, at the same time, minimum redundancy between 
the selected features. In the MRMR method, the redundancy (R) and relevance (D) are 
expressed in terms of mutual information. In order to select the final feature set, an 
objective function φ(D, R) is maximized. The φ(D, R) can be defined either as the mutual 
information difference (MID), D-R, or the mutual information quotient (MIQ), D/R.

Fisher score

This method is one of the most efficient and widely used feature ranking methods. The 
key idea is to find a subset of the feature matrix with maximum distance between the 
data points from different classes and minimum distance between the data points of the 
same class in the feature space [42].

Chi square

Chi2 is another very common class sensitive feature selection method which ranks the 
features according to their Chi2 statistics without taking into account the interactions 
between features. Originally proposed exclusively for categorical data, this method was 
later extended to the continuous case [43]. For calculating the Chi2 statistics of each fea-
ture, the range of the numerical feature should be discretized into intervals.
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Information gain

Ross Quinlan proposed an algorithm for generating decision trees from a set of training 
data [44]. In this algorithm, information gain (IG) is the measure for selecting the effec-
tive feature at each node. Generally, IG can be described as the change in the marginal 
entropy of a feature set taking into account the conditional entropy of that feature set 
with the given class set.

Conditional mutual information maximization

This method [45] is based on mutual information in such a way that all the selected fea-
tures are informative and have two-by-two weak dependency. A feature is added to the 
selected feature subset if it contains information about the specific class and this infor-
mation is not contained on any other previously selected feature.

Borda

The Borda algorithm is a feature aggregation method that ranks each feature based on its 
mean position in the different ranking methods considered, i.e.

where πj(fi) is the rank of the feature fi in the ranking method πj. The feature with the 
highest Borda rank is considered the best.

Robust rank aggregation

This method, proposed by Kolde et  al. [46], is another rank aggregation method that 
compares the results from several feature ranking methods with a randomly ranked 
feature list. The RRA first looks how a specific feature is ranked by the various meth-
ods and lists the corresponding values in a so-called rank order, from best to worst. It is 
clear that, if a feature has high quality, the dominance of ranks in the rank order will be 
towards smaller numbers. The probability of the random list producing better ranking 
than the values seen in the actual rank order for that specific feature is determined. The 
features with the small probability are selected as the better ones [47].

Classification

The process of labeling the data into relevant classes is called classification. The first step 
in the classification process is the identification of the features or characteristics that will 
enable the highest discrimination between the different groups of data. A classification 
model is developed in such a way that it provides the structure for how the classification 
processes’ actions will be realized. Ideally, this model should be chosen to optimize the 
performance of the classification system, although it may need to be revised as the clas-
sifier design progresses. A classifier is then implemented and “trained” to recognize the 
chosen features in the data, or to determine the best input-to-output mapping. Once the 
system has trained and learned, it is ready to classify specific inputs. Then, the system 
can be tested and evaluated with such metrics as speed of computation and accuracy of 
classification [48].

(14)Borda(fi) =

N
∑

j=1

πj(fi)
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In this study, we selected two simple and widely used classifiers: k-nearest neighbor 
(k-NN) and multilayer feedforward neural network (MLFN) to discriminate five sleep 
stages W, S1, S2, SWS and REM. By selecting k =  1, nearest neighbor (NN) was uti-
lized. The NN classifier is the simplest nonparametric classifier and assigns a pattern to 
a specific class based on its nearest neighbor’s class. In spite of its simplicity, in [49] it 
has been proved that, if the utilized database is fairly large, the error bound for near-
est neighbor rule is quite tight, i.e. equal or less than twice the Bayes error. Also, neural 
networks are known to be very powerful computing models that can learn from training 
examples. Neural networks have been successfully used in a broad range of data mining 
applications including classification [50].

Performance evaluation

In this paper three main criteria namely stability, accuracy and similarity are considered 
for evaluating and comparing the different feature selection techniques.

Stability

Stability of a feature selection method is defined as its sensitivity to variations in the 
training set. Since unstable feature selection may lead to inferior classification perfor-
mance, a number of measures are proposed in the literature for investigating how differ-
ent subsamples of a training set affect the feature importance assessment. In this study, 
in order to measure the stability of feature rankings produced by different methods, a 
similarity based approach proposed by Kalousis et al. [51] is used. In this method, simi-
larity between two selected feature sets s and s′, is calculated using the Tanimoto dis-
tance which measures the overlap between two sets of arbitrary cardinality:

The Ss takes values in the range of [0 1], with 0 meaning there is no overlap or similar-
ity between two rankings and 1 meaning that the two rankings are identical. Then N 
subsets of the original training set are drawn using a random resampling technique such 
as cross validation or bootstrapping. Each specific ranking algorithm produces a feature 
preference list for each N subsets. The similarity between all possible pairs is calculated. 
The stability of that specific feature ranking algorithm is simply the average of the simi-
larities over all possible pairs, i.e. N (N−1)

2  pairs.

Similarity

The stability measure used for assessing the internal stability of a feature selection tech-
nique can also be used in a different context to measure the similarity of different feature 
selection techniques. The similarity measure provides information about the consistency 
and diversity of different feature selection algorithms. The similarity between two fea-
ture subsets s and s′ can be calculated using Eq. (15) with a slight difference in the defini-
tion of s and s′. Instead of two lists of features produced by a specific feature selection 
technique from different subsets of the training set, they are now two lists produced by 
two different feature selection techniques derived from the complete training set [51].

(15)Ss(s, s
′) = 1−

|s| +
∣

∣s′
∣

∣− 2
∣

∣s ∩ s′
∣

∣

|s| + |s′| − |s ∩ s′|
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Accuracy

The performance of the sleep stage classification is evaluated using repeated random 
sub-sampling validation. To measure the classification accuracy, the overall accuracy 
value is calculated as follows [52]:

Experimental setup

Six subjects were selected from the Physionet database for evaluating and comparing 
the feature ranking and rank aggregation methods. For filtering EEG and EOG signals, 
Daubechies order 20 (db20) was used as the mother wavelet. The filtered data was seg-
mented into 30-second epochs. From each epoch, a feature vector containing 49 features 
was extracted. After feature standardization, the feature vectors were fed into seven fea-
ture ranking methods. Then, in order to aggregate the results, the outputs of these seven 
feature ranking methods were used by Borda and RRA, producing two additional ranked 
lists of features.

For sleep stage classification, the parameters of the classifiers are set as follows. The 
Euclidean distance was chosen as the distance metric for the NN classifier. For the three-
layer neural network classifier 12 hidden neurons and a sigmoid transfer function were 
selected in our simulations. The Levenberg–Marquardt training algorithm was adopted 
for minimizing the cost function because of its fast and stable convergence. In contrast 
with conventional approaches in the literature, which imports all the existing epochs to 
the classifier, we used a quantity of epochs selected out of each subject. In this method, 
selected epochs from each subject have two characteristics. Firstly, the number of 
epochs are the same for all the subjects. Second, the number of epochs for each stage 
is dependent on the number of occurrences of that stage for each subject. This method 
is suitable for large databases helping on the computational complexity reduction of the 
classifier training stage.

Results
The stability of each method was evaluated as a function of the number of selected fea-
tures (d) where d = 1, 3, 5…29. In our simulations, 50 subsets were generated out of the 
original training set by bootstrapping. Figure 2 shows the stability of each method. In 
order to give an idea about the variations of stability in regard to the number of features, 
Table 4 provides significant information. In this table the mean value of stability is calcu-
lated for fifth, thirteenth and twenty-ninth features. Also, Table 5 illustrates the similar-
ity between different feature selection methods. The similarity index has been calculated 
for the first 29 features selected by each method.

In order to estimate the generalization ability of the classifier, repeated random sub-
sampling validation with 200 runs was applied. Figure 3 depicts the classification accu-
racy of k-NN and MLFN classifiers for different feature selection methods.

As Fig. 3 shows, starting with one feature, each additional feature typically leads to an 
increment in the classification accuracy. However, at some point, the increment on the 
classification accuracy for each additional feature is not significant leading to an elbow in 
the graph. Inspired by the “elbow” point in the cost-benefit curves, in this work we used 

(16)Accuracy =
No. of true detections

Total no. of epochs
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the Kneedle algorithm proposed in [53] for determining the optimal feature number 
which provides a satisfactory trade-off between the selected number of features and the 
classification accuracy. Table 6 illustrates the top 10 features selected by each method.

Discussion
According to Fig. 2, Fisher method seems to have the highest stability and the CMIM 
method comes out to be the least stable one. Also, the stability of Chi2 and IG methods 
seems very convergent.

5 10 15 20 25
Number of Features

0

0.2

0.4

0.6

0.8

1

St
ab

ili
ty

 In
de

x

ReliefF
Fisher
Chi2
InfoGain
CMIM
MRMR MID
MRMR MIQ
Borda
RRA

Fig. 2 Stability measure of each feature selection method

Table 4 Mean stability for selected features

Italic values indicate the maximum of each row

ReliefF Fisher Chi2 IG CMIM MRMR‑MID MRMR‑MIQ Borda RRA

Mean stability up to 5th 
feature

0.50 0.80 0.79 0.73 0.20 0.72 0.82 0.39 0.65

Mean stability up to 13th 
feature

0.66 0.99 0.95 0.92 0.21 0.79 0.82 0.68 0.78

Mean stability up to 29th 
feature

0.69 0.86 0.86 0.94 0.24 0.75 0.77 0.70 0.70

Table 5 Similarity of the feature selection techniques

Italic values indicate the maximum and minimum similarity

ReliefF Fisher Chi2 IG CMIM MRMR‑MID MRMR‑MIQ Borda RRA

ReliefF 1 0.26 0.18 0.18 0.35 0.40 0.40 0.31 0.31

Fisher 1 0.58 0.52 0.11 0.58 0.65 0.72 0.65

Chi2 1 0.90 0.15 0.35 0.35 0.52 0.52

IG 1 0.18 0.35 0.35 0.46 0.46

CMIM 1 0.22 0.22 0.22 0.22

MRMR-MID 1 0.90 0.72 0.65

MRMR-MIQ 1 0.72 0.65

Borda 1 0.72

RRA 1



Page 15 of 19Najdi et al. BioMed Eng OnLine 2017, 16(Suppl 1):78

There exists a huge reduction in stability for MRMR_MID, MRMR_MIQ and ReliefF 
for three-feature subset, although after that stability increases slightly by each additional 
feature. Both MRMR methods are always 100% stable in selecting the first feature which 
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Fig. 3 Classification accuracy for different feature selection methods. a k-NN classifier, b MLFN classifier

Table 6 Top 10 features selected by  each method and  the optimum number selected 
by Kneedle algorithm (corresponding accuracy)

Italic value indicates ISD feature

ReliefF Fisher Chi2 IG CMIM MRMR‑MID MRMR‑MIQ Borda RRA

Top 10 features F28 F36 F35 F9 F15 F35 F35 F36 F36

F36 F35 F9 F35 F36 F39 F42 F35 F35

F7 F31 F11 F11 F9 F36 F15 F9 F9

F49 F9 F31 F31 F8 F22 F36 F31 F31

F41 F29 F36 F36 F1 F15 F22 F22 F27

F27 F11 F27 F4 F34 F31 F23 F27 F22

F20 F25 F26 F27 F35 F29 F31 F29 F17

F23 F27 F4 F26 F28 F23 F38 F11 F29

F6 F12 F25 F25 F6 F9 F29 F15 F11

F22 F22 F14 F29 F48 F38 F9 F20 F20

MLFN 7 (0.75) 5 (0.76) 7 (0.76) 7 (0.76) 3 (0.74) 5 (0.76) 5 (0.76) 5 (0.76) 7 (0.77)

k-NN 7 (0.69) 5 (0.71) 9 (0.73) 9 (0.73) 3 (0.68) 7 (0.75) 11 (0.75) 9 (0.74) 7 (0.73)
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is Hurst Exponent. It means that the Hurst Exponent has the highest discrimination 
ability from MRMR methods point of view. Also, the Fisher method has 100% stability 
for three-feature and five-feature subsets (ID, Hurst exponent, Petrosian fractal dimen-
sion as three-feature group and ID, Hurst exponent, Petrosian fractal dimension, zero-
crossing rate and approximate entropy as five-feature group).

According to Table 4, MRMR-MIQ has the highest mean stability up to five features. 
Meanwhile, Fisher and Chi2 methods have almost the same stability value. Consider-
ing thirteen features, Fisher method is almost totally stable (99.92%). Finally, considering 
twenty-nine features, IG outperforms other methods from mean stability point of view.

According to Table 5, Chi2 and IG pair and MRMR-MID and MRMR-MIQ pair gen-
erate highly similar results. The similarity of MRMR methods can be explained by their 
similar theoretical background. On the contrary, CMIM and Fisher methods give the 
most dissimilar results. The average similarity of Borda and RRA methods is approxi-
mately 0.5 with the other methods. Regarding the aggregation characteristics it was 
predictable.

Table  6 illustrates the top 10 features selected by each method. ISD (F36) always 
appears in the top 10 for all the methods. In spite of the fact that different feature rank-
ing methods have their own specific criteria for ranking the features, observing ISD in 
the top 10 list, means that ISD is a preferable feature for all the feature selection meth-
ods. In addition to ISD, there are some other features that can be considered most pref-
erable according to Table 6. EEG ZCR (F9) is a simple, yet effective feature that is listed 
in top 10 by all of the methods except ReliefF. Following ZCR, Petrosian fractal dimen-
sion (F31), Hurst exponent (F35), WP feature (F22), approximate entropy (F29), spectral 
entropy (F27), and Hjorth mobility parameter (F11) are selected by at least five rank-
ing methods to be included in top 10 list. On the other hand, features that are not in 
this list or are just selected by one method can be categorized as the least preferred fea-
tures. EMG energy and energy ratio features (F47 to F49) and some of WP features are 
examples of least preferred features. The optimum number of features for each method, 
which is selected by the Kneedle algorithm, is shown in Table 6. For MLFN and k-NN 
classifiers, a slight difference exists in the optimum number. Considering the maximum 
accuracy that the methods reach in their optimum points, the MRMR-MID method 
using k-NN classifier outperforms all the others with seven selected features. Also, both 
MRMR methods using MLFN classifier outperform all the other methods with five 
features.

The CMIM method reaches its best accuracy with the first 3 features on both the clas-
sifiers. Considering Fig. 3, its accuracy is equal or less than the MRMR-MID method’s 
accuracy at that point. Unanticipatedly, none of the aggregation methods outperformed 
the rest of the feature ranking methods. One possible reason for this is that the aggrega-
tion methods, especially Borda, are affected by the performance of all the methods from 
best to worst.

Conclusions and future works
In this paper we compared the performance of seven feature ranking methods for 
sleep stage classification. Feature selection based on filtering techniques has several 
advantages such as being fast, easily scalable to high-dimensional datasets, decrease 
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computational complexity and work independently of the classifiers. Also, rank aggre-
gation methods are supposed to be robust when used with a broad variety of classifi-
ers and produce comparable classification accuracy to the individual feature selection 
methods. In this work, two rank aggregation methods were also applied to evaluate the 
performance on sleep stage classification. The Physionet Sleep-EDF Expanded Database 
was used to assess the impact of these methods on the classification accuracy of k-NN 
and MLFN. In addition, the stability and similarity of different feature selection methods 
were also evaluated. The results indicate that the MRMR-MID method slightly outper-
forms the other feature selection methods from the accuracy point of view. Considering 
that the CMIM produces the most unstable rankings, generally Fisher method produces 
the most stable results. When a small group of features (5–13) was required, the RRA 
aggregation method slightly outperformed the Borda. In our simulations, the perfor-
mance of the aggregation methods was in the average level, although they are known to 
generate more stable results and better accuracy. It should be considered that the results 
presented in this paper are obtained through using Physionet Sleep-EDF Expanded 
Database which is already used in several previous sleep studies [19, 54–56] and can be 
supposed as verified enough to be used in such a comparative study. Nevertheless, gen-
eralizing these results to all future sleep studies requires further study and analysis by 
using other sleep databases as well. Also, in this paper for evaluating the generalization 
ability of classifiers we used repeated random subsampling validation. In [57], it is men-
tioned that due to the data subdivision dependency resulted from validation methods 
that are based on random subsampling, patient cross validation was preferred. There-
fore, future steps will involve verifying the results with different databases, applying and 
comparing more rank aggregation methods and also using patient cross validation and 
comparing the results with common validation methods.
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