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Background
As much as 40% of protein–protein interactions (PPIs) in higher eukaryotes are medi-
ated by short linear motifs [1] (SLiMs). This fact was first reported for motifs embedded 
in unstructured protein regions [2] and most research on this topic followed this route. 
Recent studies show that many interactions of the globular proteins are also mediated 
by short linear fragments localized at the interface [3]. SLiMs frequently contribute to 
the majority of complex binding energy; in the set of CAPRI targets (rounds 1–19) and 
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form. In this work, we test a possibility of using flexible docking of a short linear motif 
to predict the interaction interface of the EphB4-EphrinB2 complex (a system exten-
sively studied for its significance in tumor progression).

Methods: In the modeling, we only use knowledge about the motif sequence and 
experimental structures of EphB4-EphrinB2 complex partners. The proposed protocol 
enables efficient modeling of significant conformational changes in the short linear 
motif fragment during molecular docking simulation. For the docking simulations, we 
use the CABS-dock method for docking fully flexible peptides to flexible protein recep-
tors (available as a server at http://biocomp.chem.uw.edu.pl/CABSdock/). Based on the 
docking result, the protein–protein complex is reconstructed and refined.

Results: Using this novel protocol, we obtained an accurate EphB4-EphrinB2 interac-
tion model.

Conclusions: The results show that the CABS-dock method may be useful as the pri-
mary docking tool in specific protein–protein docking cases similar to EphB4-EphrinB2 
complex—that is, where a short linear motif fragment can be identified.
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protein–protein docking benchmark 3.0 discussed in [4], the PPI energy was dominated 
by such a single linear motif localized at the interface in more than half of the cases.

Even if the localization of the interaction site is known, the prediction of protein–
protein complex structure is still a demanding task [5]. The main reason for this is the 
need to consistently sample a great number of possible arrangements of the subunits. 
Moreover, SLiMs are most often localized in intrinsically disordered regions of the pro-
teins whose structure changes on binding. Therefore, protein–protein docking methods 
need to overcome the challenge of predicting (sometimes significant) conformational 
changes. Coarse-grained protein models are among the most successful approaches 
in this field [6, 7]. The best performing tools available as online servers, according to 
the recent CAPRI evaluation experiment results [8], include: ClusPro [9], LZerD [10], 
SwarmDock [11] and Haddock [12]. Most of the available protein–protein docking 
protocols use rigid body docking for initial screening of possible poses. After a set of 
possible structures is generated, they are refined locally. One of the major challenges in 
protein–protein docking is modeling interactions mediated by unstructured regions of 
the proteins (loops or intrinsically disordered regions). Such cases require accounting 
for large conformational changes of the interaction interface, which is usually beyond 
the reach of the classical protein–protein docking tools. This creates the need for novel 
approaches, allowing for increased flexibility of the system during docking, such as the 
one presented here.

We propose and test a new protocol for protein–protein docking based on the flex-
ible docking of a SLiM fragment (peptide) to a protein receptor without using any infor-
mation about the SLiMs structure or a binding site. To perform this step, we use the 
CABS-dock online docking server [13–15] (available at http://biocomp.chem.uw.edu.pl/
CABSdock/) that employs an efficient peptide docking scheme. Various methods exist 
for peptide–peptide docking [1] and some of them are available as web servers, such as 
GalaxyPepDock [16], RosettaFlexPepDock [17] or PepSite2 [18]. Those methods require 
different input data, for example an initial peptide structure (being close to the binding 
site) [17] or an interaction template(s) [16]. The CABS-dock does not require the knowl-
edge about the binding site, nor the template information. Moreover, the CABS-dock 
provides full flexibility of the peptide and significant flexibility of the protein receptor 
during the search for the binding site. The ability to handle significant flexibility of recep-
tor structures distinguishes the CABS-dock from other global docking methods [18, 19]. 
The CABS-dock methodology has also been shown to be successful in folding and bind-
ing simulations of an intrinsically disordered peptide [20]. Those features and results 
make the CABS-dock method well suited for the initial-stage prediction of the SLiM 
binding mode and identification of PPI interface localization. This innovative yet simple 
approach is applied to protein–protein complex structure prediction of the extensively 
researched EphB4-EphrinB2 complex. This dimer is involved in a variety of physiological 
functions including patterning, cell attachment and motility [21–23]. Probably, the main 
reason for the increasing interest in this structure is its overexpression and dysregulation 
in many tumor cell lines [24] and the possible role in pathological angiogenesis and tum-
origenesis [25]. Moreover, the overexpression frequently correlates with malignancy and 
the rate of tumor progression [26]. The knowledge of the PPI details of this complex may 
be used for novel drug design for anti-angiogenesis and anti-tumorigenesis therapies 
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targeting the EphB4-EphrinB2 interaction. For example, an attempt has been made to 
predict a peptide inhibitor that mimics part of the PPI interface, thus competing with 
one of the proteins for the binding site [4]. With our method, starting from structures 
of the subunits and the SLiM sequence, we obtained high quality models of the EphB4-
EphrinB2 complex.

Methods
EphB4-EphrinB2 complex is a model protein–protein system in which the PPI is domi-
nated by a single SLiM [4]. SLiM sequences in proteins may be identified with differ-
ent approaches. Commonly, these fragments are well conserved patterns that may be 
found using bioinformatics tools [27–29]. It is also possible to derive this information 
from mutation experiments. To test the validity of our approach, we used the sequence 
of the 13-residue peptide motif (residues 116–128) of EphrinB2 identified in the work of 
London et al. [4] based on the interface screening for highest-affinity linear segments. 
The SLiM in this complex is responsible for over 65% of the total interaction energy and 
is bound to a well-defined binding site [4]. Those features, combined with medical sig-
nificance of the complex, make it an interesting test case for our proof-of-concept study.

The protocol for EphB4-EphrinB2 protein–protein docking consist of the three steps 
presented in Fig. 1:

1. Using the identified motif sequence as the sequence of a peptide in flexible protein–
peptide docking with the CABS-dock server [13–15];

Fig. 1 The protein–protein complex structure prediction pipeline. The figure shows three consecutive steps 
of our method: (1) CABS-dock based docking of the SLiM sequence to the protein (this step requires input 
protein structure and the SLiM sequence), (2) reconstruction of the complex based on CABS-dock prediction, 
and (3) final refinement of the complex
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2. Adjustment of the protein–protein complex based on the results of protein–peptide 
docking;

3. Refinement of the protein–protein complex using two methods: the FG-MD [30] 
and the GalaxyRefine [31] for a molecular dynamics based algorithm to atomic-level 
protein structure refinement. Both methods were used with their default settings.

In the first and crucial modeling step, the SLiM sequence is docked to the receptor 
protein structure in the bound form (PDB code 2HLE, chain A) using the CABS-dock 
server [13–15]. During docking, the SLiM is treated as a fully flexible peptide and it is 
allowed to search for the optimal binding site and pose over the entire receptor surface. 
Presently, the CABS-dock method belongs to the most efficient tools for flexible pro-
tein–peptide docking that enables large conformational changes during explicit docking 
[32]. This capability is possible thanks to the efficient CABS coarse-grained simulation 
scheme merged with all-atom modeling in the CABS-dock protocol. Apart from predic-
tion of the protein–peptide complexes, CABS coarse-grained simulations have been suc-
cessfully used in the modeling of protein interactions [20, 33, 34], folding mechanisms 
[35–37], structure flexibility [38, 39] and structure prediction [40, 41]. CABS model 
design and applications have been recently described in the review [6]. In a nutshell, 
CABS uses a coarse-grained protein representation in which each amino acid is rep-
resented by up to four pseudo-atoms: alpha carbon (CA), beta carbon (B), united side 
chain (S) and center of the peptide bond. CABS force field is statistical, derived from 
statistics of known protein structures. The force-field takes into consideration various 
regularities of local packing and secondary structure [42]. CABS sampling is controlled 
by the Replica Exchange Monte Carlo (REMC) scheme. CABS-dock docking procedure 
consists of the following steps (described in detail in works [13–15]):

  • the receptor structure is converted into the CABS coarse-grained representation;
  • an ensemble of 10 (one per replica for the REMC method) random peptide confor-

mations in coarse-grained representation is generated;
  • peptide replicas are placed at random locations around the receptor at the distance 

of 20 Å from the receptor’s surface;
  • docking simulation is run with the completely flexible peptide and the receptor 

restrained to near-native conformation by a set of distance constraints derived from 
the starting conformation, a set of 10,000 models is generated (1000 per replica);

  • 100 lowest energy states from each replica are selected for further processing;
  • conformations of all 1000 (10 ×  100) models are structurally clustered using the 

k-medoids procedure with L-RMSD (RMSD calculated on the peptide’s CA atoms 
after superposition of the receptor molecule) as the distance measure between them;

  • 10 top-scored models, representatives of 10 most dense clusters (density defined 
as the number of cluster elements divided by average L-RMSD between them), are 
reconstructed to all-atom representation and refined in a short simulation in Model-
ler [43].

In the second step, a model of the complex is built. To do so, we use structures of both 
of the proteins, as well as information about the bound SLiM obtained with CABS-dock. 
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In our study, we use the best binding pose of the SLiM peptide from the 10 top scored 
models provided by the CABS-dock server (in other cases, even partial knowledge about 
the binding site may be used to select an appropriate model out of the 10 top-scored 
models). The complex conformation is produced by performing RMSD-minimizing 
superposition of the peptide and its SLiM counterpart in the protein.

Finally in the third step, the derived protein–protein complex model is refined using 
all-atom refinement procedures [30, 44].

To analyze the applicability of our approach to the PPI interface prediction we use 
the interface-RMSD measure (iRMSD), which is calculated as the RMSD of the C-alpha 
atoms of the residues forming the SLiM interface. The interface is defined as the peptide 
together with the receptor residues within the 4.5 Angstroms cut-off (calculated based 
on positions of all heavy atoms).

Another way of assessing the predicted structure is analyzing the fraction of the native 
contacts (fNC) that were correctly predicted in the model. fNC values are calculated as 
the number of correctly predicted native contacts present in the model structure divided 
by the total number of native contacts. The contacts were calculated with the COCO-
MAPS Tool [45] with default settings (cut-off distance of 8 Å for contacts definition). 
This approach is perhaps more informative about prediction usefulness than iRMSD 
values.

Results and discussion
We identified a pose with iRMSD value of 3.1 Å bound in the proximity of the native PPI 
interface (presented in Fig. 2a) among the top-scored models obtained with CABS-dock. 
The map of contacts between the predicted SLiM pose and EphB4 protein (presented in 
Fig. 3a) shows that it closely follows the native contact pattern (shown in Fig. 3d). Analy-
sis of the map indicates that this pose reproduced as much as 54% native interactions in 
the SLiM region.

The model of the dimer obtained from superposition of the protein on the CABS-
dock predicted SLiM conformation is presented in Fig. 2b. The iRMSD of the resulting 
structure was 3.1 Å. The contact pattern observed before is maintained and the frac-
tion of correctly predicted native contacts for the SLiM region at this stage increased 
to 68%. The improvement in the quality of prediction in this step results from replac-
ing the loose ends of SLiM CABS-dock prediction by the well-structured regions of the 
EphrinB2 protein.

The refinement performed with the GALAXY server resulted in a set of structures 
with iRMSD values in range 2.4–4.4 Å and the respective fNC of 66–70%. The FG-MD 
refinement procedure mostly improved the interface side-chains arrangement and pro-
duced a structure characterized by iRMSD of 2.9 Å. In consequence, the fraction of cor-
rectly predicted native contacts in the SLiM region in the final model further increased 
to 79%. The refined EphB4-EphrinB2 complex structure is presented in Fig. 2c.

Interestingly, even though the SLiM-based approach enables accurate prediction of 
the SLiM interface, the predicted orientation of the interacting domains is twisted by 
several degrees in respect to the native complex. As the SLiM fragment is localized in 
the flexible loop that could serve as a hinge between the subunits, one of them could be 
possibly rotated without PPI interface distortion but with significant improvement of the 
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Fig. 2 Visualization of the structures resulting from each of the modeling steps of the EphB4-EphrinB2 
protein–protein interaction. For each modeling step interface RMSD (iRMSD) and fraction of native contacts 
(fNC) are provided. a Result of SLiM (from EphrinB2) docking to the EphB4 receptor (the SLiM is marked in 
red, EphB4 is visualized as a gray surface), b superimposition of the EphrinB2 structure on the docked SLiM 
peptide (the SLiM is marked in red, EphB4 is visualized as a gray surface, the structure of EphrinB2 is colored in 
magenta), c results of the complex refinement. The left panel shows the set of 10 models from the Galaxy-
Refine procedure. The right panel focuses on the interaction interface of the EphrinB2 SLiM (magenta) and 
EphB4 (gray surface) obtained from the FG-MD refinement procedure and its comparison with the experi-
mental complex structure (PDB ID: 2HLE, shown in green)

Fig. 3 Comparison of contact maps at different modeling stages and the experimental complex structure 
for EphB4-EphrinB2 interaction. The figures show maps of contacts formed between the SLiM fragment 
localized on EphrinB2 and the protein EphB4 receptor for: a CABS-dock prediction, b superimposition, c final 
refinement, and d a reference map for the experimental complex structure (PDB ID: 2HLE). The maps were 
calculated with COCOMAPS tool [45] with default settings (cut-off distance of 8 Å)
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overall complex geometry. Unfortunately, modeling of such a large-scale conformational 
changes still remains a challenging task.

Further advances of our protocol are possible, including the incorporation of:

  • Information about the binding site in the modeling process (taken from experi-
ment or predicted using bioinformatics tools [27–29, 46]). Such data could be used 
as additional restraints in the CABS-dock docking simulations as well as during the 
refinement stage;

  • An improved method for complex reconstruction from the docked SLiM pose. The 
RMSD-minimizing superposition we use here could be replaced with a method that per-
forms rigid-body docking guided by the SLiM pose that could attempt to generate accept-
able structures (as many variants as possible) for the further scoring and refinement step.

  •  An improved refinement method that could include: large-scale domain movements (this 
would allow more effective sampling of possible domain arrangements in cases when the 
PPI interface may serve as a hinge) and small-scale and large-scale backbone movements 
at the complex interface (allowing significant repacking of the complex interface).

Conclusions
In this work, we used the CABS-dock method to predict the binding site and pose of 
the fragment of EphB4-EphrinB2 protein–protein complex, which allowed further 
reconstruction of the complex. The results we presented show that CABS-dock peptide 
(SLiM) docking may be a useful tool for protein–protein docking. The presented pro-
tein–protein docking scheme, applied here to modeling the EphB4-EphrinB2 interaction 
(see Fig. 1), can be easily modified or combined with more sophisticated procedures for 
computation modeling of protein interactions [47].
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