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Background
Alzheimer’s disease (AD) is the most common cause of dementia as it accounts for 
60–80% of cases [1]. Dementia describes, by definition, memory loss and a variety of 
other intellectual abilities such as clear thinking. Pathological characteristics of AD are 
degeneration of specific nerve cells, presence of neuritic plaques and, in some cases, 

Abstract 

Background: Hippocampal atrophy is a supportive feature for the diagnosis of prob-
able Alzheimer’s disease (AD). However, even for an expert neuroradiologist, tracing 
the hippocampus and measuring its volume is a time consuming and extremely chal-
lenging task. Accordingly, the development of reliable fully-automated segmentation 
algorithms is of paramount importance.

Materials and methods: The present study evaluates (i) the precision and the robust-
ness of the novel Hippocampal Unified Multi-Atlas Network (HUMAN) segmentation 
algorithm and (ii) its clinical reliability for AD diagnosis. For these purposes, we used a 
mixed cohort of 456 subjects and their T1 weighted magnetic resonance imaging (MRI) 
brain scans. The cohort included 145 controls (CTRL), 217 mild cognitive impairment 
(MCI) subjects and 94 AD patients from Alzheimer’s Disease Neuroimaging Initiative 
(ADNI). For each subject the baseline, repeat, 12 and 24 month follow-up scans were 
available.

Results: HUMAN provides hippocampal volumes with a 3% precision; volume meas-
urements effectively reveal AD, with an area under the curve (AUC)  AUC1 = 0.08 ± 0.02. 
Segmented volumes can also reveal the subtler effects present in MCI subjects, 
 AUC2 = 0.76 ± 0.05. The algorithm is stable and reproducible over time, even for 24 
month follow-up scans.

Conclusions: The experimental results demonstrate HUMAN is a precise segmenta-
tion algorithm, besides hippocampal volumes, provided by HUMAN, can effectively 
support the diagnosis of Alzheimer’s disease and become a useful tool for other neuro-
imaging applications.
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noradrenergic and somatostatinergic systems that innervate the telencephalon [2]. Neu-
ronal loss is not generalized but it privileges specific locations. In fact, one of the best 
supportive features for AD diagnosis is temporal lobe atrophy and, more importantly, 
the atrophy of particular sub-cortical structures such as hippocampi [3]. Magnetic reso-
nance imaging (MRI) can be a powerful tool [4, 5], provided that robust fully automated 
procedures replace current clinical practices, which involves visual inspection [6] and 
are inherently affected by high inter-rater variability.

Even if the rapid growth of knowledge about the potential pathogenic mechanisms of 
AD has spawned numerous experimental therapeutic approaches to enter into clinical 
trials [7, 8], early detection of AD remains far to be achieved as it would require an accu-
rate intervention on subjects affected by mild cognitive impairment, a condition which 
in some cases is a prodromal AD state, further more difficult to detect. In this case, diag-
nostic ranges of sensitivity 46–88% and specificity of 37–90% have been reported [9]. 
These results indicate that many patients not affected at all, or far to be affected, by AD 
were treated, thus diluting the statistical significance of these trials and the chance to 
detect a treatment.

Accordingly, more advanced imaging strategies have been recently proposed in search 
of effective AD markers. Some studies focused on the whole brain [10–14], others pre-
ferred the analysis of specific brain regions [15–17]. As a prominent role is played by 
hippocampus, in this work we investigate the adoption of a specific hippocampal seg-
mentation strategy: the Hippocampal Unified Multi-Atlas Network [18]. HUMAN 
exploits the accuracy of multi-atlas approaches (representing the state-of-the-art for 
hippocampal segmentation) and combines it with the robustness of machine learning 
strategies, thus obtaining an effective and unified segmentation framework. Multi-atlas 
approaches are based on the use of available labeled scans, in this case with hippocampal 
manual tracings, to segment unseen scans: labeled examples are usually warped onto 
the scan to be segmented and segmentation is obtained by label fusion [19]. Multi-atlas 
approaches have, in fact, some ineradicable drawbacks [20]: registration failures, voxel 
resampling and thresholding of warped masks are sources of noise affecting the label 
fusion and the accuracy of segmentations. Classification approaches can improve label 
fusion [21, 22], this is why recent works have been experimenting a combined strategy 
[23, 24].

However, the utility of a precise segmentation relies on its clinical application; in order 
to be useful, segmentations have to reveal the effects of disease. Several works have 
shown promising results when using hippocampal volumes [25, 26] or subdivisions of 
the hippocampus [27] for AD diagnosis. Recently, a particular attention has been given 
to fully automated methods for volume extraction and classification [28]. It is now 
understood that hippocampal atrophy is a diagnostic marker of AD, even at the MCI 
stage [4], on the contrary an aspect which is not clear yet is how segmentation preci-
sion affects these results. Besides, the application of precise segmentation methods is 
not limited to AD. Another important field of interest is the monitoring of Multiple Scle-
rosis lesions.

We present here an evaluation of HUMAN precision with a particular attention to 
the diagnostic application. To this aim, we explore the information content provided by 
HUMAN segmented volumes on a mixed cohort from ADNI. The paper is organized as 
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follows: in Materials and Methods we provide a synthetic overview of the image pro-
cessing pipeline and how hippocampal volumes can be used to detect diseased patterns; 
in Results we present our findings; finally, Discussion and Conclusions summarize our 
work.

Methods
Subjects

Data used in preparation of this article were obtained from ADNI database (adni.loni.
usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Prin-
cipal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 
whether serial magnetic resonance imaging, positron emission tomography, other bio-
logical markers, and clinical and neuropsychological assessment can be combined to 
measure the progression of mild cognitive impairment and early Alzheimer’s disease.

For the present study, 456 subjects from ADNI including 145 CTRL, 217 MCI and 94 
AD subjects were analyzed. Data consisted of a random sample of 1.5 and 3.0 T1 scans 
having 4 different time acquisitions: screening, repeat, 12 month and 24 month follow-
up scans. The whole training procedure of HUMAN algorithm was performed on an 
independent training set consisting of a mixed cohort of 100 subjects including 29 
CTRL, 34 MCI and 37 AD subjects; the set was selected to be representative of the 
whole ADNI collection, as it was firstly employed by the EADC-ADNI consortium1 to 
define a novel segmentation protocol of the hippocampus [29]. Demographic informa-
tion is summarized in the following Table 1.

For each subject, screening and repeat scans were acquired with a short time delay 
(within 4 weeks), thus it was reasonable to assume they were not affected by any signifi-
cant clinical/morphological change. This assumption is fundamental to evaluate the pre-
cision of segmented volumes. Precision of a measurement is by definition the amount 
of variation that exists in the values of multiple measurements of the same quantity. In 
brief, as brains should not show any significant morphometric difference, an ideally pre-
cise and replicable measure of the hippocampal volume should give identical results. 

1 https://www.hippocampal-protocol.net.

Table 1 Data size, age range and gender are shown for each diagnostic group (CTRL, MCI 
and AD subjects)

Mean and standard deviation are shown when appropriated. Demographic is reported in different rows for training and test 
sets

Size Age Gender (M/F)

Training

 CTRL 29 75 ± 7 16/13

 MCI 33 74 ± 8 17/16

 AD 38 74 ± 8 22/16

Test

 CTRL 145 73 ± 6 78/67

 MCI 217 75 ± 9 108/109

 AD 94 75 ± 9 51/43

https://www.hippocampal-protocol.net
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Follow-ups were used instead to investigate the precision of HUMAN segmentations 
over time, especially to see if the segmentations were able to find known biological rel-
evant aspects.

Image processing

The HUMAN algorithm performs hippocampal segmentations in three main phases, as 
detailed in previous work [18]:

1. Non-linear registration. The intensity of MRI scans is normalized to lie within the 
[0,1] range and the eventual bias field is removed before that a non-linear registration 
(warp) is performed with a data driven template.

2. Atlas selection. Pearson’s correlation is measured between the scan to be segmented 
and the training scans. In this way, optimal atlases are chosen. These atlases are the 
base of knowledge for subsequent machine learning.

3. Classification. From peri-hippocampal regions we extract statistical and textural fea-
tures; the resulting features are used to train a voxel-based classifier and the final hip-
pocampal segmentation is obtained by label fusion.

A synthetic overview is reported in the following flowchart in Fig. 1.
HUMAN algorithm aims at a robust spatial normalization of MRI scans. This is the 

main prerequisite for a successful segmentation. Firstly, all MRI scans are normalized 
and the bias field removed with the improved N3 MRI bias field correction algorithm 
[30], in order to minimize differences in intensity due to the use of different scans or to 
magnetic field inhomogeneities. To improve registration accuracy we firstly built a 

Fig. 1 The HUMAN processing pipeline. A data driven template is built from controls, then training scans are 
warped and peri-hippocampal volumes of interest (VOI) are extracted. VOI is automatically traced on the tem-
plate, such that hippocampi of warped scans are contained within. The most similar VOIs are used to select 
optimal atlases; finally, from each scan a neural network is trained to obtain a putative segmentation. The final 
segmentation is the average of putative segmentations, a Bayesian threshold is used to get a binary response
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data-driven template T  by averaging healthy subjects with the publicly available soft-
ware Advanced Normalization Tools2, which can give accurate average representations 
from highly variable anatomy. Secondly, we performed a linear registration with FLIRT 
(FMRIB’s Linear Image Registration Tool) [31]. Lastly, we used again Advanced Normal-
ization Tools to perform non-linear registration [32, 33], the combination of these two 
registration procedures allowed us to maximize the overlap of different scans improving 
the hippocampal segmentation.

After registration of scans Si to the template T , for multi-atlas segmentation the sec-
ond crucial step prescribed the selection of optimal atlases. In particular, we extracted 
from warped MRI scans a common volume of interest (VOI), including the peri-hip-
pocampal region, which was evaluated through a shape analysis algorithm [34] on train-
ing scans and automatically traced on the template, such that hippocampi of warped 
scans were contained within. In brief, the VOI is obtained by assigning to each voxel 
a probability to belong or not to the hippocampi. We measured in this VOI the pair-
wise similarity between training and test scans. This step is of paramount importance to 
reduce the computational burden involved by the procedure and increase the algorithm 
accuracy. Optimal atlases were chosen by measuring their Pearson’s correlation r with 
the test scan:

the sum is extended to all N voxels in the peri-hippocampal VOI; xj represents the inten-
sity of the j-th voxel of a training scan, yj is the intensity of the corresponding j-th voxel 
in the test scan. The most similar scans were the ten scans with higher correlations.

From each voxel within the VOI we extracted statistical and textural features. Statis-
tical features included the average, the standard deviation and other central moments 
computed on square boxes with varying size (from 3× 3× 3 to 9× 9× 9 voxels) and 
centered on the voxel of interest. We also computed textural features such as the Haral-
ick and Haar-like features [35–37].

We fed a neural network model for each VOI. The optimal configuration consisted of 
neural networks trained with the backpropagation algorithm with one hidden layer con-
taining ten neurons and standard sigmoid activation functions. These models learned to 
distinguish hippocampal voxels from background according to the computed features. 
To segment a test scan we finally used a weighted average; using only models corre-
sponding to optimal atlases and their measured correlations as weights, we assigned to 
each voxel within the test scan VOI a classification score.

The test segmentation was finally obtained by a threshold determined with a Bayesian 
approach. Firstly, we determined on training the a priori probability for a voxel to belong 
to the hippocampus P(H). Secondly, we estimated with repeated 5-fold cross-validations 
the training classification sensitivity S and specificity s. Finally, we obtained the desired 
threshold as the a posteriori probability t:

2 http://picsl.upenn.edu/software/ants/.
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Each voxel with a classification score exceeding this threshold was assigned to the hip-
pocampus. Further details about algorithmic and computational aspects concerning 
HUMAN are presented and discussed in our previous study [18].

Following this procedure we segmented 1824 scans, for both left and right hip-
pocampi, 456 scans for each time point. These segmentations provided the hippocam-
pal volumes which were used for the two-class discrimination problems: CTRL–AD and 
CTRL–MCI.

Alzheimer’s disease classification

ADNI database does not include ground truth segmentations of hippocampi, so that it is 
not possible to perform a direct evaluation of segmentation accuracy. Nevertheless, it is 
possible to obtain an indirect measure, at least from a clinical perspective. Segmentation 
algorithms are usually evaluated in terms of error metrics, such as Dice index, Haus-
dorff distance, Recall. These metrics are useful to measure the agreement of segmenta-
tions with manual tracings provided by human experts. However, these metrics do not 
measure whether and how much these segmentations are associated to the diagnosis, an 
aspect which is fundamental for clinical applications.

To evaluate the informative content of HUMAN segmentations and their predictive 
power in order to detect AD, we used hippocampal volumes as diagnostic indexes. The 
procedure is shown in Fig. 2.

It is known that hippocampal volumes are a supportive feature for probable AD diag-
nosis, thus a well performing segmentation algorithm must return a volume distribution 
which significantly separates the CTRL, MCI and AD cohorts. Besides, to evaluate how 
good is the separation, volumes were used to build a simple receiver operating charac-
teristic (ROC) curve, for both CTRL–AD and CTRL–MCI classification tasks. With a 
varying volume threshold, we measured the true positive rate (AD or MCI subjects cor-
rectly classified with the given) against the false positive rate (CTRL subjects incorrectly 
classified at the same threshold); thus we built the ROC curve.

To help classification, we removed the normal aging effect from volumes with a linear 
regression model. As reported by several studies [38, 39] normal aging has an atrophy 

(2)t =
S · P(H)

S · P(H)+ (1− s) · (1− P(H))

Fig. 2 The classification flowchart with HUMAN segmentations. Age effect is removed from measured 
volumes, then these measurements are used as a classification score: a volume threshold is established, the 
threshold assigns the subjects to two distinct classes (CTRL/AD and CTRL/MCI). Finally, a receiver operating 
characteristic (ROC) curve is computed, determining the number of true positives and false positives
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effect which for hippocampi has an estimated value of about 30  mm3 per year. Accord-
ingly, we built a linear model to describe the estimated hippocampal volumes V̂  as a 
function of the subject age and using only the training CTRL cohort:

We observed an angular coefficient k = −29.9  mm3 per year with a 95% confidence 
interval [29.2, 30.5]  mm3 per year and an intercept value V0 = 3173.0  mm3. These values 
resulted in an accurate fit with R2 = 0.89. The age effect was then removed from each 
measured volume V, thus obtaining an effective volume Veff for each generic age t:

The reference time (measured in years) t0 was set to be the minimum age of the whole 
cohort. In this way we removed atrophy effects due to normal aging.

Finally, we used these volumes as diagnostic scores and computed the related receiver 
operating characteristic (ROC) curves for the two binary classification tasks CTRL–AD 
and CTRL–MCI. We measured the informative content in terms of AUC. We investi-
gated in this way the robustness of the segmentation results and the effectiveness of hip-
pocampal volumes as discriminant features of AD.

Results
Evaluation of HUMAN precision

A valid measure system should be both accurate and precise as a not precise measure 
would be affected by a large uncertainty, although remaining on average accurate. From 
a clinical point of view an accurate but not precise segmentation algorithm is unreli-
able. To measure HUMAN precision (even without available repeated acquisitions), we 
considered screening and repeat scans of the same subject indistinguishable, then we 
investigated the distribution of volume residuals Vscreening − Vrepeat. Results are shown in 
the following Fig. 3.

(3)V̂ = V0 + k(t − t0)

(4)Veff = V̂ − V
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Fig. 3 The distribution of differences between screening and repeat segmented volumes. The distribution of 
residuals shows a normal behavior consistent with a null mean (1.4± 84.3  mm3). In red the Gaussian distribu-
tion derived from the data
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As no morphometric change can occur between the screening and the repeat MRI 
acquisitions, all volumetric differences observed must descend from the algorithm 
intrinsic uncertainty. No systematic bias was observed; the mean value of residuals was 
1.4 ± 84.3  mm3, which was consistent with a null average and small if compared to the 
average hippocampal volume (considering that training hippocampi had a mean vol-
ume of 2650.2  mm3). It is worthwhile to note that the volume differences were calcu-
lated from different subjects, nonetheless it is reasonable to assume that the algorithm 
precision on a large sample should remain constant for all subjects. Accordingly, we 
considered the standard deviation of residuals σ = 84.3  mm3 an indirect measure of 
the algorithm precision. Compared to the mean hippocampal volume of 2650  mm3, the 
measured precision represented a 3% of the whole hippocampus.

The narrow distribution of volume residuals is not sufficient to prove the consistency 
of different segmentations, as for example it gives no clues about the homoscedastic or 
heteroscedastic behavior of the methodology. This is important especially to determine 
whether the algorithm precision varies with the volume to be segmented. In this sense, 
further information is provided by a correlation analysis. In fact, we measured the Pear-
son’s correlation between baseline and repeat segmented volumes, then we performed 
the same pairwise correlation analysis for all available time points. Also, we investigated 
the volume distribution at each time point.

Baseline and repeat scans showed a high correlation for both left r = 0.90 and right 
r = 0.79 hippocampi. Interestingly, higher correlations were found considering follow-
ups. In particular, as shown in Fig.  4, the highest values were found for correlations 
between 12 and 24 month follow-ups; we found r = 0.91 and r = 0.92 respectively for 
left and right cases.

A strong correlation, demonstrates the good agreement between the measurements. 
In all examined cases, except for baseline right hippocampi, correlations remained very 
strong exceeding the commonly adopted, even if rather arbitrary, 0.80 threshold [40]. 
Moreover, as variance remained almost constant through the whole volume range, the 
measure is homoscedastic.

HUMAN segmentations for AD diagnosis

Measuring the precision was necessary to evaluate the clinical utility of the proposed 
segmentation tool. To evaluate the diagnostic content for a single subject prediction, we 
built a linear model representing the volume distribution of the CTRL cohort as a func-
tion of time and the relative 95% confidence interval. Then we compared the AD vol-
umes using precision as the inherent uncertainty with this model.

As shown in Fig.  5, the hippocampal volumes of AD subjects showed a consistent 
reduction compared to the CTRL cohort.

Also, we performed a quantitative evaluation of the predictive power of HUMAN seg-
mentations. Using normalized hippocampal volumes as classification scores we could 
suitably determine the informative power contained in this feature. As a performance 
measure we used the AUC and bootstrapped the volumes 500 times to get an estimation 
of the standard error. The following Fig. 6 shows the ROC curves for mixed cohorts of 
CTRL and AD subjects, both for left and right hippocampi.
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Left hippocampi allowed a slightly more accurate discrimination capability with an 
AUCleft = 0.84 ± 0.02 (AUCright = 0.82± 0.02). The standard error of the AUC was cal-
culated with the Hanley-McNeil formula [41]. These results were obtained by consid-
ering the raw hippocampal volumes without removing the age confounding effect. In 
fact, using the proposed linear age detrending a significant improvement of performance 
was observed. A summary of these improved classification performances for screening, 
repeat, 12 month and 24 month follow-ups is reported in the subsequent Table 2.

In Table  2 the classification performance for the task CTRL–MCI is also reported. 
In this latter case hippocampal volumes still have a high discriminant power although 
significantly lower that for CTRL–AD. This is a direct effect of the progressive atrophy 

Fig. 4 Correlation plots. The figure shows the correlation plot for left (a) and right (b) hippocampal volumes: 
volumes at each time point are plotted against other time point volumes, the main diagonal represents the 
volume distributions. Correlations are computed for all time points considering both screening and repeat 
scans. The analysis shows high correlations, a proof of the segmentation algorithm consistency
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Fig. 5 Hippocampal volume variation over time. The linear model describing how hippocampal volumes 
from healthy subjects vary over time. HUMAN volumes of AD patients are also represented to qualitatively 
show the informative content of the measurements. In fact, AD subjects show a consistent reduction of the 
hippocampal volume compared to CTRL expected volumes

Fig. 6 The ROC curves. The ROC curve obtained using the baseline volumes of CTRL and AD subjects as 
a classification score. The performance is measured in terms of AUC. Raw hippocampal volumes provide 
robust discrimination for both left and right hippocampi, respectively with AUCleft = 0.84± 0.02 and 
AUCright = 0.82± 0.02

Table 2 Table reports the classification performance averaged for left and right hip-
pocampal volumes for two distinct classification tasks: CTRL–AD and CTRL–MCI

Acquisition AUC CTRL/AD AUC CTRL/MCI

Screening 0.88 ± 0.02 0.76 ± 0.05

Repeat 0.86 ± 0.03 0.75 ± 0.04

12 month follow-up 0.90 ± 0.02 0.80 ± 0.03

24 month follow-up 0.90 ± 0.01 0.80 ± 0.03
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affecting the brain, as shown in Fig. 7. A statistical analysis was performed with a non 
parametric Kruskal-Wallis test; we found a significant difference p < 0.01 between hip-
pocampal volumes of CTRL, MCI and AD populations. This result was confirmed for 
both left and right hippocampi.

As expected, the right volumes were slightly greater than the left ones, a direct effect 
of the well known AD left-privileging asymmetry. Analogous findings were obtained 
with screening and repeat scans. Again, the same statistical test confirmed a significant 
difference for 12 and 24 month follow-ups. To evaluate the informative content provided 
by hippocampal volumes, we measured the classification accuracy obtainable by deter-
mining the class of each subject (CTRL, MCI or AD) using these volumes as discrimina-
tive features of a Naive Bayes classifier, see Table 3.

Performance was evaluated with a ten-fold cross validation procedure; we performed 
100 cross-validation rounds using the sum of left and right hippocampal volumes to feed 
the classifier and compute the classification accuracy. Then, we performed the same test 
using only the left hippocampal volume; finally, the right hippocampus was used.

The classification accuracy for the CTRL, MCI and AD classes is simply the number of 
correct classified examples over the whole sample; the best results were obtained using 
both hippocampal volumes with a 0.50± 0.01 accuracy. Besides, to ease the interpret-
ability of results, we considered sensitivity and specificity looking at AD patients as the 
true positive and MCI and CTRL subjects as true negatives. Accordingly, results showed 
the hippocampal volumes tend to be a more specific (specificity ∼ 0.75± 0.04) than a 
sensitive (sensitivity 0.52± 0.07) feature.

Fig. 7 Boxplot of left and right hippocampal volumes. The boxplot of left and right hippocampal volumes 
divided by clinical status CTRL–MCI–AD. A Kruskal-Wallis test confirmed that the three groups were signifi-
cantly different p < 0.01

Table 3 The three-class (CTRL, MCI and AD subjects) classification performance

Performance Vleft + Vright Vleft Vright

Sensitivity 0.53± 0.08 0.50± 0.06 0.52± 0.06

Specificity 0.76± 0.04 0.75± 0.04 0.74± 0.04

Accuracy 0.50± 0.01 0.49± 0.01 0.49± 0.01
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Discussion
Our previous work [18] presented HUMAN segmentation methodology and evaluated 
its reliability in terms of segmentation accuracy. We demonstrated that HUMAN was 
able to reach an accurate Dice index performance on a manually labeled set of ADNI 
scans (0.929± 0.003) and a comparable result on an independent set whose labels had 
been provided following a different segmentation protocol (0.869± 0.002). In this work, 
we investigated its diagnostic application thus examining how hippocampal volumes 
segmented by HUMAN could be related to the diagnosis of ADNI subjects. We demon-
strated that using HUMAN volumes it was possible to obtain an accurate classification 
rate of ADNI subjects, an indirect proof of HUMAN reliability. First of all, we presented 
a precision analysis, which was fundamental to evaluate the clinical information carried 
out by HUMAN segmentations. Precision should not be confused with accuracy, even if 
closely related. Under the same conditions and with sufficient statistics, repeated meas-
urements should be normally distributed around their average; then, accuracy and preci-
sion can be measured: accuracy is the difference between the measurement average and 
a reference value, precision is the spread of the measurement distribution, i. e. its stand-
ard deviation (for Gaussian distribution). However, due to the particular nature of seg-
mentation problems, the latter tends to be frequently disregarded, especially for image 
processing oriented works. This work proposes a method to measure the segmentation 
precision.

To achieve this goal, we hypothesized that screening and repeat scans, being acquired 
with a short time difference, could ideally considered two independent measurements 
of an indistinguishable quantity. Therefore, no difference between the segmentation vol-
ume of screening and repeat scans should be observed except for statistical uncertainty. 
In this sense, the observed uncertainty value for residual distribution (3%) demonstrates 
HUMAN to be a valid segmentation algorithm, accurate and precise.

Moreover, considering the different available time points, a correlation study allowed 
us to estimate how much the methodology was stable from a longitudinal perspective. 
A robust segmentation algorithm must return highly correlated hippocampal volumes, 
even if, after 12 or 24 months, subjects are affected by physiological or pathological atro-
phy. HUMAN resulted in fact longitudinally robust. All time points, except one, showed 
a high Pearson’s correlation (r > 0.80). The correlation observed for left hippocampi 
resulted significantly higher than for right ones. A possible interpretation of this effect 
is that left hippocampal volumes are more severely affected by atrophy than right ones; 
as a consequence, left hippocampal volumes tend to be homogeneous as natural vari-
ability is dominated by atrophy. On the contrary, for right hippocampi, less affected by 
a severe atrophy, natural variability yields a more heterogeneous behavior resulting in a 
correlation drop particularly remarkable for screening and repeat scans. This interpreta-
tion is consistent with correlation results of other time points. Higher correlations were 
found between 12 and 24 month follow-ups with equivalent values for left and right hip-
pocampi. When atrophy dominates the aging effect, natural heterogeneity is eliminated, 
thus resulting in an increased segmentation agreement, what is not observed at the base-
line when natural variability remains a not negligible confounding factor.

Finally, the presented results demonstrate the usefulness of HUMAN segmentations 
for diagnostic purposes. In fact, basing only on hippocampal volumes, classification 
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AUC measurements achieve sound results. As expected, the informative content of left 
hippocampi is slightly but significantly higher than right ones. The result is confirmed 
for all time points and for both classification tasks: CTRL–AD and CTRL–MCI, the lat-
ter with a lower performance. MCI has of course intrinsically subtler differences from 
CTRL than AD, however another reason behind this performance drop is that MCI can 
include a wide range of heterogeneous conditions not necessarily leading to AD.

The results of this work demonstrated on one hand the effectiveness of HUMAN hip-
pocampal volume measurements for AD detection, reaching classification performances 
usually obtainable only with refined machine learning strategies [14] or including wider 
knowledge domains [13]. These performances compare well with other results reported 
in literature, see for example a recent international contest launched on the Kaggle plat-
form3 reporting classification accuracy about 0.35 for a four class classification (CTRL, 
AD, MCI and MCI converter). In fact, it should be considered that, among image-based 
markers, hippocampal volume could play a pivotal role in discriminating population at 
risk [42]. Classification accuracies reported in literature compare well with the presented 
results; for example, [43] found an 82% correct classification rate for AD and CTRL sub-
jects and a 64% accuracy when considering CTRL and MCI subjects, which will convert 
to AD. Analogously, in [44] the correct classification rate for AD and CTRL subjects was 
about 80% while the accuracy 65% was obtained with MCI subjects. More recently, [45] 
showed that, integrating longitudinal information (i.e. observing the hippocampal atro-
phy rate over time) with the baseline segmentation volume, more accurate classification 
results could be achieved: the discrimination ability gave an area under the curve 0.93 
for CTRL–AD classification and 0.88 for CTRL–MCI. It is worth mentioning that in this 
case, the classification results obtained with HUMAN segmentations show minor accu-
racies, but using only the information obtainable at the baseline and not including longi-
tudinal information arising from follow-up scans.

It is worth noting that the goal of this work was aimed at measuring the informative 
power of the hippocampal volumes segmented with the proposed methodology more 
than offering a comprehensive computer aided detection system for AD; a goal that 
would surely benefit from the use of additional information as cognitive scores, other 
atrophy measurements or refined classification strategies. Finally, the precision reported 
will hopefully stimulate the application of the proposed methodology to other neuro-
imaging challenging tasks, where the role of precision is of paramount importance; an 
important application, we intend to investigate, is the automated detection of Multiple 
Sclerosis lesions and the monitoring of their longitudinal evolution.

Conclusions
In this work we examine and assess in detail the reliability of the HUMAN method from 
a clinical perspective. The results demonstrated that the segmentation algorithm is sta-
ble and precise (3%), accordingly HUMAN is a reliable tool for hippocampal segmenta-
tion and could be suitably adopted to large trials or segmentation protocol evaluation 
studies.

3 https://www.kaggle.com/c/mci-prediction/leaderboard.

https://www.kaggle.com/c/mci-prediction/leaderboard
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The use of segmented volumes as classification scores for CTRL–AD discrimina-
tion allowed us to measure the informative content associated to this feature, for both 
left and right hippocampi. Removing the age confounding effect, segmented volumes 
revealed AD with an AUC1 = 0.88± 0.02. Besides, also for the CTRL–MCI classifica-
tion task a sound performance was achieved, AUC2 = 0.76± 0.05. For future work, it 
could be interesting to investigate a cohort not including generic MCI subjects, but spe-
cifically those converting to AD. This could be in fact a decisive information for early 
detection of Alzheimer’s disease.
Authors’ contributions
NA, ML, RB and ST contributed to conceive the study. NA wrote and edited the article. NA, ML, AF and AM performed 
the experiments and analyzed the data. RB and ST revised the manuscript. All authors read and approved the final 
manuscript.

Author details
1 Dipartimento Interateneo di Fisica “M. Merlin”, Università degli Studi di Bari “A. Moro”, Via Giovanni Amendola 173, 
70125 Bari, Italy. 2 Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70123 Bari, Italy. 3 Istituto Tumori 
Bari Giovanni Paolo II - IRCCS, Viale Orazio Flacco 65, 70124 Bari, Italy. 

Acknowledgements
Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
(National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81X 
WH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and 
Bioengineering, and through generous contributions from the following: Alzheimer’s Association; Alzheimer’s Drug Dis-
covery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; 
Eli Lilly and Company; F. Homann-La Roche Ltd and its aliated company Genentech, Inc.; GE Healthcare; Innogenetics, 
N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical 
Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis 
Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The 
Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contri-
butions are facilitated by the Foundation for the National Institutes of Health (https://www.fnih.org). The grantee organi-
zation is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s 
Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for 
Neuro Imaging at the University of Southern California. A complete listing of ADNI investigators can be found at: http://
adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Data used in preparation of thisarticle were obtained from the Alzheimer’s Disease NeuroimagingInitiative (ADNI) 
database(https://adni.loni.usc.edu). As such, theinvestigators within the ADNIcontributed to the design andimplementa-
tion of ADNI and/orprovided data but did notparticipate in analysis or writing ofthis report.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 13 July 2017   Accepted: 10 January 2018

References
 1. Prince MJ. World Alzheimer Report 2015: The global impact of dementia: an analysis of prevalence. cost and trends, 

Incidence, cost and trends; Alzheimer’s Disease International: London. 2015.
 2. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, 

Mayeux R. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on 
Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Demen. 
2011;7(3):263–9.

 3. Dubois B, Feldman HH, Jacova C, DeKosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier 
S, Jicha G. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet 
Neurol. 2007;6(8):734–46.

 4. Frisoni GB, Fox NC, Jack CR, Scheltens P, Thompson PM. The clinical use of structural MRI in Alzheimer disease. Nat 
Rev Neurol. 2010;6(2):67–77.

https://www.fnih.org
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://adni.loni.usc.edu


Page 15 of 16Amoroso et al. BioMed Eng OnLine  (2018) 17:6 

 5. Cabral C, Morgado PM., Costa DC, Silveira M, Alzheimer’s disease Neuroimaging Initiative. Predicting conversion 
from MCI to AD with FDG-PET brain images at different prodromal stages. Comput Biol Med. 2015;58:101–9.

 6. Chincarini A, Bosco P, Gemme G, Morbelli S, Arnaldi D, Sensi F, Solano I, Amoroso N, Tangaro S, Longo R. Alzheimer’s 
disease markers from structural MRI and FDG-PET brain images. Europ Phys J Plus. 2012;127(11):1–16.

 7. Braak H, Braak E. Neuropathological stageing of alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.
 8. Delacourte A, David J, Sergeant N, Buee L, Wattez A, Vermersch P, Ghozali F, Fallet-Bianco C, Pasquier F, Lebert F. The 

biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology. 1999;52(6):1158.
 9. Visser P, Scheltens P, Verhey F. Do MCI criteria in drug trials accurately identify subjects with predementia Alzheimer’s 

disease? J Neurol Neurosurg Psychiatry. 2005;76(10):1348–54.
 10. Sluimer J, Vrenken H, Blankenstein M, Fox N, Scheltens P, Barkhof F, van der Flier W. Whole-brain atrophy rate in 

Alzheimer disease Identifying fast progressors. Neurology. 2008;70(19 Part 2): 1836–41.
 11. Amoroso N, Errico R, Bellotti R. PRISMA-CAD: fully automated method for computer-aided diagnosis of dementia 

based on structural MRI data. In: Proc MICCAI workshop challenge on computer-aided diagnosis of dementia based 
on structural MRI data. 2014. pp. 16–23.

 12. Beheshti I, Demirel H, Initiative ADN. Probability distribution function-based classification of structural MRI for the 
detection of Alzheimer’s disease. Comput Biol Med. 2015;64:208–16.

 13. Bron EE, Smits M, Van Der Flier WM, Vrenken H, Barkhof F, Scheltens P, Papma JM, Steketee RM, Orellana CM, Meij-
boom R. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: 
the CADDementia challenge. NeuroImage. 2015;111:562–79.

 14. Allen GI, Amoroso N, Anghel C, Balagurusamy V, Bare CJ, Beaton D, Bellotti R, Bennett DA, Boehme KL, Boutros 
PC. Crowdsourced estimation of cognitive decline and resilience in Alzheimer’s disease. Alzheimer’s Dement. 
2016;12(6):645–53.

 15. Colliot O, Chételat G, Chupin M, Desgranges B, Magnin B, Benali H, Dubois B, Garnero L, Eustache F, Lehéricy S. 
Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated 
segmentation of the Hippocampus 1. Radiology. 2008;248(1):194–201.

 16. Tangaro S, Amoroso N, Boccardi M, Bruno S, Chincarini A, Ferraro G, Frisoni G, Maglietta R, Redolfi A, Rei L. Auto-
mated voxel-by-voxel tissue classification for hippocampal segmentation: methods and validation. Physica Medica. 
2014;30(8):878–87.

 17. Poulin SP, Dautoff R, Morris JC, Barrett LF, Dickerson BC, Initiative ADN. Amygdala atrophy is prominent in early 
Alzheimer’s disease and relates to symptom severity. Psychiatry Res Neuroimag. 2011;194(1):7–13.

 18. Amoroso N, Errico R, Bruno S, Chincarini A, Garuccio E, Sensi F, Tangaro S, Tateo A, Bellotti R, Initiative ADN. Hip-
pocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool. Phys 
Med Biol. 2015;60(22):8851.

 19. Aljabar P, Heckemann RA, Hammers A, Hajnal JV, Rueckert D. Multi-atlas based segmentation of brain images: atlas 
selection and its effect on accuracy. Neuroimage. 2009;46(3):726–38.

 20. Pipitone J, Park MTM, Winterburn J, Lett TA, Lerch JP, Pruessner JC, Lepage M, Voineskos AN, Chakravarty MM, Initia-
tive ADN. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically gener-
ated templates. Neuroimage. 2014;101:494–512.

 21. Inglese P, Amoroso N, Boccardi M, Bocchetta M, Bruno S, Chincarini A, Errico R, Frisoni G, Maglietta R, Redolfi A. 
Multiple RF classifier for the hippocampus segmentation: method and validation on EADC-ADNI Harmonized Hip-
pocampal Protocol. Physica Medica. 2015;31(8):1085–91.

 22. Maglietta R, Amoroso N, Boccardi M, Bruno S, Chincarini A, Frisoni GB, Inglese P, Redolfi A, Tangaro S, Tateo A. Auto-
mated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm. Pattern Anal 
Appl. 2016;19(2):579–91.

 23. Wang H, Das SR, Suh JW, Altinay M, Pluta J, Craige C, Avants B, Yushkevich PA, Initiative ADN. A learning-based wrap-
per method to correct systematic errors in automatic image segmentation: consistently improved performance in 
hippocampus, cortex and brain segmentation. NeuroImage. 2011;55(3):968–85.

 24. Hao Y, Wang T, Zhang X, Duan Y, Yu C, Jiang T, Fan Y. Local label learning (LLL) for subcortical structure segmentation: 
application to hippocampus segmentation.Hum Brain Mapp. 2014;35(6):2674–97.

 25. Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy S, Habert M-O, Chupin M, Benali H, Colliot O, Initiative ADN. 
Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods 
using the ADNI database. Neuroimage. 2011;56(2):766–81.

 26. Leung KK, Barnes J, Ridgway GR, Bartlett JW, Clarkson MJ, Macdonald K, Schuff N, Fox NC, Ourselin S, Initiative ADN. 
Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and 
Alzheimer’s disease. Neuroimage. 2010;51(4):1345–59.

 27. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, Roy N, Frosch MP, McKee AC, Wald LL. A 
computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive 
segmentation of in vivo MRI. Neuroimage. 2015;115:117–37.

 28. Platero C, Tobar MC. A fast approach for hippocampal segmentation from T1-MRI for predicting progression in 
Alzheimer’s disease from elderly controls. J Neurosci Methods. 2016;270:61–75.

 29. Boccardi M, Bocchetta M, Morency FC, Collins DL, Nishikawa M, Ganzola R, Grothe MJ, Wolf D, Redolfi A, Pievani 
M. Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol. 
Alzheimer’s Dement. 2015;11(2):175–83.

 30. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC. N4ITK: improved N3 bias correction. IEEE 
Trans Med Imaging. 2010;29(6):1310–20.

 31. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. Neuroimage. 2012;62(2):782–90.
 32. Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: 

evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 2008;12(1):26–41.
 33. Avants BB, Tustison N, Song G. Advanced normalization tools (ANTS). Insight J. 2009;2:1–35.
 34. Amoroso N, Bellotti R, Bruno S, Chincarini A., Logroscino G, Tangaro S, Tateo A. Automated Shape Analysis landmarks 

detection for medical image processing. In: CompIMAGE. 2012. pp. 139–42.



Page 16 of 16Amoroso et al. BioMed Eng OnLine  (2018) 17:6 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

 35. Viola P, Jones MJ. Robust real-time face detection. Int J Comput Vision. 2004;57(2):137–54.
 36. Haralick RM, Shanmugam K, et al. Textural features for image classification. IEEE Trans Syst Man Cybern. 

1973;6:610–21.
 37. Tangaro S, Amoroso N, Brescia M, Cavuoti S, Chincarini A., Errico R, Inglese P, Longo G, Maglietta R, Tateo A, et al. 

Feature selection based on machine learning in MRIs for hippocampal segmentation. Comput Math methods Med. 
2015;2015:814104.

 38. Jack CR, Petersen RC, Xu YC, Waring SC, O’Brien PC, Tangalos EG, Smith GE, Ivnik RJ, Kokmen E. Medial temporal 
atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology. 1997;49(3):786–94.

 39. Erickson KI, Miller DL, Roecklein KA. The aging hippocampus interactions between exercise, depression, and BDNF. 
Neuroscientist. 2012;18(1):82–97.

 40. Evans JD. Straightforward satistics for the behavioral sciences. Boston: Brooks/Cole; 1996.
 41. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiol-

ogy. 1982;143(1):29–36.
 42. Frankó E, Joly O, Initiative ADN. Evaluating Alzheimer’s disease progression using rate of regional hippocampal 

atrophy. PloS ONE. 2013;8(8):71354.
 43. Wolz R, Heckemann RA, Aljabar P, Hajnal JV, Hammers A, Lötjönen J, Rueckert D, Initiative ADN. Measurement of 

hippocampal atrophy using 4D graph-cut segmentation: application to ADNI. NeuroImage. 2010;52(1):109–18.
 44. Lötjönen J, Wolz R, Koikkalainen J, Julkunen V, Thurfjell L, Lundqvist R, Waldemar G, Soininen H, Rueckert D, Initiative 

ADN. Fast and robust extraction of hippocampus from MR images for diagnostics of Alzheimer’s disease. Neuroim-
age. 2011;56(1):185–96.

 45. Chincarini A, Sensi F, Rei L, Gemme G, Squarcia S, Longo R, Brun F, Tangaro S, Bellotti R, Amoroso N. Integrating 
longitudinal information in hippocampal volume measurements for the early detection of Alzheimer’s disease. 
Neuroimage. 2016;125:834–47.


	Alzheimer’s disease diagnosis based on the Hippocampal Unified Multi-Atlas Network (HUMAN) algorithm
	Abstract 
	Background: 
	Materials and methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Subjects
	Image processing
	Alzheimer’s disease classification

	Results
	Evaluation of HUMAN precision
	HUMAN segmentations for AD diagnosis

	Discussion
	Conclusions
	Authors’ contributions
	References




