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Background
Atherosclerotic plaques are localized and they are most likely to occur at arterial bifur-
cations and bends [1, 2]. Many studies have demonstrated that the mechanical forces 
exposed to arterial endothelial cells play an important role in the development and pro-
gression of atherosclerosis [3–6]. These forces mainly include wall shear stress (WSS) 
as a result of blood flow and the circumferential strain (CS) caused by periodical wall 
motion and pulsatile pressure. Since these forces are primarily determined by the arte-
rial geometry, some regions of the artery may have an increased risk of developing 
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Results: For carotid anthropomorphic vascular phantom experiments, the SPAs 
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atherosclerosis [7], particularly for arterial bifurcations. Recent research has shown that 
the plaque formation is most obvious at the outer wall of the carotid sinus where the 
flow separates [8–10]. Furthermore, arterial remodeling and the development of ath-
erosclerotic disease need to be evaluated by the circumferential wall stress, an essen-
tial parameter for determining atherogenesis [7, 11–13]. Therefore, the CS and WSS can 
be used as indicators for carotid bifurcation atherosclerosis. The temporal phase angle 
between CS and WSS, which we have termed as the stress phase angle (SPA), deter-
mines the influencing effect of arterial wall shear stress and blood shear stress [13, 14]. 
Note that SPA has been proven as a potential important parameter due to its role in 
the pathophysiology of vascular disorders [15]. Furthermore, several numerical investi-
gations on SPA have been carried out to locate the positions of atherosclerosis in differ-
ent geometric arteries. Carotid bifurcation modelling using fluid–structure interaction 
shows that large negative SPA values are located at the atherosclerotic plaques attached 
to the outer wall of the carotid sinus [16]. In addition, some studies also demonstrated 
that SPA had significant value for predicting stenosis severity of artery [17, 18]. However, 
the role of SPA for locating atherosclerosis in different geometric arteries has not been 
verified experimentally yet.

Recently, an ultrasonic biomechanical (UBM) method was established to characterize 
the displacement and flow pattern of arterial wall simultaneously [19–22]. This method 
is employed to quantitatively determine and evaluate the function of SPA in predicting 
early atherosclerosis based on an experimental platform. Results have shown that highly 
negative SPA correlates to arterial wall stiffening [23]. The UBM method has been uti-
lized in this experimental study to analyze the role of SPA for location of atherosclero-
sis in different geometric arteries. Firstly, the changes of SPA in different locations of 
the carotid artery are studied by UBM. High levels of negative SPA could be found in 
the internal carotid artery (ICA) as compared to the common carotid artery (CCA) and 
external carotid artery (ECA). Secondly, the results are verified by in vivo mouse experi-
ments. Experimental results demonstrated that a greater negative SPA value was indica-
tive of arterial disease risk.

Methods
Experimental setup

The UBM method is capable of measuring the displacement of vessel wall and blood flow 
simultaneously, which has been demonstrated in [24]. Further detail on this method for 
calculating the SPA is given in [23], and this method has been used to analyze SPA tem-
poral distribution with arterial stiffening in an experimental setup. The data file acquired 
contains frames over several cardiac cycles. Contrast-enhanced images are computed 
between consecutive frames using the UBM method. Firstly, ROIs are selected includ-
ing the vessel wall and lumen. Each ROI is divided into a grid of small sections known 
as interrogation windows. Then, the UBM method is used to calculate the displacement 
of each interrogation window. This process is repeated at each interrogation window 
within the image, resulting in a map of displacement vectors to describe the arterial wall 
movement and flow. The CS can be obtained from the displacement of vessel wall, and 
WSS can be determined based on gradient of the flow velocities. Therefore, the SPA can 
be acquired by the temporal phase angle between CS and WSS.
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A closed-loop compression system can be used to pressurize an arterial phantom 
(Fig. 1) and an ultrasound imaging system to acquire the image sequence. Pulsatile flow, 
mimicking the ventricular action of the heart, was generated by a Harvard Apparatus 
pulsatile pump (Model 55-3305; Harvard Apparatus, Holliston, MA, USA). Ultrasound 
contrast microbubbles containing cores of octafluoropropane  (C3F8) gas surrounded by 
a phospholipid shell are developed. A 0.025 ml volume of microbubbles was injected into 
the upstream chamber and mixed to ensure uniform bubble concentration during each 
measurement. Then, we performed microbubble seeding as described in the previous 
section [25]. The transducer was placed perpendicular to the flow direction to obtain the 
ultrasound contrast images.

Phantom experiments

A carotid anthropomorphic vascular phantom manufactured by Shelley Medical Imag-
ing Technologies (London, ON, Canada) for mimicking a normal carotid bifurcation was 
used to study the change of SPA at different locations of the carotid bifurcation (Fig. 2). 
An open-architecture ultrasound system (Sonix RP, Vancouver, Canada) with a 10 MHz 
linear array transducer was used to image the vascular phantom in the longitudinal sec-
tion. The frame rate was 125 Hz and the field of view was 40 mm (depth) × 20.8 mm 
(width).

In addition, the arterial phantom was made of PVA cryogel (PVA-c). The PVA aqueous 
solution was filled into a steel mold, and then frozen and subsequently thawed to form 
a cryogel with rubber-like properties [26]. The composition (by weight) of the solution 
was 10% PVA powder, 87% deionized water, and 3% scattering particles composed of 
sigmacell cellulose with diameter of 20 μm (Sigma-Aldrich, USA). The mold consisted of 
two polished stainless-steel shells, a bifurcate inner rod (6 mm CCA diameter, 4.5 mm 
ICA diameter, 4 mm ECA diameter), and two hexagonal screws, as shown in Fig. 3a, b. 
The solution was injected into the gap between the rod and the shells (Fig. 3c). The whole 

Fig. 1 Experimental set-up was established to calculate the circumferential strain and wall shear stress 
of carotid anthropomorphic vascular phantoms and the polyvinyl alcohol (PVA-c) phantoms using the 
ultrasonic biomechanics method
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mold underwent a number of freeze–thaw cycles to generate higher stiffness. Each 
freeze–thaw cycle was composed of 12-h freezing at − 20 °C and 12-h thawing at 20 °C. 
The optical photo and the ultrasound image of the carotid phantom are shown in Fig. 3e, 
f. The stiffness of the PVA phantom was also tested on an electronic universal mate-
rial testing machine (CMT6104; New Sans Machinery Co., Ltd., Shenzhen, Guangdong, 
China). The phantom with three freeze–thaw cycles (Young’s modulus, 162.45  kPa) 
was used in flow experiments. The carotid phantom was imaged using a high frequency 
small-animal imaging system with a 40-MHz linear transducer (Visualsonics). The image 
acquisition frame rate was 125 Hz and the number of the image sequence was 800.

In vivo mouse carotid artery experiments

The change of SPA in carotid bifurcation was further investigated in vivo. Our animal 
experiments were conducted in strict accordance to protocols that are approved by the 

Fig. 2 a A carotid anthropomorphic vascular phantom representing a normal carotid bifurcation; b the 
enlarged image of carotid bifurcation; c the ultrasound contrast image of external carotid artery

Fig. 3 The carotid bifurcation mold consisting of a a polished stainless-steel shell, and b a bifurcated inner 
rod (6 mm CCA diameter, 4.5 mm ICA diameter, 4 mm ECA diameter). c All the components were assembled 
together, and the PVA solution was injected into the gap. d The resulting carotid bifurcation vessel phantom. 
e The ultrasound contrast image of external carotid artery
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Institutional Animal Care and Use Committee of Shenzhen Institutes of Advanced Tech-
nology, Chinese Academy of Sciences. During the injection and image acquisition pro-
cess, mice were anesthetized with 1.0–2.0% isoflurane in oxygen delivered at a flow rate 
of 1.0 min/l and monitored with electrocardiogram. Using a rectal temperature probe, 
body temperature was carefully maintained between 36.7 and 37.3  °C throughout the 
study. Ultrasound contrast agents composed of octafluoropropane  (C3F8) gas encapsu-
lated by a phospholipid shell fabricated in house were injected through the tail vein into 
each mouse with a 2.0 × 105 microbubbles/ml concentration. Ultrasound biomicroscopy 
(Vevo 2100, Visualsonics, Toronto, Canada) with a transducer frequency of 40 MHz was 
used for vascular imaging in anesthetized mice. The frame rate was 200 Hz.

Statistical analyses

The analysis of covariance (ANOVA) was used to examine the role of SPA for locating 
atherosclerosis in carotid bifurcation. A p value less than 0.05 was accepted as indicating 
statistical significance. All statistical analyses were performed using the Statistical Pack-
age for Social Sciences statistical software package, version 17.0 (SPSS Inc.).

Results
Carotid anthropomorphic vascular phantom experiments

The UBM method was used to measure the measure hemodynamic parameters in the 
carotid anthropomorphic vascular phantom experiments. The distribution of arterial 
diameter and wall shear rate for vascular phantom in the CCA (a), ECA (b) and ICA (c) 
was shown in Fig. 4. It is worthwhile noting that the diameter and WSR curves exhibit 
a periodical variation and phase shift. The SPA values located at the CCA, ECA and 

Fig. 4 The distribution of arterial diameter and wall shear rate for carotid anthropomorphic vascular 
phantoms in the common carotid arteries (a), external carotid arteries (b), and internal carotid arteries (c)
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ICA are − 148.53 ± 6.92°, − 153.95 ± 5.11°, and − 238.69 ± 1.72°, respectively. It can 
be observed that SPA is more negative for the ICA where the atherosclerotic plaque 
develops.

PVA‑c phantom experiments

The PVA phantoms are performed to verify the accuracy of the results in carotid anthro-
pomorphic vascular phantom. The temporal diameter and WSR curves of the CCA, 
ECA and ICA in the PVA phantom are shown in Fig. 5a–c, respectively. The diameter 
and WSR curves show a periodical variation and phase shift. Note that the SPA, WSR 
and the strain at different locations of the PVA phantoms are shown in Table 1. There 
is a 35% increment in negative SPA, a 27% reduction in WSR, and a 26% reduction in 
strain pertaining to the ICA in comparison to that of the CCA.

In vivo mouse carotid artery experiments

The UBM method is utilized in determining the flow velocity distributions and the 
arterial diameter changes of the CCAs, ECAs and ICAs present in mice. The change of 

Fig. 5 The distribution of arterial diameter and wall shear rate for PVA-c phantom in the common carotid 
arteries (a), external carotid arteries (b), and internal carotid arteries (c)

Table 1 Parameters of  the  stress phase angle (SPA), wall shear rate (WSR) and  arterial 
strain in different locations of PVA-c phantoms

CCAs common carotid arteries; ECAs external carotid arteries; ICAs internal carotid arteries

Location SPA (o) WSR (1/s) Strain (%)

CCAs − 173.47 ± 0.065 21.94 ± 0.125 4.31 ± 0.33

ECAs − 115.57 ± 4.83 26.13 ± 0.51 2.35 ± 0.055

ICAs − 233.9 ± 8.12 16.06 ± 0.92 3.18 ± 0.05
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diameter and WSR profiles with time is depicted in Fig.  6. It is notable that there are 
periodic patterns between the diameter and WSR and the phase shift at various times. 
The SPA, WSR and the strain at various locations of mice are shown in Table 2. Here, 
more negative SPA is achieved in the ICAs (− 280.08 ± 13.12°) compared with CCAs 
(− 141.97 ± 8.03°) and ECAs (− 170.07 ± 9.24°), while correspondingly, WSR and strain 
are lower in the ICAs. A comparison of different locations was made by analysis of var-
iance. Significant differences were found among locations for SPA (p =  0.0001), WSR 
(p = 0.045) and strain (p = 0.009).

Fig. 6 The distribution of arterial diameter and wall shear rate in mice common carotid arteries (a), external 
carotid arteries (b), and internal carotid arteries (c)

Table 2 Values of stress phase angle, wall shear rate and arterial strain in specific locations 
of carotid arteries in mice

The abbreviations are as in Table 1

Location SPA (o) WSR (1/s) Strain (%)

CCAs − 141.97 ± 8.03 28.45 ± 3.82 19.07 ± 2.15

ECAs − 170.07 ± 9.24 21.68 ± 2.99 13.62 ± 2.40

ICAs − 280.08 ± 13.12 19.82 ± 3.23 11.68 ± 1.15

F 148.84 5.45 11.32

p 0.0001 0.045 0.009
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Discussions
This study showed that SPA was highly dependent on geometries and it might be an essen-
tial predictor in early atherosclerosis. Note that CS and WSS were not synchronous in the 
ICA as verified by in  vitro carotid anthropomorphic vascular phantoms. Moreover, the 
SPA is large and negative for the ICA where atherosclerotic plaques located. The results 
were further demonstrated by PVA-c phantom experiments and in  vivo mouse carotid 
artery experiments. Previous studies have indicated that SPA appears to be negative at 
higher degrees in positions that depict flow separation having low shear stress in compari-
son to the non-separated positions that have high shear stress. Lee and Tarbell performed 
experimental studies in a compliant aortic bifurcation model and found that the SPA was 
− 40° on the flow divider (high shear) and − 100° on the outer wall (low shear) [27]. Tada 
and Tarbell showed that the SPA became highly negative (approaching − 180°) along the 
entire length of the carotid sinus outer wall [16]. The results are consistent with our meas-
urements and computations of the SPA in the carotid bifurcation and large negative SPA in 
precisely those regions of arteries where atherosclerotic disease usually develops.

Many studies have shown that the development of atherosclerosis in the naturally 
bulbic ICA may be due to the local hemodynamic conditions, such as reduced and 
oscillating WSS [7, 28, 29]. Although cardiovascular risk factors typically cause the thick-
ening and stiffening of the CCA wall, the development of atherosclerosis at the naturally 
dilated ICA bulb is mainly related to the bifurcation geometry [2]. Our findings indicate 
that the WSR is found to be significantly reduced in the ICA, as shown in Tables 1, 2. 
Our results offer further evidence that the area of atherosclerotic plaque development 
has a higher tendency for low WSS values and indicates that the geometry of the artery 
may contribute to subclinical atherosclerosis. The regions at relatively low WSS are also 
characterized by more negative values of SPA in the phantom and mice experiments as 
described in this study. Therefore, the geometry and unique hemodynamic characteris-
tics (SPA = − 238.69 ± 1.72° for vascular phantom; SPA = − 233.9 ± 8.12° for PVA-c 
phantom; SPA = − 280.08 ± 13.12° for mice) of ICAs may contribute to predicting high-
risk atherosclerosis regions in these vessels.

The SPA combines the information of both WSS, which was resulted from blood flow, 
and the CS caused by periodical wall motion and pulsatile pressure. The results suggest 
that flow separation and low WSS areas comprise the most negative SPA (Figs. 4, 5, 6), 
which is consistent with previous studies [2, 29, 30]. Biological studies have demon-
strated that negative SPA can inhibit anti-atherogenic gene expression and release, but at 
the same time, they also increase pro-atherogenic gene expression and metabolite release 
[31, 32]. These results proved that ECs driven by hemodynamics and wall mechanics can 
potentially cause a pro-atherogenic effect on regions of the local circulation.

There were several limitations of this study: (1) The ultrasound data for CCA, ICA and 
ECA were collected independently at different initial phases. The SPA is independent of 
the initial phase, thus the results are unaffected. (2) Previous studies addressed that the 
acoustic properties of the experimental phantoms (artificial tissue, vessels, and blood) 
should match to those of actual human tissue [33]. Future studies will take into account 
these effects. (3) Given the small number of animals, our findings must be regarded as 
preliminary. Future research with larger sample size will be required to further verify 
these findings [34].
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Conclusion
The determination and analysis of SPA is proposed for locating the positions of athero-
sclerosis in different geometric arteries based on the UBM method. The SPA of CCA, 
ECA and ICA is − 148.53 ± 6.92°, − 153.95 ± 5.11°, and − 238.69 ± 1.72° for carotid 
anthropomorphic vascular phantom experiments, respectively. The corresponding 
SPA is −  173.47 ±  0.065°, −  115.57 ±  4.83° and −  233.9 ±  8.12° for the PVA phan-
toms, respectively. The in  vitro experimental results indicated that in the ICAs, WSS 
and CS were of different phases. The SPA was more negative in the ICAs as verified and 
indicated by our in vivo mouse experiments (− 280.08 ± 13.12°) compared with CCAs 
(−  141.97 ±  8.03°) and ECAs (−  170.07 ±  9.24°). The results indicate that SPA may 
have a key role in prediction of the atherosclerosis-prone regions, which now motivates 
future study on larger sample sizes for further verification.
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