
A new approach for analysis of heart rate 
variability and QT variability in long‑term ECG 
recording
Hau‑Tieng Wu1,2*  and Elsayed Z. Soliman3,4

Background
The non-stationary dynamic nature of the heart rate renders the heart rate variability 
(HRV) analysis, and subsequently the RR interval time series analysis and QT interval 
time series analysis, a difficult task. Nevertheless, several methods are currently used to 
quantify the HRV from 24 to 48 h long-term electrocardiogram (ECG) recordings [1–
5]. These methods could be briefly classified into four major categories—time domain 
approach, frequency domain approach, nonlinear geometric approach, and informa-
tion theory based approach [6–9]. Most of the methods applied to measure long-term 
HRV are based on the stationarity assumption [1–3, 10], a common assumption in many 
time series techniques. While those methods could still be applied to any non-stationary 
time series, such as 24–48 h long-term heart rate, the results might not be directly inter-
pretable, miss the finer non-stationary dynamics, or even misleading [11]. The problem 
becomes more challenging with “extra-long-term” ECG recordings, such as 7  days or 
longer [4, 12].
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To handle the non-stationarity challenge, it is possible to truncate the time series into 
overlapping or non-overlapping segments, and then evaluate the spectral content. If the 
assumption that the time series are locally stationary without frequent dramatic changes 
holds, such an approach could capture the dynamic information. This approach is called 
the Time Frequency (TF) analysis [13]. Short Time Fourier Transform (STFT) [14] and 
Continuous Wavelet Transform (CWT) [15] are common linear-type TF analysis tools, 
and Cohn’s classes [16] are common quadratic-type TF analysis tools (smoothed pseudo-
Wigner-Ville transform (SPWVT) [17] and Choi-Williams distribution (CWD) [18] are 
common choices of Cohn’s classes). These algorithms have been widely applied to HRV 
measurements [14–21]. Since the instantaneous spectral content is the main informa-
tion to extract, the TF analysis could be classified as the frequency domain method. 
While these algorithms have been widely applied, they are not free of limitations. The 
main limitation of linear-type TF analysis techniques such as STFT and CWT is the 
blurring effect caused by the uncertainty principle [22]. This blurring effect might mask 
the available information and downgrade the analysis quality [23]. The quadratic-type 
TF analysis tools generally lose the causality information, and possible interference pat-
terns might lead to an artificial outcome.

In this report, we focus on the TF analysis approach and propose a new nonlinear-type 
TF analysis approach, the concentration of frequency and time (ConceFT) [24], to study 
HRV and QT variability from extra-long-term ECG recordings. ConceFT is a generali-
zation of the above-mentioned TF analysis techniques like STFT or CWT. It resolves 
the blurring effect limitation commonly encountered in the linear-type TF analysis tech-
niques by sharpening instantaneous spectral content. It does this by taking the phase 
information of the time series and the multitaper technique into account, and by being 
stable to noise. The ConceFT has been previously shown to be an ideal tool to capture 
the dynamic spectral content of the RR interval time series that much better quantify 
anesthetic depth and noxious stimulation during the surgery under general anesthesia 
[23, 25]. Also, the idea of ConceFT was successfully applied to quantify the variability of 
the electrical activity of the diaphragm and the respiratory pressure signal to show how 
the mechanical ventilation impacts the breathing variability in infants [21].

Methods
As proof of concept of our approach, we utilized data from four long-term ECG record-
ings, about 2  weeks (about 325  h) each. The data was recorded using  ZIO® Patch 
(iRhythm Technologies, Inc., San Francisco, California, USA) with a sampling rate of 
200 Hz. The underlying information of the subjects was unknown to us.

Concentration of frequency and time–time‑varying power spectrum

To take into account the non-stationarity of a given time series, such as the physiological 
non-stationarity status of the HRV time series, and to avoid the limitations encountered 
in linear-type and quadratic-type TF analysis tools, we considered the recently devel-
oped nonlinear-type TF analysis technique ConceFT. ConceFT has the ability to sharpen 
the spectrum, capture the non-stationary dynamics, and possesses stability in regard to 
noise [23]. ConceFT is a generalization of the widely-applied multitaper (MT) technique 
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[26] to the nonlinear-type TF analysis. Here we delineate the needs for ConceFT and 
summarize the algorithm step by step.

As mentioned, the basic idea of TF analysis is truncating the given time series by a 
given window at a different time, evaluating the power spectra of those truncated seg-
ments, and then stitching the power spectra obtained at those different times to create 
a spectrogram [13]. Notably, the multiplication of any window with the time series at 
time t means that the analysis on the time series is focused around time t. The first limi-
tation of this approach is the broadening or smearing of the spectral content caused by 
the uncertainty principle [22]. When noise exists, it is natural to ask if the algorithm is 
stable to noise. The MT technique [26] is widely applied to stabilize the algorithm. When 
applying the MT technique, the TF representations obtained from multiple orthonormal 
windows are averaged. While the MT technique could help obtain stable information 
about the non-stationary dynamics, this approach is limited by the “Nyquist rate”; that 
is, the number of windows competing with the desired TF resolution [27].

To alleviate the first limitation, the spectrum could be sharpened by taking the phase 
of the Fourier transform of the truncated segment into account. This nonlinear approach 
is called synchrosqueezing transform (SST) [28]. For the second limitation, the nonlin-
ear nature of the sharpening procedure could be taken into account to generalize the 
MT technique by considering multiple linear combinations of the chosen orthonormal 
windows. This combination leads to ConceFT, which binds the spirit of the MT tech-
nique and the nonlinearity of a chosen TF analysis.

ConceFT is composed of three steps. The first is choosing J orthonormal windows, 
where J is a positive integer, and for that we choose the first J Hermit windows due to 
their optimal time–frequency concentration [27]. In order to capture the local dynamics 
of the time series, we take N linear combinations of those J orthonormal windows so that 
the new window is of unit norm. Second, we evaluate the STFT by multiplying each line-
arly-combined window to the time series centered at a different time, and evaluating the 
Fourier transform. For each linearly-combined window and each time, we take the phase 
information of the Fourier transform to sharpen the spectral content; that is, the SST is 
applied [28]. Finally, at each time, we average the sharpened spectral contents evaluated 
by N different linearly combined windows, and obtain the final result, which is again a 
spectral content. By stitching the sharpened and stabilized power spectra obtained at a 
different time, we obtain a new spectrogram, which we call the time-varying power spec-
trum (tvPS). The result is a sharpened and stabilized spectrogram [23].

How to read the time‑varying power spectrum

The tvPS is represented as a matrix, which is usually represented as an image for visu-
alization. See Fig. 1 for a typical tvPS generated by ConceFT with the 14-day heart rate 
signal. The x-axis in Fig. 1 indicates the time in days. The y-axis indicates the frequency 
with in “Hz.” As a TF representation, this image comes from stitching together sequen-
tial spectra indexed by time. At each slice indexed by time, the intensity on that slice 
indicates how strongly the signal oscillates at the frequency indexed by the frequency 
axis. According to the developed theory [23, 28], the main information we can acquire 
from the tvPS is the “curve” pattern. Particularly, an oscillatory component inside the 
time series is represented as a curve indexed by time. In this example, after day 7, there 
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is a dominant oscillatory component at 1 Hz, which indicates a daily oscillation inside 
the heart rate signal. Theoretically, this curve indicates the time-varying frequency of 
the oscillatory component, and the intensity of the curve indicates the strength of that 
component [23].

Summarize the tvPS information—long‑term variability index

While ConceFT provides stabilized and sharpened dynamic spectral information by 
the tvPS, for the clinical application, we may prefer a more simplified index that could 
faithfully summarize the information provided by the tvPS. There are several different 
ways to achieve this goal. One approach is taking the distribution pattern of the tvPS 
into account, since it provides different dynamic physiological information that depends 
on the physiological background. To quantify the distribution pattern, we first obtain 
a time-varying parameter over a predesigned spectral region, like the time-varying 
low-frequency power [25], or describe how regularly the signal is oscillating, like the 

NRR 

=0.61

(1)

(2)

(3) (4)

Fig. 1 The flowchart of the proposed approach to study the long‑term recording HRV. The time series 
shown in the top is constructed by the RR interval via the interpolation, and smoothed for the visualization 
purpose. (1) The truncated segments of the heart rate time series are marked in red. In this step, we apply 
the concentration of frequency and time, which is composed of the synchrosqueezing transform and the 
generalized multitaper algorithm, to estimate the power spectrum associated with different segment. To 
enhance the visualization, the power spectrum is plotted in the log2 scale. (2) All estimated power spectra 
are stitched together according to time, which ends up with an image (time–frequency representation) 
called the time‑varying power spectrum generated by ConceFT. (3) Determine the dominant curve in the 
tvPS and evaluate the energy around the dominant curve at each time. Then evaluate the ratio of the energy 
concentrated on the band marked by the red dashed curves and the remaining energy. As a result, we 
obtain the non‑rhythmic to rhythmic ratio (NRR) function. (4) The standard deviation of the NRR function 
is the summary index called the NRR index. This index quantifies how concentrated the tvPS is around the 
dominant spectral component
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rhythmic to non-rhythmic ratio (NRR) [21]. These time-varying parameters decouple 
specific information from the complicated integrated information in the heart rate. For 
example, the time-varying low-frequency power captures the sympathetic tone informa-
tion, and the NRR captures the respiratory sinus arrhythmia. Next, we can consider a 
model approach to estimate the underlying parameters associated with the time-varying 
parameter, or summarize the dynamics by imposing stationarity [6–9]. We illustrate the 
whole procedure in Fig. 1 with the 14-day heart rate signal.

Data preprocessing

To apply ConceFT to analyze the HRV, we carry out the following ECG preprocessing 
steps: R-peak and T-end detection, correct RR interval to adjust the error incurred by 
artifacts or arrhythmic beats, and correct QT interval. If the ECG tracking is sampled at 
a frequency lower than 500 Hz, we follow the suggestion of the Task Force [29] and [30] 
and upsample the ECG tracking to 500 Hz. The power line interference is filtered using 
a notch filter. The baseline wandering is filtered using a median filter with the window 
length 500 ms long.

R peaks detection

The R-peaks are detected by the QRS detection algorithm [31]. A refractory period of 
250  ms is considered to remove obvious artifacts [32]—when two peaks are detected 
with the period shorter than 250 ms, the peak with the sharpest slope is retained. To fur-
ther remove the artifacts incurred by the spurious R-peak detection or missing R-wave 
detection, we apply the median filter of five consecutive RR intervals, which is a robust 
estimate of the expected RR interval. The RR interval that dramatically deviates from 
this median is labeled as a suspected RR interval. If a suspected RR interval is signifi-
cantly shorter than the median (we used 0.5 times as the criterion in this analysis), and 
the sum of two adjacent RR intervals is close to the median, this suspected RR interval is 
considered coming from spurious R-peak. In this case, the spurious R-peak is removed. 
If the suspected RR interval is significantly longer than the median (we used 2 times as 
the criterion in this analysis), it is possible that one or more R-peaks are missed. In this 
case, the interval is divided into k segments, where k is the rounding integer of the divi-
sion of the suspected RR interval and the median.

Arrhythmic beats editing

It is well known that arrhythmic beats could introduce a bias into HRV analysis. For 
example, ectopic beats impair the reliability of the different approaches for the RR inter-
val time series analysis, like artificially increasing the high frequency band power in the 
spectral method and the standard deviation in the time domain method. In our analy-
sis, we distinguished sinus beats from abnormal beats by the currently proposed classi-
fier for the single lead ECG signal [32]. We combined the beat-to-beat statistics and the 
time domain features, and applied the support vector machine (SVM) [33] to distinguish 
sinus rhythmic beats from the abnormal beats. Particularly, we considered the follow-
ing features: R-peak amplitude, the time difference between current and previous beat 
(at R-peak), the time difference between current and next beat (at R-peak), the average 
R-peak to R-peak interval over 10 beats, the phase associated with the R-peak, and the 
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duration of the QRS complex. These features are chosen since they are simple to acquire 
and relatively robust in the presence of noise. The SVM is trained from the MIT-BIH 
arrhythmia database [34], which contains 48 half-hour two-lead ambulatory ECG sig-
nals (denoted as lead A and lead B). We followed the ANSI/AAMI EC57:1998 standard 
[35] and excluded paced records. The training is carried out on the lead II signals of the 
remaining cases.

After finding those arrhythmic beats, we followed the suggested procedure [36] to edit 
the RRI associated with the arrhythmic beats and the following compensatory pause 
beat. First, we excluded 10-min segments that have less than 80% normal beats [36]. For 
the other segments, we used the non-linear predictive interpolation for RRI artifact cor-
rection [37]. We used the consecutive 10 RR intervals before the abnormal RR interval 
and then find the consecutive 10 normal RR intervals that are closest to the particular 
segment with the abnormal RR interval. The RR interval following the chosen consecu-
tive 10 normal RR intervals was used to replace the RR interval for the abnormal beat. 
More details on the non-linear predictive interpolation are available somewhere else [8, 
38, 39].

QTc evaluation

The beginning and the end of the QRS complex, along with the maxima of the com-
plex are detected, after correcting the polarity as needed. The end of T-wave position is 
determined by the area measuring method [40]. With the timestamp of the end of each 
T-wave, we obtained the QT interval.

Individual variations in the relationship between QT and RR intervals are well estab-
lished [41], and therefore the heart rate-corrected QT interval (QTc) is better evaluated 
using the individual-specific corrections by the linear regression techniques [42] as fol-
lows: Denote RR(i) to be the corrected i-th RR interval, measured in seconds. Denote 
QT(i) to be the length of the QT interval associated with the i-th ventricular response. 
Then, correct the i-th QT interval by locally fitting the 41 closest RR intervals by the 
formula QT = βRRα, where α and β are constants, by the linear regression. The i-th QT 
interval is corrected by the associated α via QTc(i) =

QT (i)
RR(i)α

 [42].

Time series to be analyzed

To analyze the corrected RRI time series, the following time series were considered: 
0 ≤ γ ≤ 1, and defined a time series Rhour,γ as Rhour,γ(i) = γ quartile of RRIs in the i-th 
hour. Note that when γ = 1, we evaluated the maximal. In this study, we illustrate how 
the proposed ConceFT is able to analyze Rhour,0.01, Rhour,0.99 and Rhour,0.5, which are all of 
about 325 in length since the recorded signals are about 325 h long. We view Rhour,0.01 
and Rhour,0.99 as surrogates of measuring the minimal and maximal heart rate sampled 
uniformly each hour. These surrogates are chosen to avoid the possible outliers which 
may exist even after the correction.

It is well known that the variability of the beat-to-beat QT time series measures the 
stability of the ventricular repolarization duration, if we assume that the depolarization 
is more stable compared with the repolarization duration [30, 43]. As it provides physi-
ological information from a different angle compared with the RR interval time series, 
we also consider the QTc time series to demonstrate how the ConceFT could be applied. 
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For the variability analysis of the QT time series, we define the time series Qhour,0.01, 
Qhour,0.99 and Qhour,0.5 for the QTc.

We could also define other time series—for example, the one sampled per minute, 
if needed. However, to keep the illustration concise, we only focus on the above-men-
tioned time series associated with the RR interval and QT interval time series.

Results
Simulated signal

To illustrate the performance of ConceFT, we demonstrated how it works in a simu-
lated multi-component signal, and compared the resulting tvPS with those generated 
by the commonly applied TF analysis tools, like MT synchrosqueezed spectrogram, 
spectrogram (the square modulus of STFT), scalogram (the square modulus of CWT), 
SPWVD, and CWD. We modeled the signal to have two oscillatory components, each 
with a time-varying amplitude and frequency, and modeled the time-varying ampli-
tudes and frequencies by realizations of smoothed Brownian paths [23]. We chose the 
smoothed Brownian path for our model since it cannot be represented by well-known 
functions [23] and hence it provides a more realistic model. For each component, we 
modeled it to exist only for a finite period which modeled the unexpected exterior 
stimulation that might change the dynamics. We then modeled the stochasticity by the 
autoregressive and moving average (ARMA) process. We considered an ARMA(1, 1) 
model determined by an autoregression polynomial a(z) = 0.5z + 1 and a moving averag-
ing polynomial b(z) = − 0.5z + 1; for the innovation process we used independent and 
identically distributed Student t4 random variables. We chose this ARMA(1, 1) random 
process since its time-dependent property better captures the time-dependent physi-
ological property. The Student t4 random variable could well model the noise generated 
by “spurious beats” or “missing beats” since it has a fat-tailed distribution. See Fig. 2 for 
one example of the selected simulated signal. The signal is sampled at 100 Hz, and the 
signal-to-noise ratio is − 2 dB. We then apply ConceFT, MT synchrosqueezed spectro-
gram, spectrogram, scalogram, SPWVD, and CWD to the simulated signal. In the MT 
synchrosqueezed spectrogram, we followed the same parameters suggested by Daube-
chies et al. [23] and chose the first 6 Hermit polynomials with the window size 3.77 s for 
the averaging. In ConceFT, the first 2 Hermit polynomials with the window size 3.77 s 
and 100 linear combinations are chosen: that is, J = 2 and N = 100. The SPWVD, CWD, 
and scalogram are calculated by the widely used public code http://tftb.nongn u.org. We 
followed the suggested parameters and windows to produce the figures. The results are 
shown in Fig. 3. It is clear that while all TF analysis approaches capture the dynamics, 
the tvPS generated by ConceFT is sharper and cleaner. In SPWVD and CWD, the low 
frequency component seems to be interrupted in the middle, which might lead to misin-
terpretation. In the scalogram, it is not even clear if the low frequency component exists. 
This is caused by the affine transform nature of CWT—a large scale is associated with 
the low frequency region, which blurs the dynamic information.

The Matlab code of ConceFT and the simulated signal generator can be downloaded 
from https ://hauti engwu .wordp ress.com/code/ for purposes of reproducibility.

http://tftb.nongnu.org
https://hautiengwu.wordpress.com/code/
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Extra‑long‑term ECG signals

We used four long-term ECG recordings (323, 335, 333, and 306 h, respectively). To run 
ConceFT on the above-mentioned time series, we used J = 3 windows and N = 100 linear 
combinations to evaluate the tvPS of each considered time series. The analysis results 
of the first subject are shown in Fig. 4. In this figure, the tvPSs of different time series 
related to the QTc are shown on the top, and those of different time series related to the 
inverse of the RRI are shown on the bottom.

The tvPSs shown in Fig. 4 could be interpreted as follows: First, the dark curve around 
1 Hz after day 4 (indicated by the red arrow) in the tvPS of Qhour,0.99 indicates a daily 
oscillation of the QTc. There is no obvious curve before day 4 in the tvPS of Qhour,0.99, 
which indicates that there is no obvious oscillatory pattern before day 4. On the other 
hand, the non-dominant concentrated curve but a blurred spectrum suggests that there 
are some oscillatory irregular patterns. For example, in Fig. 4, we could not visualize any 
dominant curve/line in the tvPS of Rhour,0.99, but a dominant blurred spectrum before day 
8 ranging from 0 to 4 Hz could be perceived. This indicates a roughly daily oscillation, 
but the oscillation is irregularly in the range of 0 to 4 Hz.

In Fig. 5, we show a comparison of the tvPS constructed from ConceFT and the spec-
trogram of time series considered in Fig. 4. Compared with Fig. 4, it is clear that overall 
the spectrogram is blurred and less easy to directly identify the 1 Hz oscillatory com-
ponent in the Qhour,0.99 time series after day 4. This blurring comes from the uncertainty 
principle and it inevitable for all linear-type TF analysis methods. On the other hand, 
ConceFT takes the phase information of the signal and sharpens the TF representation, 

Fig. 2 The simulated signal. The signal, shown on the right bottom subplot, is composed of two oscillatory 
components s1(t) and s2(t), and the noise ξ(t), shown on the left column. The time‑varying amplitudes are 
superimposed on the left top and left middle subplots in black, and the time‑varying frequencies are plotted 
on the right top subplot. It is clear that the amplitude and frequency are time‑varying, and each component 
exists only for a finite period. The noise is spiky due to the fat‑tail property of the considered noise
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and hence the user could identify the possible information hidden inside the signal. This 
finding is consistent with the result shown in the simulated signal.

It is not surprising that tvPS’s of different time series have different behavior since they 
catch different aspects of of autonomic system. For example, Rhour,0.99 provides partial 
information about the sympathetic tone, since in general we observe a fast heart rate 
when the sympathetic tone is active. Similarly, Rhour,0.01 provides partial information 
about the parasympathetic tone. The results of the other three cases are shown in the 
Additional file 1.

Fig. 3 A comparison of different time–frequency (TF) analysis tools on the simulated signal. On the left 
column, from top to bottom, we show the ideal TF representation, the multitaper (MT) synchrosqueezed 
spectrogram, the concentration of frequency and time (ConceFT), and the ConceFT superimposed with the 
ground truth time‑varying frequencies of the two components. On the right column, from top to bottom, 
we show the smoothed pseudo Wigner‑Ville distribution (SPWVD), the Choi‑William distribution (CWD), 
the spectrogram, and the scalogram. The ideal TF representation is the ground truth that we would like to 
recover. It encodes the precise frequency and amplitude of the oscillatory components. Interested reader 
could read Eq. 4.2 in (1) for details. It is clear that while the dynamics (like time‑varying frequency and 
existence period) can be captured, ConceFT provides a sharper result compared with other approaches
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Discussion
In this report we presented a new approach for analysis of HRV and QT variability using 
data from long-term ECG recording. As proof of concept we applied this approach 
to four 2-week ECG recordings, and compared the results with other common TF 
approaches in a simulated signal. We showed that our proposed approach has the poten-
tial to enhance utilization of data collected from the current extra-long ECG recordings 
without the limitations of the currently applied TF analysis methods for 24–48 h record-
ings. Further research is needed to validate the HRV and QT variability indices obtained 
by our approach in terms of their association with outcomes.

From the machine learning perspective, summarizing the information in the tvPS by 
the NRR index is an unsupervised dimension reduction step. It certainly loses informa-
tion, and the lost information might be critical for some applications. The NRR index 

Fig. 4 The ConceFT results of the first case. Top: the time‑varying power spectrum (tvPS) of different time 
series related to the RRI; bottom: the tvPS of different time series related to the inverse of the QTc. The tvPS 
of the RRI is complicated. For Rhour,0.99, Rhour,0.5 and Rhour,0.01, we could no visualize any dominant curve/line 
in their associated tvPS’s. However, a dominant blurred spectrum before day 6 ranging from 2 Hz to 4 Hz 
(indicated by the blue dashed arrow) indicates a roughly daily oscillation, but the oscillation is irregularly. For 
the QTc time series, the dark curve around 1 Hz after day 4 (indicated by the red arrow) in the tvPS of Qhour,0.99 
indicates a daily oscillation of the QTc (indicated by the red dashed arrow). In the tvPS of Qhour,0.5, although we 
could still see a dark curve around 1 Hz after day 4, it is ``weakened’’ (indicated by the blue arrow) between 
day 4 and day 10, which indicates that although the signal Qhour,0.5 does have an daily oscillatory pattern, it 
is not as strong as the signal Qhour,0.99. We could not see a daily oscillation in Qhour,0.01, while there seems to 
have a half day oscillation before day 4 in Qhour,0.01 as we could see a curve at frequency 2 Hz before day 4 
(indicated by the green arrow)
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was considered mainly to quantify the RR interval variability caused by the respiratory 
sinus arrhythmia under general anesthesiology [23]. For different applications, based on 
different physiological situations, we could define different indices in the future. Another 
approach is via the unsupervised learning approach to organize the tvPS, and/or other 
commonly considered HRV indices in the files [6]. By viewing ConceFT as a tool of 
unraveling dynamic information inside the RR interval or QT interval time series, we 
could further consider the idea of recurrent plot [38] or nonlocal pattern like phase-rec-
tified signal averaging [44] to explore the signal, and apply it to study other topics, like 
the coupling between QT variability and HRV [45], and IHR estimated from modalities 
other than ECG [46–48]. We mention that after extracting features from either defin-
ing new indices or via the nonlinear dimensional reduction technique, we could apply 
any suitable supervised learning technique to connect the extracted information from 
the long-term ECG signal with the clinically interesting facts and establish a prediction 
model. We leave these opportunities to future work.

Conclusions
With the emergence of ECG recordings that go several days and weeks, development of 
a new approach to measure HRV, particularly one that can capture the dynamics with 
sharp and stable instantaneous spectral content, is needed to utilize the full potential 
of data generated from such extra-long-term ECG recordings. We demonstrated a new 
approach to study HRV and QT variability in extra-long-term ECG recording using a 
modern time–frequency analysis tool, ConceFT. A validation with a larger database with 
clinical outcomes is needed and will be carried out in our future work.

Fig. 5 The spectrogram results of the first case for a comparison. Top: the spectrogram of different time 
series related to the RRI; bottom: the spectrogram of different time series related to the inverse of the QTc. 
Compared with the tvPS provided by ConceFT, the spectrogram is blurred and the pattern is less easy to 
identify. For example, the daily oscillation (indicated by the red arrow) after day 4 is very blurred
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