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Background
Photoacoustic imaging (PAI), a novel biomedical imaging technique, combines light 
and ultrasound to detect absorbed photons ultrasonically through the photoacoustic 
effect [1–3]. Compared with traditional imaging techniques, PAI has many advantages. 
It obtains high image contrast because the photoacoustic images can reflect the laser 
absorption distribution in the tissue [1]. It is capable of imaging either thicker tissue or 
deeper organs with better resolution compared to optical imaging because it receives 
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ultrasound signals [3]. What’s more, PAI is also able to provide noninvasive and func-
tional imaging [4, 5]. Because of these advantages, PAI shows great potential in many 
biomedical applications such as brain imaging [6, 7], tumor detection [8, 9], vessel imag-
ing [10, 11] and molecular imaging [12, 13].

A laser pulse is usually adopted to irradiate the tissue in computed-tomographic PAI, 
which is the main concern of this paper. The light is absorbed by the tissue, and the ultra-
sound waves are subsequently excited. This process is called the photoacoustic effect [1]. 
Then, the photoacoustic signals are detected by a scanning transducer or a transducer 
array. To reconstruct the photoacoustic image from the detected signals, photoacoustic 
reconstruction algorithms are required, which directly determine the image quality of 
the reconstruction. Therefore, photoacoustic reconstruction algorithms play an essential 
role in computed-tomographic PAI.

Many efforts have been made to develop photoacoustic reconstruction algorithms. 
Analytical reconstruction algorithms were first developed, and their techniques are rela-
tively mature [14–18]. The filtered back-projection (FBP) method proposed by Xu et al. 
was widely used due to its concision and convenience [16]. Zhang et al. proposed the 
deconvolution reconstruction algorithm, which achieved improved results in the case of 
both full-view and limited-view scanning [18]. To overcome the strong data dependency 
of the analytical reconstruction algorithms and improve their performance, the itera-
tive image reconstruction methods were proposed. This kind of reconstruction methods 
established a forward model from photoacoustic image to photoacoustic signals to cal-
culate the photoacoustic image iteratively [19–25]. Compressed sensing (CS) theory has 
been adopted in PAI to reduce the number of samples required and improve the results 
in sparse-view scanning [26–31]. Among these algorithms, total-variation (TV)-based 
reconstruction algorithms have achieved excellent reconstruction quality [32–38]. The 
TV minimization can greatly reduce the dependence on data so that images can be accu-
rately recovered from sparse data. Therefore it is potential to improve the performance 
of the algorithm on limited-view scanning based on TV-method. An adaptive steepest-
descent-projection onto convex sets (ASD-POCS) is proposed by Wang et al. to employ 
the TV-based iterative image reconstruction algorithms in three-dimensional PAI [33]. 
Zhang et al. proposed a gradient descent-based TV (TV-GD) algorithm, which was able 
to maintain good performance even in sparse-view scanning [34]. A joint TV and Lp-
norm (TV-Lp)-based algorithm proposed by Zhang et al. was reported to have improved 
performance especially in the sparse-view scanning [39]. Besides, wavelets transform 
domain [21, 40], total generalised variation [41] as well as deep learning regularization 
[42, 43] have also been adopted in PAI reconstruction and reported to have successfully 
addressed some specific problems in PAI. While for wavelets transform domain [21, 
40] as well as total generalised variation [41]—based method, there still exists room for 
improvement in the preservation of structure and detail information particularly under 
the circumstance of limited-view scanning. As for deep learning based methods [42, 43], 
the algorithms are too complex and difficult to implement.

The image reconstruction methods at the present stage have worked well with full-
view sampled data, but in practical situations, full-view scanning is often unavailable 
because of the restraint of the body shape or firmware. Under such circumstances, only 
limited-view projection data can be acquired, which do not conform to the condition 
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of data completeness. In biomedical clinical practice, the linear transducer array is one 
of the popular ways to collect ultrasound signals. For clinical application, current PAI 
reconstruction algorithms still have many problems, such as edge blur and serious arti-
facts [28, 30, 37, 38, 44–49]. There is still much room for improvement. It is necessary to 
develop an image reconstruction method that is effective in clinical applications.

The TV expresses local intensity changes in an image. The classical TV-based recon-
struction methods were established based on the assumption that the images are 
piece-wise constant [50]. While the TV model has obtained a good effect in terms of 
sparse-view reconstruction, due to the over-inhibition of the high-frequency coef-
ficients, minimizing the TV of an image tends to create over-smoothed geometry 
construction in the images [50–52]. The result is even worse in the case of practical 
limited-view scanning when some angular projection data are missing, as severe arti-
facts emerge and detailed information is lost [34, 37, 39]. In recent years, a nonlocal idea 
involving a priori knowledge that reveals the self-similarity of images has been proposed 
and widely used in image processing and reconstruction [53–56]. Minimizing TV can 
be regarded as minimizing the variation between adjacent pixels and can therefore be 
named local TV. Nonlocal TV extends the spatial neighborhood in the traditional neigh-
borhood filtering to the structured neighborhood with a more generalized geometric 
meaning [56]. It searches similar patches in a larger area and uses the similarity between 
patches as the weight. This approach overcomes the limitation of traditional neighbor-
hood weighting and makes better use of the similarities within images. Therefore, the 
reconstructed images can be improved in terms of texture and structure preservation. 
By solving the research and clinical problems, the method has obtained better perfor-
mance in local TV [56–58].

In this paper, we propose a novel PAI reconstruction algorithm that incorporates non-
local patch-based regularization into the TV-based model (patch-TV) to improve the 
reconstruction results for practical straight-line scanning. The patch in the image is 
estimated by weighting the patches in its neighborhood, which are searched through-
out the whole image adaptively. The reconstructed image is updated by joint TV and 
nonlocal-patch regularization. The modified weighting calculation method is adopted 
with directivity and adaptability to further improve the performance of structure main-
tenance for the image [59]. Finally, the optimization model is simplified, and efficient 
variable splitting and the Barzilai–Borwein-based method are adopted to solve the opti-
mization problem [60]. A series of numerical simulations and an in  vitro experiment 
are conducted to validate the proposed patch-TV algorithm. The results of the patch-
TV algorithm are compared to those of TV-based algorithms solved by the gradient 
descent method (TV-GD), the TV-Lp algorithm as well as the iterative algorithm only 
with patch-based regularization (Patch-RE). The peak signal-to-noise ratios (PSNRs), 
the noise robustness, and the calculation and convergence speeds are also discussed and 
compared. Both qualitative and quantitative comparisons show that the patch-TV algo-
rithm provides superior results to those of TV-GD, TV-Lp and Patch-RE. The geometric 
structures of the images are preserved well, and the quality of the reconstructed images 
is greatly improved for practical straight-line scanning. A series of patch based methods 
have been applied in imaging, such as [61]. In [61], nonlocal patch was used as a filter to 
process the image after the updating of each iteration step, which makes the algorithm 
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one kind of image processing rather than image reconstruction. Moreover, the simple 
and isotropic distance between two blocks is utilized to screen the neighborhood of 
the block. In the proposed patch-TV algorithm, non-local patch is used as a constraint 
item in the optimization problem for reconstruction. The optimization problem is then 
simplified to a common iterative PAI reconstruction problem so that the complexity 
of the algorithm is greatly reduced. The modified weighting calculation method which 
utilizes the modified structure tensor matrix to construct the weight function between 
two patches with directivity and adaptability is adopts in the proposed algorithm. The 
screened neighborhood of the patches takes the directivities and geometric structure 
of the images fully into consideration. It further improves the performance of structure 
preserving for the image. The nonlocal-patch regularization is combined with TV mini-
mization in the proposed algorithm to obtain better performance in straight-line scan-
ning with stability.

There are mainly three points for the contributions of this paper. First, we include the 
non-local patch idea into PAI reconstruction. As far as we know, it is the first time that 
non-local patch ideal is applied to PAI. Second, the combination of the non-local patch 
optimization and TV minimization has been firstly applied into PAI. This combined 
method is able to solve the problems of PAI reconstruction from straight-line scanning. 
Finally, we simplify the complicated optimization problem to a common iterative PAI 
reconstruction problem and use efficient variable splitting and the Barzilai–Borwein-
based method to solve this problem. The optimization steps are greatly simplified and 
the convergence is greatly accelerated.

Theory and methods
A. TV‑based photoacoustic reconstruction model

The algorithm proposed in this paper mainly targets two-dimensional computed-tomo-
graphic PAI for simple study. The possibility of extending the method to 3D will be 
discussed in “Discussion and conclusion”. In this imaging mode, laser pulses irradiate 
perpendicular to the image plane. Assuming that the tissue is irradiated uniformly by the 
laser, the relationship between the photoacoustic signals and the photoacoustic image 
can be described by the photoacoustic Equation [1]:

where p(r, t) is the photoacoustic signals at time t and position r, c is the speed of sound, 
μ is the isobaric expansion coefficient, Cp is the specific heat, I(t) is the temporal profile 
of the laser pulse and A(r) is the light absorption distribution of the tissue.

Assuming I(t) is an impulse signal and the sound velocity and other parameters of tis-
sue are homogeneous, Eq. (1) can be solved by Green’s function [1]:

where r0 is the position of the ultrasound transducer.

(1)∇2p(r, t)−
1

c2
∂2p(r, t)

∂t2
= −

β

Cp
A(r) ·

∂I(t)

∂t
,

(2)p(r0, t) =
β

4πCp

∂

∂t

∫∫

�
|r−r0|=ct

A(r)

t
d2r,
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Now, we establish the forward model from photoacoustic signals to a photoacoustic 
image. From Eq. (2), it can be derived that:

Define the product of detected photoacoustic signals at sampling points r0 and sam-
pling time t, g(r0,t), as:

Equation (3) can be rewritten as:

In practical applications, the images and sampling signals tend to be discretized and 
can be written in the form of a vector [34]:

where A is the matrix of the photoacoustic image of size Nx× Ny, A′ is a column vec-
tor transposing A, l is the number of sampling points and Ml is weight matrix for the 
lth sampling point, gl is the column vector discretized from g(r0, t) for the lth sampling 
point.

An image’s gray values tend to have no sparsity, while its discrete gradients have 
more sparsity under some circumstances, such as homogeneous distribution of light 
in the sample and piecewise constant absorption coefficient.

TV can be expressed as the l1 norm of the discrete gradient matrix of the image 
[62]:

where Am,n is the gray value of the pixel at the position (m, n).
The optimization problem of TV-based photoacoustic reconstruction can be writ-

ten as:

where α is the parameter corresponding to the weight of TV value in the optimization. 
Equation (8) can also be written as:

where ui= DiA. Di is a defined matrix that calculates the finite difference of A at the ith 
pixel.

(3)
4πCpt

β

∫ t

0
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B. Nonlocal patch regular constraint

There can be many similar patches in an image. In the flat region, most pixels and patches 
are identical, while the texture and edge regions also show similarities. Buades et al. there-
fore proposed the nonlocal idea and extended the similarities between pixels to that 
between patches [53]. For the nonlocal idea, a neighborhood is no longer for pixels in the 
common sense but is rather the patch-set under a certain measure of similarity.

For pixel xi = (xi1, xi2), Pxi refers to the patch centered at xi. The self-similarity of the 
image can be represented in terms of the similarities between patches:

where W(xi, xj) is the weight function between Pxi and  Pxj. It measures the similarity 
degree between the two patches and satisfies 

∑

xj∈δ(xi)W (xi, xj) = 1 . δ(xi) refers to the 
neighborhood of Pxi:

where T is a threshold value to screen the similar patches. If the weight is greater than 
T, these two patches are considered similar. Otherwise, this patch does not belong to the 
neighborhood of patch Pxi. Equation (11) represents the collection of every pixel whose 
similarity to patch Pxi is greater than T.

There are multiple expressions for the weight function W(xi, xj), and it is usually inversely 
proportional to the distance between xi and xj. These weight functions failed to maintain 
the structure and directivity information of the image. So they are not qualified for the 
adaptive selection of the neighborhood of the patches. Liu et  al. proposed the direction 
adaptive weight function [59], which is adopted in this paper:

where Sj is the modified structure tensor matrix. h is the global smoothing parameter 
and μi is the local density of samples data. More details can be found in Ref. [59]. The 
structure tensor matrix Sj reflects the information of gray values and gradients for the 
image. Using this direction-adaptive weight function, the neighborhood δ(xi) of patch 
Pxi can be adaptively selected. The selection of the neighborhood takes the directivity 
and geometric structure of the image fully into consideration, so it can provide more 
reliable estimations for the weight calculation between patches. Therefore, the structure 
and directivity information of the image can be well maintained.

The nonlocal patch regular constraint corresponding to the self-similarity between 
patches in Eq. (2) can be written as:

(10)Pxi =
∑

xj∈δ(xi)

W (xi, xj)Pxj ,

(11)δ(xi) =
{

xj|W (xi, xj) > T
}

,

(12)Ws(xi, xj) =

√

det(Sj)

2πh2µ2
j

exp

{

−
(xi − xj)

TSj(xi − xj)

2h2µ2
j

}

,

(13)min
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Patch Pxi is estimated by using the weights of patches in the neighborhood that have 
the highest similarities to Pxi. It is the first time that nonlocal-patch is applied as the 
regularized constraint for the reconstruction of image in PAI. By the constraint of the 
nonlocal patch, the problem concerning the inaccuracy of the similarity estimation 
through the use of isolated pixel points is surmounted, and the structure information, 
such as edges and texture, can be well preserved.

C. Patch‑TV photoacoustic reconstruction algorithm

The TV-based reconstruction model in Eq.  (9) has good performance, but it fails to 
preserve the geometric structure of the image. To solve the problems of TV and make 
reconstruction algorithms more suitable for practical application, the nonlocal patch 
regular constraint is incorporated into the TV-based regular term:

where β is the parameter corresponding to the weight of local-patch value in the optimi-
zation. Define the nonlocal matrix H consisting of the weight functions Ws(xi, xj) [63]:

When xj is in the neighborhood δ(xi) of xi, αij in H is set to the weight Ws(xi, xj). 
When xj is not in the neighborhood δ(xi) of xi, αij is set to 0. In this way the sum-
mation item in the constraint item of local-patch can be expressed as multiplication 
between matrix H and A. Define H′ expressing the transversal vector transposing H. 
The size of H′ is 1 × (N2 × M2). The optimization problem in Eq. (14) can be rewritten 
into the form of a matrix:

where I′ with the same size with that of H′ is the transversal vector transposing the unit 
matrix I. Combine the first and third terms in Eq. (16) in matrix form:

Using the notation g̃ =

[

g
0

]

, K =

[

MT

β(I
′
−H

′
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]

, Eq. (17) can be simplified as:
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The patch-TV optimization problem is simplified to a common photoacoustic itera-
tive reconstruction model. The variable splitting and Barzilai–Borwein-based method 
is employed to solve the optimization problem in Eq. (18) [60]. This method has excel-
lent performance in rapidly solving photoacoustic reconstruction regularized prob-
lems. Using the standard augmented Lagrangian method and the Barzilai–Borwein 
step size to accelerate the convergence speed, Eq. (19) can be deduced as [60, 64]:

where bk
n is the TV step parameter in the nth iteration and σn is the defined Barzilai–

Borwein step size in the nth iteration. By using the variable splitting method, Eq.  (20) 
can be translated into the following two sub-problems:

The two sub-problems can be solved using the shrinkage operator method [60]:

where F is the Fourier transform matrix.
The flow of the patch-TV photoacoustic reconstruction algorithm can be summa-

rized as follows:

1. Initialization: Input A, α, β, T. Set the reconstructed image A0 = 0, δ0 = 1, and b0 = 0.
2. Apply Eq. (21) to update un for the given An−1′.
3. Apply Eq. (22) to update An for the given un.
4. Apply Eq. (22) to update bn and δn.
5. If the terminal condition is met, end the iteration. Otherwise, let n = n + 1, and 

return to steps 2–4. The termination condition is as follows:

(19)
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Numerical simulation
To verify the reconstruction quality and performance of the proposed patch-TV algo-
rithm, a variety of numerical simulations are designed and conducted. To simulate the 
signal collection in practice, straight-line scanning with varying sampling points is exe-
cuted. Straight-line scanning in different directions to the phantom is also tested to vali-
date the universality of the algorithm. The Shepp–Logan phantom, which is widely used 
in biomedical imaging, and the FORBILD phantom [65], which is more complicated and 
challenging, are chosen in the simulations. The results for the patch-TV algorithm are 
compared to those of the TV-GD and TV-Lp algorithms. The PSNR, the noise robust-
ness and the convergence of the algorithms are also compared and discussed. The sim-
ulations are carried out using Matlab R2013a on a personal computer with a 2.4 GHz 
Intel(R)  Xeon® CPU and 64 GB memory. In the simulations, the sampling frequency is 
200 MHz and the recording time of pressure waves is 20 μs for all the cases. The simula-
tions for the signals and reconstructions are all conducted in the same two-dimensional 
plane.

A. Straight‑line scanning

First, the Shepp–Logan phantom is adopted as the initial pressure rise distribution, 
which is shown in Fig.  1. The size of the phantom is 76.8 × 76.8  mm, and the recon-
structed images size is set to 128 × 128 pixels. The scanning line on the right side of the 
phantom with the length of 76 mm is also shown in Fig. 1, from which we can see that 
the scanning line is parallel to the major axis of the ellipse of the phantom. We use the 
photoacoustic equation (Eq.  3 in paper) for the numerically produced simulated data 
and the forward projection model we described in the paper to reconstructed the image 
iteratively under patch-TV regulation. Thus the inverse crime is avoided in our method 
during the generation of simulated signals. The distance from the center of the image to 
the scanning line is 38 mm. The length of the scanning line remains constant, while the 

Fig. 1 The Shepp–Logan phantom and a diagram of the straight-line scanning in the perpendicular direction
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sampling points can be 10, 20, or 50. The iteration number is set to 10 for all algorithms. 
The parameter settings for patch-TV are estimated by testing the values that provides 
the best performance for the simulations. In this case, α = 0.4, β = 0.35, T = 0.65. The 
parameters for TV-GD and TV-Lp are set referring [34, 39] to achieve the best perfor-
mance in the simulations. The parameter settings for these algorithms are also estimated 
by testing the values that provides the best performance for the simulations.

The reconstruction results for the three algorithms are shown in Fig. 2. The images in 
this paper are normalized in the same gray level for comparison. The gray values of all 
pixels are divided by the maximum one in the images to avoid any effect to the quality of 
the images. In the first row of Fig. 2, the reconstructed images for TV-GD have serious 
artifacts and blurred edges, which severely distort the images, especially in the verti-
cal direction, where the angular information is missing. Regarding TV-Lp in the second 
row of Fig. 2, the result is improved over that of TV-GD when the sampling points are 
sufficient. However, the quality of the reconstruction declines rapidly as the number of 
the sampling points decreases. We can see that for the 10-point sparse-view reconstruc-
tion in Fig. 2f, there is serious vagueness in the perpendicular direction of the image. As 
for Patch-RE, in the third line, the results are even worse than those of TV-Lp and just 
slightly better than those of TV-GD. It is because without TV-optimization to ensure 
the quality of the image in each iteration, the effects of the patch regularization will be 
greatly weaken. The results of patch-TV in the third row of Fig. 2 show great improve-
ment over the other two algorithms. The artifacts are effectively suppressed, and the 
edges of the image are distinct. The geometric structure of the images is preserved well, 
with almost no blur or distortion. Furthermore, a sharp decrease in the number of sam-
pling points does not have a great effect on the quality of the reconstructed image.

The PSNRs of the reconstruction results for the four algorithms are also calculated and 
compared as the quantitative criteria for the evaluation of the reconstruction results. 
The greater the value of PSNR is, the better the reconstruction. The calculation formula 
of the PSNR is as follows:

where Rm,n is the gray value of the original image and MAXI is the maximum possible 
pixel value of the image. The original images which were not normalized are used for all 
the PSNR calculations in this paper. The PSNR results are displayed in Table 1.

Table  1 shows that patch-TV obtains the highest PSNR values for every case. The 
PSNR values for TV-GD are always low on account of the deficiency of the data for 
straight-line scanning. In fact, the results of TV-GD, are poor in all kinds of sampling 
condition even though when the sampling points are sufficient (50-points). We can see 
that the PSNRs of TV-GD are all lower than 20 dB. Under this circumstance, the amount 
of variation of PSNRs actually does not make much sense. TV-Lp has a good PSNR for 
50-point scanning, but the value of the PSNR decreases rapidly as the number of sam-
pling points decreases. The PSNRSs of Patch-RE are just slightly higher than that of 
TV-GD. On average, the PSNR of patch-TV is approximately 17 dB higher than that of 
TV-GD, 8 dB higher than that of TV-Lp and 12 dB higher than that of Patch-RE.

(24)PSNR = 10 · log10

(

NxNy ·MAXI2

∑Nx
m=1

∑Ny

n=1

(

Am,n − Rm,n

)2

)

,
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To test the universality of the algorithm in practical applications, we change the posi-
tion of the scanning line relative to the phantom. In this case, the scanning line is parallel 
to the minor axis of the ellipse of the image. Its length and the distance to the center of 
the image remain unchanged. The numbers of sampling points are again 50, 20 and 10. 
The diagram of the scanning line is shown in Fig. 3. The parameter settings in this case is 
α = 0.50, β = 0.42, T = 0.65.

Fig. 2 The reconstructed results for straight-line scanning of the Shepp–Logan phantom in the 
perpendicular direction for TV-GD (a–c), TV-Lp (d–f), Patch-RE (g–i) and patch-TV (j–l). The first, second, and 
third columns refer to the results for 50- (a, d, g, j), 20- (b, e, h, k), and 10-point (c, f, i, l) sampling, respectively
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The results of the reconstruction for the three algorithms are shown in Fig. 4. We can 
see that there are a large number of blurs and distortions in the reconstructed images for 
TV-GD, especially in the horizontal direction. The geometry structure information of 
the image is destroyed. TV-Lp and Patch-RE fails to obtain ideal results, especially when 
the sampling points become sparse. Regarding patch-TV, the edges and texture structure 
of the image are better preserved. The artifacts and background noise are effectively sup-
pressed. Even in sparse-view scanning, there is almost no blurring in the image.

We also compare the PSNRs of the results for the three algorithms in Table  2. The 
PSNR of patch-TV is approximately 18 dB higher than that of TV-GD, 10 dB higher than 
that of TV-Lp, on average and 14 dB higher than that of Patch-RE.

To further validate the effectiveness of the proposed algorithm, the FORBILD phan-
tom, which is more complex and challenging, is also adopted in the simulation. The 
phantom and the scanning line are shown in Fig.  5. The size of the phantom and the 
scanning settings are the same as those in Fig. 1. Fifty-, 20-, and 10-point straight-line 
reconstructions are conducted, and the results of the three algorithms are shown in 
Fig.  6. The parameter settings in this case is α = 0.65, β = 0.54, T = 0.57. TV-GD and 
Patch-RE shows poor performance, yielding bad image quality. The incompleteness of 
the data has a significant effect on the reconstruction. For TV-Lp, serious artifacts and 

Table 1 PSNRs (dB) of  the  straight-line scanning of  the  Shepp–Logan phantom 
in the vertical direction

PSNRs (dB) 50 points 20 points 10 points

TV-GD 17.58 16.46 14.35

TV-Lp 26.97 20.54 15.39

Patch-RE 21.47 18.03 14.29

Patch-TV 34.98 31.35 23.49

Fig. 3 The Shepp–Logan phantom and the diagram of the straight-line scanning in the horizontal direction
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blurring occur when the number of sampling points decreases. The contrasts of the 
images are not high, and the performance is not satisfactory. Patch-TV overcomes these 
problems. The geometric structure of the phantom is distinct, and the artifacts are effec-
tively suppressed.

The PSNR results of the three algorithms are displayed in Table 3. It is obvious that 
patch-TV outperforms the other three algorithms for each sampling status, making 

Fig. 4 The reconstructed results for straight-line scanning of the Shepp–Logan phantom in the horizontal 
direction for TV-GD (a–c), TV-Lp (d–f), Patch-RE (g–i) and patch-TV (j–l). The first, second, and third columns 
refer to the results for 50- (a, d, g, j), 20- (b, e, h, k), and 10-point (c, f, i, l) sampling, respectively
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the patch-TV algorithm superior to the other two algorithms even for a complicated 
phantom.

B. Noise robustness

In PAI practical applications, it is important that the reconstruction algorithms have 
excellent noise robustness because the detected photoacoustic signals are usually dis-
turbed by the system noise. The system noise follows a Gaussian distribution. To test 
the noise robustness of the proposed algorithm, the 20-point sampled signals for the 
FORBILD phantom in “Straight-line scanning” are supplemented with white noise and a 
signal-to-noise ratio (SNR) of 10 dB, 5 dB or 0 dB. The parameter settings in this case is 
α = 0.73, β = 0.60, T = 0.54.

The reconstructed results for the three algorithms for the different SNR signals are shown 
in Fig. 7. TV-GD, TV-Lp as well as Patch-RE fail to maintain high performance, especially at 
a low SNR. The quality of the images decays seriously, the contrasts of the images decrease, 
and the artifacts and background noise cannot be suppressed or eliminated. Patch-TV 
shows the highest performance in terms of noise robustness. The geometric structures of 
the reconstructed images are closer to those of the original image, and the noise is effec-
tively suppressed.

Table 2 PSNRs (dB) of  the  straight-line scanning of  the  Shepp–Logan phantom 
in the horizontal direction

PSNRs (dB) 50 points 20 points 10 points

TV-GD 17.74 15.87 13.48

TV-Lp 25.29 19.28 15.97

Patch-RE 20.43 16.34 13.69

Patch-TV 34.68 32.13 23.70

Fig. 5 The FORBILD phantom and the diagram of the straight-line scanning in the perpendicular direction
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Fig. 6 The reconstructed results for straight-line scanning of the FORBILD phantom for TV-GD (a–c), TV-Lp 
(d–f), Patch-RE (g–i) and patch-TV (j–l). The first, second, and third columns refer to the results for 50- (a, d, g, 
j), 20- (b, e, h, k), and 10-point (c, f, i, l) sampling, respectively

Table 3 PSNRs (dB) of the straight-line scanning of the FORBILD phantom

PSNRs (dB) 50 points 20 points 10 points

TV-GD 15.78 15.35 13.23

TV-Lp 22.43 16.87 14.37

Patch-RE 19.34 16.01 13.27

Patch-TV 31.54 26.14 22.23
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The PSNRs of the reconstruction results are also displayed in Table 4. Patch-TV outper-
forms the other three algorithms, and the advantages are more obvious when the noise 
energy is stronger.

Fig. 7 The images reconstructed from the noise-added signals by the TV-GD (a–c), TV-Lp (d–f), Patch-RE 
(g–i) and patch-TV (j–l). The first, second, and third columns refer to the results for a SNR of 10 dB (a, d, g, j), 
5 dB (b, e, h, k), and 0 dB (c, f, i, l), respectively
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C. Convergence and calculation

The convergence speed and calculation time are two other important performance indices 
for a photoacoustic iterative reconstruction algorithm. We define the distance between the 
reconstructed image and original image d as the quantization parameter:

The smaller d is, the smaller the difference between the reconstructed image and 
original image. We record d for every iteration step from 10-point sampling of the 
FORBILD phantom in “Straight-line scanning” and compare the d values of the four 
algorithms in each iteration in a line chart in Fig.  8. The results show that in every 
step, patch-TV’s d value is smaller than those of the other three algorithms, and it 
convergences to the smallest value.

The time costs t of 50-, 20-, and 10-point straight-line reconstruction of the Shepp–
Logan phantom in “Straight-line scanning” for all four algorithms are also compared 
(Table 5). t calculates the time from input of the simulated data into the reconstruction 
algorithm to the output of the reconstructed image. The unit of t is second. The Bar-
zilai–Borwe in method used in TV-Lp greatly accelerates the speed of the algorithm, and 
TV-Lp shows a greatly decreased time compared to TV-GD. For patch-TV, due to the 
incorporation of the nonlocal patch regularization, the time costs are higher than those 
of TV-GD, TV-Lp and Patch-RE. However, the performance of the algorithm is greatly 

(25)d =

(

∑Nx
m=1

∑Ny

n=1 (Am,n − Rm,n)
2

∑Nx
m=1

∑Ny

n=1 R
2
m,n

)1/2

.

Table 4 PSNRs (dB) of noised signals for the FORBILD phantom

SNRs (dB) 10 5 0

TV-GD 13.46 12.98 11.18

TV-Lp 15.43 14.87 12.37

Patch-RE 14.46 13.23 11.36

Patch-TV 24.98 21.89 20.63

Fig. 8 Line chart of the distance between the reconstructed image and the original image for each iteration 
of the TV-GD, TV-Lp, Patch-RE and patch-TV algorithms
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improved, and the quality of the reconstructed images is enhanced significantly for prac-
tical applications.

According to the above simulations and discussion, patch-TV is superior to the two 
popular TV-based algorithms and is a highly efficient photoacoustic image reconstruc-
tion algorithm.

Experimental results
To further validate and analyze the performance and practicability of the proposed algo-
rithm, in vitro experiments were conducted. We used a single-detector platform to scan 
the Gelatin phantom linearly.

The diagram of the single-detector platform is shown in Fig. 9a. It included a Nd:YAG 
laser device (Surelite I, Continuum, San Jose, California, USA) to emit a laser pulse 
with a wavelength of 532 nm and a frequency of 10 Hz. The duration of the laser pulse 
was 4–6  ns. A single transducer (V383-SU, Panametrics, Waltham, Massachusetts, 
USA) with a center frequency of 3.5 MHz and a bandwidth of 1.12 MHz was driven by 
a stepping motor scanning in the imaging plane. The sampling rate of the system was 
16.67 MHz. The sampling frequency of the system is 16.67 MHz and the recording time 
of pressure waves is 50 μs. The experiment satisfied the American National Standards 
Institute (ANSI) laser radiation safety standard. The phantom for the straight-line scan-
ning is shown in Fig. 9b. The phantom was made of a gelatin cylinder with a black rec-
tangular rubber sheet embedded into it as a light absorber. The radius of the cylinder 
was 25 mm, and the size of the light absorber was 9 × 14 mm. The scanning line, which 

Table 5 Calculation cost for the straight-line reconstruction of the Shepp–Logan phantom

t (s) 50 points 20 points 10 points

TV–GD 19.34 16.39 10.59

TV–Lp 14.69 10.48 6.39

Patch-RE 20.87 18.54 14.59

Patch-TV 24.58 20.38 17.23

Fig. 9 Scheme of the experimental platform for a single detector (a) and picture of the phantom used in the 
experiment (b)
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was parallel to the longer side of the light absorber, was uniformly distributed with 41 
sampling points. The sampling interval was 1  mm. The perpendicular distance from 
the center of the phantom to the scan line was 45 mm. The radius of the phantom was 
25  mm the reconstructed images size was also set to 128 × 128 pixels. The parameter 
settings in this case is α = 0.55, β = 0.45, T = 0.60.

The reconstructed results for patch-TV, TV-Lp and TV-GD are shown in Fig.  10. 
Patch-TV obtained the best imaging quality. There were serious artifacts and blurring 
in the images for the other two algorithms. Particularly for TV-GD, serious distortions 
occurred in the vertical direction of the light absorber. The edges of the image were hard 
to recognize. The patch-TV result was greatly improved. The edges of the image were 
distinct, and the distribution of the gray values was relatively uniform. Furthermore, the 
artifacts and background noise were effectively suppressed. This experiment further val-
idates the effectiveness of the proposed patch-TV algorithm. Under the circumstances of 
limited-view scanning in practice, patch-TV outperforms the two mainstream TV-based 
algorithms and is a practical and efficient reconstruction algorithm for PAI.

Discussion and conclusion
In this paper, nonlocal patch regularization is incorporated into the TV-based photoa-
coustic imaging reconstruction model to effectively improve the performance in prac-
tical limited-view scanning. TV-based optimization minimizes the variation between 
adjacent pixels. It penalizes the local changes of the image and can therefore be referred 
to as local total variation. It is based on the assumption that the image is piecewise con-
stant and over-suppresses the high-frequency coefficients. Thus, the geometric struc-
ture information of the reconstructed images tends to be over-smoothed. The result is 
even worse for practical limited-view scanning, in which the data information is insuf-
ficient such that serious artifacts and blurring fail to be effectively suppressed in the 
reconstructed images. However, in the nonlocal idea, the traditional spatial neighbor-
hood is extended to the structured neighborhood in terms of geometric meaning, and 
the regularization is applied to patches in the whole image instead of only adjacent pixels 
[43]. Therefore, patch-TV shows great improvement in terms of the preservation of the 
images’ geometric structure and has better results in preclinical applications. The similar 
patches for weighted calculation for a certain patch Pxi are searched in the entire image 
according to the value of the weight function W(xi, xj). A threshold value T is set to 

Fig. 10 The reconstructed images of the phantom in Fig. 9b for the TV-GD (a), TV-Lp (b) and patch-TV (c) 
algorithms in the single-detector experiment
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screen the neighborhood of the patch Pxi. This method overcomes the problems in tra-
ditional nonlocal means (NLM) filters, in which the size of the search field is settled and 
the patch Pxi is estimated by the patches in the determined search field. Thus, for large 
areas, the calculation costs are increased rapidly, while for small areas, similar patches 
far apart are missed. Therefore, the size of the neighborhood of the patch Pxi is adap-
tively controlled. Moreover, the modified weight function is adopted in this paper. It uti-
lizes the anisotropic distance between two patches to adaptively adjust the search of the 
neighborhood direction. For example, for edge points, their similar patches are searched 
along the edge direction. In this case, the neighborhood can be an ellipse. The neighbor-
hood of the patches takes the directivities and geometric structure of the images fully 
into consideration. Therefore, this approach makes more reliable estimations for the 
weight calculations between patches. The application of this modified weighting calcula-
tion method, can better maintain structural and directional information of the images 
because of its more reliable estimation for the weights between patches. Furthermore, 
the optimization problem combining nonlocal patch and TV is simplified to a common 
iterative reconstruction problem. Thus, the solution process is significantly simplified. 
The variable splitting method and the Barzilai–Borwein-based method are adopted to 
further accelerate the calculation and convergence speeds.

The proposed patch-TV algorithm was validated by a series of simulations and an 
experiment. The simulations were conducted by means of straight-line scanning, which 
is often used in practical applications. The reconstructed results of patch-TV were 
compared to those of two mainstream TV-based algorithms: TV-GD and TV-Lp. The 
results show that patch-TV is superior to TV-GD and TV-Lp, whether judged visually 
or in terms of PSNRs. The artifacts caused by the data incompleteness are effectively 
suppressed, and the geometric structure of the images is well maintained. Furthermore, 
the noise robustness, the convergence and the calculation speed are also discussed. The 
experiment carried out on an in vitro phantom adopted traditional straight-line scan-
ning with a single transducer. The results show that patch-TV outperforms the other two 
algorithms in each case, with more distinct geometric structure and fewer artifacts.

In this paper, the study is under a system-specific choice where the circumstance that 
laser pulses irradiate perpendicular to the image and not a result of having a 2D-recon-
struction. While it is considered to be a common case which is easy to study. As for 
other cases, such as the light irradiate from other angles, we can use the Monte Carlo 
method in [66] to simulate the optical absorption distribution of the tissue. Actually, 
these cases mainly lead to the variation of the optical absorption distribution of the tis-
sue yet the way to the algorithm study is the same.

The iteration number is set to 10 in this paper. As reported in [34, 39], the TV-GD and 
TV-Lp algorithm converged when the number of iterations is 10, which was an appro-
priate choice for these algorithms. Also as shown in “Convergence and calculation”, the 
line chart of the distance d in Fig. 8 confirms that the distance versus the iteration curve 
for these algorithms converges when the number of the iterations is 10, which validates 
the convergence of these algorithms at 10th iteration.

As for the parameter setting, α is the parameter corresponding to the weight of TV 
value in the optimization. α with a big value means that the TV-term is dominant and 
the optimization is expected to have a quicker convergence. But over-sized value will 
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break the balance between the two parts of the objective function. The reconstructed 
images with over-sized α will have a great difference from the real images because 
the data fidelity in the reconstruction is sacrificed to the image regularity. Based on 
this criterion, α should be set to a value which is neither too large nor too small when 
compared with the weights of the other part of the objective function to ensure good 
reconstructions, noise robustness and convergence speed. β is the parameter corre-
sponding to the weight of local-patch value in the optimization. It has similar effects 
on reconstructions, noise robustness and convergence speed to α. T is a threshold 
value ranging from 0 to 1 for screening the similar patches. Small value of T means 
that more patches with smaller similarities will be included into the neighborhood 
δ(xi) of xi. It will diminish the effect of the constraint of local-patch and increase the 
time costs. While if T is set to an oversized value, few patches will be qualified for the 
neighborhood. So it may also degrade the performance of the algorithm. From the 
simulations and experiments, α can be set between 0.3 and 0.8, β can be set between 
0.2 and 0.65, T can be set between 0.55 and 0.80.

It is also worth mentioning that the computation costs of patch-TV are higher than 
those of the other two algorithms due to the incorporation of nonlocal patch regulari-
zation. However, the quality of the images is significantly improved, and the conver-
gence speed is greatly accelerated. Additionally, the simplification of the optimization 
problem and the utilization of variable splitting and the Barzilai–Borwein-based 
method make the solution efficient and fast.

As for the 3D extension, i.e. 3D PA tomography, the proposed patch-TV algorithm 
can be easily applied to it. The 3D PA tomography have the similar dataset and scan-
ning mode with the 2D one. It’s also worth to mention that the patch-TV framework 
has space independent nature. The implementations can be fulfilled to 3D image 
reconstructions that use spatial information. But if we want to solving a 3D image 
volume, further studies need to be carried out. As we mentioned above, the whole 
converge time and single iteration time of the proposed patch-TV algorithm are just 
slightly more than TV-GD and TV-Lp algorithms, which makes the 3D reconstruc-
tions practical.

In conclusion, the proposed patch-TV algorithm is an effective and practical PAI 
reconstruction algorithm.
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