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Abstract 

Background: Extracting fundamental information from data, thus underlining hidden 
structures or removing noisy information, is one of the most important aims in different 
scientific fields especially in biological and medical sciences. In this article, we propose 
an innovative complex network application able to identify salient links for detecting 
the effect of Alzheimer’s disease on brain connectivity. We first build a network model 
of brain connectivity from structural Magnetic Resonance Imaging (MRI) data, then we 
study salient networks retrieved from the original ones.

Results: Investigating informative power of the salient skeleton features in combina-
tion with those of the original networks we obtain an accuracy of 0.91± 0.01 for the 
distinction of Alzheimer disease (AD) patients from normal controls (NC). This perfor-
mance significantly overcomes accuracy of the original network features. Moreover 
salient networks are able to correctly discriminate normal controls (NC) from AD 
patients and NC from subjects with mild cognitive impairment that will convert to AD 
(cMCI). These evaluations, performed on an independent dataset, give an accuracy of 
0.79± 0.01 and 0.76± 0.01 respectively for NC-AD and NC-cMCI classifications. There-
fore, most of the informative content of the original networks is kept after the 92 % and 
82 % reduction respectively in the number of nodes and links. In addition, the present 
approach, applied to a publicly available MRI dataset from the Alzheimer Disease 
Neuroimaging Initiative (ADNI), brings out also some interesting aspects related to the 
topologies and hubs of the networks.

Conclusions: The experimental results demonstrate how salient networks can 
highlight important brain network characteristics and structural pathological changes, 
while reducing considerably data complexity and computational requirements.
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Background
Alzheimer’s disease (AD) is a progressive neurodegenerative disease accounting for 
most cases of dementia after the age of 65. AD onset is related to cognitive impairment 
and loss of memory and it is estimated that over 115 million people will develop AD by 
2050 [1, 2].

AD related brain changes can be detected in vivo with magnetic resonance imaging 
(MRI) that has been playing an increasingly important role for the early diagnosis of 
neurodegenerative disorders. Progression of AD can begin even decades before the clin-
ical and radiological manifestations of the illness. Indeed, it is known that dementia is 
preceded by a prodromal phase of mild cognitive impairment [3], and this, in turn, by a 
pre-clinical phase [4] of variable duration. Understanding the biological changes, occur-
ring in these early phases, is of fundamental importance for the production of future 
disease-modifying treatments. Recently, cerebrospinal fluid analyses and brain imaging 
using radioactive tracers can tell us to what extent the brain is covered with plaques and 
tangles. However, these methods are very invasive, expensive and only available at some 
specific centers.

In fact, standard imaging techniques with structural MRI have allowed the observa-
tion of gray matter reductions especially in the hippocampus, the enthorinal cortex and 
the para-hippocampal gyrus in both temporal lobes [5–7]. As a result, great effort has 
been given to the implementation of fully automated whole brain [8, 9] and ROI [10, 11] 
segmentation strategies to obtain a robust base of knowledge for developing supervised 
models. Nonetheless, recent works [12, 13] have disclosed that when considering data 
from multi-center databases, structural features provided by segmentation approaches 
and the supervised algorithms based on them to distinguish normal controls and Alzhei-
mer disease subjects are hardly able to reproduce the performances reached on a same 
type of data. Besides, the processing of numerous imaging databases along with the 
intrinsic high dimensionality of each brain scan composed of 106 voxel per scan makes 
the research of novel data mining and managing methods of strategical importance to 
extract meaningful information aimed at an early diagnosis of AD.

Machine learning techniques remain unsurpassed in terms of accuracy and yet these 
strategies seem the best chance to get an early diagnosis for AD. However, complex net-
works, can be a convenient and innovative instrument to describe the connectivity of 
both structural and functional brain networks and detect anomalies yielded by disease 
[14, 15] lessening the role played by ROI detection that, on the contrary, needs a prelimi-
nary segmentation introducing inevitably a bias and does not allow the discovery of new 
regions connected to the disease.

Numerous studies, across a different range of anatomical parts of the brain, scales 
and modalities have found that networks may show a behavior outcome of a combina-
tion of both regularity and randomness [16]. In fact, it is known that brain networks 
can exhibit, at multiple levels, both small-world and scale-free properties in order to 
optimize brain organization and robustness respectively [17]. A network is called scale-
free when degree distribution follows a power law distribution. Therefore, scale-free net-
works present, most of the nodes, with a limited number of connections and a small 
number of nodes, called hubs, with a large number of connections. A network is con-
sidered small-world if it is highly clustered locally and has a small separation globally, 
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these two tendencies are measured respectively by clustering coefficient and average 
path length.

Currently, many studies emphasized as scale-free and small-world topologies might 
be used to model human brain networks and as a consequence describe how brain con-
nectivity is affected by AD. In fact, it was shown that several diseases, such as Alzhei-
mer’s disease, disrupt small-world organization and make human brains more adherent 
to random or regular networks. However, nothing definitive has been established, yet. 
Besides, another interesting aspect reported in literature is the vulnerability of network 
hubs to targeted attacks, these latters often are related to the progression of the disease 
in the network [18].

In this study, for each MRI T1 brain scans, we modeled brain connectivity divid-
ing automatically brain into a fixed number of boxes, called patches or supervoxels, to 
determine the nodes of the network and measuring pairwise Pearson’s correlation for all 
supervoxels to define the network links. Thus, a weighted and undirected dense network 
was built for each subject scans. One of the major aims of this work is the identification 
of hubs or highways, which could be modified by the disease. Therefore, it was carried 
out a study to define a proper threshold to bring out the two main topologies of the brain 
networks of which peculiar elements are really the most connected nodes and the most 
important links. [19, 20]. At this point to focus on these elements, we analyzed how a 
network based on salient links allows successfully prediction of the behavior of differ-
ent clinical groups [21]. The informative contribute of the salient skeleton was assessed 
with the multiplex network approach [22] in order to extract several network features 
for feeding a supervised classification model and detecting AD patterns.

The paper includes: a section of "Methods" where we provide a description of the data 
used and an overview of the image processing pipeline. Then, we illustrate the modeling 
of the networks and the characterization of their topology. Finally, we show the salience 
skeleton construction and hubs detection and the classification phase. In "Results" sec-
tion we present our findings and in the "Discussion" and Conclusions sections we report 
respectively the result interpretation and the work summarization along with the future 
perspectives.

Methods
The proposed approach includes four main steps shown in Fig. 1:

• Image processing to achieve an intensity and spatial normalization among subjects;
• Network construction for each subject having supervoxels as nodes and their Pear-

son’s correlations as links;
• Detection of the salience links to retrieve the salient skeleton from the original net-

work;
• Construction of the multiplex network of the salient skeletons to extract some fea-

tures in order to assess informative power of the skeletons using supervised learning 
techniques.
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Image pre‑processing and brain network model

In this work we used a training set of 67 T1 MRI scans, composed of 29 normal con-
trols (NC) and 38 AD subjects, from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI). These subjects belonged to a larger benchmark dataset [23] selected in order 
to obtain a compact yet representative sample of ADNI. We also employed an inde-
pendent validation set of 148 subjects, composed by 52 NC, 48 AD and 48 subjects 
with mild cognitive impairment converting to AD (cMCI). Validation set subjects 
were randomly chosen within the whole ADNI in order to match the demographic 
characteristics of training subjects. Demographic characteristics are reported in the 

Fig. 1 The whole analysis pipeline. The figure shows a schematic overview of the proposed methodology 
which encompasses different phases: image normalization, brain network model, high salient skeleton 
construction and supervised learning for the method evaluation

Table 1 This table reports the clinical and demographic information of the sets employed 
in this study

Data size, age range, gender and Mini Mental State Examination (MMSE) are shown for each diagnostic group with the 
relative mean and standard deviation

Training set Validation set Total

Disease status AD (38) NC (29) AD (48) NC (52) cMCI (48) 215

Female/male 18/20 13/16 22/26 25/27 21/27 99/116

Age (years) 74 ± 8 75 ± 6 78 ± 6 75 ± 6 76 ± 6 76 ± 6

MMSE 23 ± 2 29 ± 1 24 ± 2 29 ± 1 27 ± 2 26 ± 2
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following Table  1. Clinical status, population size, age (average and standard devia-
tion) and gender are provided.

Firstly, MRI scans were intensity normalized to reduce inter-subject differences. Then, 
FSL-BET and FSL-FLIRT, from FMRIB library [9], were applied to the images for brain 
identification and for carrying out a spatial affine registration on the MNI152 T1 tem-
plate. To avoid any bias due to pre-processing, all these steps were performed with 
standard configurations and parameters. After brain scans had been normalized, both 
in intensity and spatially, we divided, for each subject, the whole brain into N = 549 
box called supervoxels of volume of 3000  mm3, without a preliminary segmentation. As 
shown in previous works [24–26], the use of this supervoxel size is connected to the 
characteristic size of anatomical brain regions affected by AD, such as the hippocampus. 
The pairwise similarity of supervoxels was computed by means of Pearson’s correlation, 
therefore an undirected weighted network, of which nodes are the supervoxels and links 
are the correlation measurements, was constructed for each scan.

High salient skeleton construction

The image processing and network construction were performed for each subject, thus a 
set of densely connected weighted networks was obtained. To reduce complex networks 
to their main components is an usual practice to examine a wide range of threshold val-
ues and then, according to specific experiment goals, choose the criterion for finding 
the most suitable one. A possible strategy to use for this investigation concerns the net-
work topology which as disclosed in the Background should be small-world and scale-
free especially for biological networks [27]. Therefore, we studied how the topology of 
each network changes when removing edges below a particular correlation value rthr . 
To investigate network scale-free behavior, the fit goodness between the network degree 
distribution of each subject with a power-law in terms of adjusted R-squared statistics, 
was measured. While to study network small-world behavior, the small-worldness indi-
cator of each subject network as a function of the threshold was computed. Small-world-
ness is given by the following expression:

where Cm and Lm , and Cr
m and Lrm are the clustering coefficient and the average short-

est path length respectively of each network m to examine, and the reference random 
graph with the same node number N and the same link probability p given by the ratio 
between mean degree k̄ and N. Once found the appropriate threshold able to bring out 
the two main topologies, the high salience skeleton was extracted for each network in 
order to investigate which connections between are more relevant. Fig. 2 shows in detail 
the procedure adopted to get high salient skeletons from the supervoxel correlation net-
works along with an example of the scale-free and small-world network obtained and its 
relative skeleton.

The salience indicator was born to furnish an overall network description from a node-
specific perspective and define a consensus among nodes on the importance of each edge 
within the network. Given the set of weights W = {w1,w2, ...,wN ′ } , with N ′ being the 

(1)SW =
1

M

M
∑

m=1

(

Cm
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m

/

Lm

Lrm
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number of N nodes remaining after the extraction of the scale-free and small-word topolo-
gies from the network, the pairwise distance matrix D is defined. Di,j elements are simply 
the correlation reciprocal values. Therefore, nodes with greater weights, thus more cor-
related, are closer. After defining the distance between two nodes, it is also possible to 
introduce a path length definition: if two supervoxels i and j are connected through a path 
p consisting of k steps, being them the terminal nodes of p, the length of p is simply the 
weight sum of the edges belonging to it. Accordingly, it is possible to define several paths 
connecting i and j, we considered the so-called shortest paths that are the paths of which 
weight sum is maximum. It has to be noted that according to this definition, the shortest 
path uniqueness is not assured. Recording all links belonging at least one time to the short-
est paths connecting a generic reference node n to all the remaining nodes of the network, 
we can define for each reference node what is generally called the shortest path tree T(n) 
a matrix which represents, in fact, the most effective routes linking the node n to the net-
work. Its elements Tij(n) are mathematically defined in the following expression:

One can calculate the shortest path trees for all the nodes of the network, then for a 
generic edge (i,  j) connecting the nodes i and j, salience si,j is the indicator accounting 

(2)T (n)ij =

{

1 if ij link ∃ in the shortest path from node n = (1, ..,N ′)

0 if ij link � ∃ in the shortest path from node n = (1, ..,N ′)

Fig. 2 Flowchart of the salient skeleton construction. On the left the procedure to get the high salient 
skeletons is reported. It consists of different steps: scale free networks with power-law distributed weights 
were extracted from initial network of each subject, then links participating at least once in the shortest 
paths, starting from a fixed reference node, were recorded in the shortest path tree matrix, finally shortest 
path tree for each reference node were added up to obtain, for each subject, salience matrix, whose values 
si,j = 1 represent high salient skeleton. On the right, a small-world and scale-free network is represented with 
the corresponding high salient network



Page 51 of 118Amoroso et al. BioMed Eng OnLine 2018, 17(Suppl 1):162

how many times the edge belongs to a shortest path tree in respect to the total number 
of shortest path trees. Therefore, salient matrix is given by the following equation:

According to this definition, si,j takes into account the fraction of shortest path trees 
including the edge between i and j. Salient matrix values have a characteristic bimodal 
distribution with peaks on 0 and 1 values, as shown in Fig. 3. If si,j = 1 , then link (i, j) is 
essential for all reference nodes, if si,j = 0 , (i, j) is not a fundamental link for the network. 
This makes natural finding what is called the salience skeleton, i. e. the backbone struc-
ture including all the most efficient links of the networks.

Figure 3 is an example of salience percentage frequency for a brain network. The sali-
ence skeleton is by definition the network containing only salient links. As the saliency 
distribution is bimodal there is no need of finding a particular threshold, but the skel-
eton stays pretty much unchanged for all threshold values between 0.1 and 0.9. For the 
present work the threshold 0.5 was used. It is worthwhile to notice that this bimodal 
behavior occurs independently of the clinical status.

Supervised learning for the method evaluation

Each salient network was employed for building a skeleton multiplex network (SMN). 
For each layer, nodes are represented by the supervoxels that have a salient link at least 
in a subject and links, that change for each layer, are the absolute value of Pearson’s cor-
relation between nodes pairs within the single layers.

From the SMN were extracted some centrality measures: the strength and the inverse 
partecipation ratio, first considering the single layer links, and then the multiplex net-
work links. Multiplex network strength and inverse partecipation ratio were defined 

(3)S =
1

N ′

N ′

∑

n=1
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Fig. 3 Bimodal distribution of the salient matrix values. The figure shows salience percentage frequency of 
a brain network as example. Saliency values are gathered on 0 and 1 thus it is possible to detect the salient 
links independently of the threshold value chosen. In this network the link fraction contributing to the high 
salient skeleton is of the 8.46%
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starting from an overall matrix O whose elements oij indicate which links are present in 
at least a layer:

As a consequence, for each node, strength and inverse participation ratio were weighted 
on the number of links incident upon a node over the whole multiplex network obtain-
ing, in this way, two multiplex network quantities.

In addition, for this 4 quantities we computed the corresponding conditional means, 
thus strength and inverse participation averaged over the nodes with the same degree.

Overall we retrieved a matrix of 8N features × M samples, where N = 549 is the num-
ber of nodes of the SMN and M = 67 is the number of layers of the SMN.

To avoid over-training issues yielded by the excess of features compared to observa-
tions, a feature selection was performed with a wrapper-based method. The most impor-
tant features were collected for each fivefold Random Forest cross-validation and then, 
those having a significant probability of occurrence within 1000 rounds, were selected. 
Random Forest was grown with 500 trees and the important features were chosen in 
order to overcome the third quartile of the importance distribution computed in terms 
of mean accuracy decrease.

The selected features were used to train another independent RF classifier always with 
500 trees. Examples randomly selected to stay out of the training set were then adopted 
to measure the classification performance on the train subjects in order to evaluate the 
informative content of the available base of knowledge and detect which regions show an 
anomalous behavior. This is a useful information for those diseases whose patterns are 
not yet fully understood. Besides, a comparison of the performances obtained from the 
SMF, with those obtained from the original multiplex network and from their combina-
tion was carried out to deepen the characterization of the salient backbone of the human 
brain network in the field of the neurodegenerative diseases. Another characterization 
analysis concerns hub study of the salient network. As hubs are nodes with a number of 
links that greatly exceeds the average [28], we considered hubs all those nodes that are 
outliers of the network betweenness distribution. Therefore, for each subject, we col-
lected nodes having a betweenness greater than the following quantity:

where Q3 and IQR are respectively the third quartile and the interquartile range of the 
betweenness distribution values of a generic network. On the base of this definition, 
hubs of the salient network and the original one were collected in order to see how many 
hubs are preserved moving from the original network to the salient one. In addition, for 
both the original network and the salient one we computed two metrics: strength and 
betweenness associated to the hubs of each subject to examine if these metrics were able 
to distinguish significantly (p < 0.01 using Wilcoxon Mann--Whitney test) the different 
clinical groups considered. An investigation of the anatomical region corresponding to 
the hubs that have a central role in pathological changes detection, was also carried out.

Another task, in this work, was the assessment of the methodology on the validation 
subject sets performing a binary classification: normal controls versus MCI converter 

(4)oij =

{

1, if link ij exists in at least a layer
0, otherwise

(5)Q3 + 1.5 ∗ IQR
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subjects and normal controls versus Alzheimer’s disease subjects. For validation sub-
jects, features were extracted adding in turn the test subject to the training SMN hold-
ing fixed the overall matrix. For each classifier, the tree number was set large enough 
to reach the typical training plateau for the out-of-bag error. At each split, being f the 
feature number, 

√
(f ) features were randomly sampled.

The first task is certainly of interest for an assessment of the methodology and the fea-
ture informative power. In fact, it is well known which there are brain regions related 
to AD, thus we can use this classification task to observe whether or not high salience 
skeleton outlines brain regions coherent with the pathology. The second task is of par-
amount importance for clinical purposes, in fact especially the MCI condition can be 
in several cases a prodromal stage of AD. Accordingly, the early and accurate detection 
of impairment could play a pivotal role in the development of drug trials and therapy 
developments.

Results
Two main brain network topologies

There is not any in advance reason for which the scale-free and small-world topologies 
should have emerged with the same threshold value from different subjects. Neverthe-
less, Fig. 4 shows how the adjusted R-squared metric averaged over all subjects, adopted 
to measure the agreement between degree distributions and a power-law function, 
reaches a high and stable plateau for rthr > 0.6

Moreover, considering the mean small-worldness indicator SW averaged over all sub-
jects reported in Fig. 5 for each threshold value, it can be noticed as at a threshold above 
0.6 in addition to a scale-free topology also a small-world structure emerges.

Coming back to the original brain network of each subject, we removed the correla-
tions exceeding a threshold value of 0.65 chosen in order to bring out both significantly 
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Fig. 4 R-adjusted as a function of the threshold. The brain networks exhibit a power-law degree distribution 
for thresholds above 0.6. The goodness-of-fit is measured by means of adjusted R-squared coefficient. For 
each threshold value is reported the mean R-squared coefficient over all subjects and the relative standard 
deviation
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small-world and scale-free behavior of the networks minimizing variance of the 
R-adjusted and small-worldness indicators over the subjects. In this way, for each sub-
ject, a scale-free weighted network of highly correlated nodes was obtained.

Assessment of salient skeleton methodology

First of all, we investigated the informative content of the high salient skeletons to evalu-
ate if it exhibits advantages compared to the complete multiplex network. In the clas-
sification of NC versus AD patients, the important features, extracted from the skeleton 
multiplex network, gave performances, reported in terms of accuracy, area under the 
receiver-operating-characteristic curve (AUC) and its relative standard deviation, in 
keeping with the ones obtained using the original multiplex network. In fact, an AUC 
of 0.93± 0.01 and an accuracy of 0.85± 0.01 were found for the reduced multiplex net-
work and an AUC of 0.94 ± 0.01 and an accuracy of 0.88± 0.01 were reached for the 
whole multiplex network. Corresponding specificities and sensitivities were respectively 
0.83± 0.01 and 0.91± 0.02 , for the first multiplex, and 0.85± 0.09 and 0.95± 0.02 , for 
the second one.

In addition, the significant features extracted using the salience approach were not the 
same obtained with the previous methodology. As a consequence, for assessing if the 
salient skeletons bring out different relevant information regarding AD disease pattern, 
the important features, extracted from the two approaches, were combined and used for 
distinguishing NC and AD. Receiver-operating-characteristic (ROC) curves for the three 
binary classifications NC versus AD, carried out respectively, using original (OMF), skel-
eton (SMF) and both multiplex features, were represented in Fig. 6.

This study showed that the feature combination makes it possible to achieve an higher 
classification performance with an AUC of 0.97± 0.01 , an accuracy of 0.91± 0.01 and a 
specificity and sensitivity respectively of 0.88± 0.06 and 0.98± 0.06 , demonstrating that 
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Fig. 5 Small-worldness as a function of the threshold. The brain networks manifest an evident 
small-worldness behavior for thresholds above 0.6. For each threshold value is represented the mean 
small-worldness coefficient over all subjects and the relative standard deviation.
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the skeleton extraction from the network is able to provide additional important infor-
mation within the multiplex framework.

Hub characterization

Another adding value given by salient networks relates the study of the hubs. In fact, 
going from original network to the salient backbone, on average 70 % of the hubs is con-
served. Besides, the salient network measures associated to the 15 hubs common to all 
subjects allowed us to statistically distinguish between NC versus AD and cMCI versus 
AD with a 1% significance level. On the contrary, complete network hubs are not able 
to reveal these statistical differences. In Fig. 7 an example of betweenness distribution 
relative to an hub covering a part of the left hippocampus is reported for both the sali-
ent skeleton and the original network using the boxplots of two different clinical groups 
(AD-NC).

In Fig. 8, instead, salient network betweenness and strength distributions associated 
to other two hubs are set out. It is possible to notice as in these two examples between-
ness is able to statistically discriminate NC and cMCI, while strength statistically distin-
guishes cMCI and AD.

In Fig.  9, the significant supervoxels, corresponding to the salient network hubs 
of which strength and betweenness are able to discriminate among different clinical 
groups, are represented on the axial planes of the brain template. It is worthwhile to 
consider that all these 15 hubs, in the complete networks, does not give any significant 
difference although they correspond to anatomical area importantly connected to AD.

Fig. 6 Skeleton evaluation with a receiver-operating-characteristic (ROC) curve comparison. In figure are 
reported, for the binary classification normal controls versus Alzheimer’s disease patients, the receiver-operat
ing-characteristic (ROC) curves and the corresponding areas under the curve (AUC) relative to skeleton (blue 
curve), original (red curve) and both (green curve) multiplex network features
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Salient skeleton reliability

To test the reliability of the skeleton multiplex network features (SMF), the classifica-
tion models obtained during the training phase were used for the validation on the same 
dataset employed for validating the original networks, two binary classifications: con-
trols vs. AD patients and controls vs. cMCI subjects were carried out.

Fig. 7 Betweenness distributions of an hub for the salient and the complete networks On the left, the 
boxplots of the betweenness distribution relative to an hippocampal hub of the salient networks are shown 
for healthy subjects and patients. On the right, the boxplots of the betweenness distribution corresponding 
to the same hub of the complete networks and for the same clinical groups are displayed. Hub associated to 
the salient networks allow us to distinguish AD and NC classes with a statistical significance level of 1% , this 
does not occur for the original networks

Fig. 8 Examples of clinical group distinction through strength and betweenness distributions associated to 
two salient network hubs. On the left, the boxpltots of betweenness distribution of a salient network hub are 
represented for cMCI and NC classes. On the right, the boxplots of strength distribution of a second salient 
network hub are reported for AD and cMCI classes. Both of the network measures, associated to the two 
hubs, separate the clinical groups at a 1% significance level

Fig. 9 Anatomical hub visualization. The figure shows the supervoxels (green boxes) that are hubs and 
underline in the salient networks a connection with the clinical status. Hubs are represented along the axial 
planes of the template
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The performances shown in Table  2, along with the ones obtained from the origi-
nal multiplex network features (OMF), show as the method is reliable and as the most 
informative power of the complete multiplex network is retained by the skeleton multi-
plex network. In fact, salient networks allowed us to reduce by 92% the link number and 
by 82% the node number of the original networks giving accuracy lessening by up to 10% . 
This is an important advantage especially when data scientists are working with data of 
great cardinality and high complexity (Big Data).

In this regard, it is worthwhile to notice, the total amount of CPU time for the whole 
analysis pipeline based on the salient networks was of 58 h 42 min and 25 s. Therefore, 
each image processing and the relative subject prediction required a CPU time of 16 min 
23 s and 2GB of RAM. This means that the reduction methodology of the salient skel-
etons provides a relevant computational saving, indeed the time taken to perform the 
whole analysis with the original networks is about the twice. It is important to specify 
that we used a single core 2.4 GHz CPU.

Anatomical characterization

In this work, it was also studied where are located the significant supervoxels of the sali-
ent skeleton. Although the skeleton networks were completely different from the origi-
nal dense networks and the important features selected were not the same, it is resulted 
that the significant supervoxels identified anatomical regions associated to the AD pro-
gression in keeping with the literature. In Fig. 10 the relevant supervoxels obtained on 
the axial planes of the Harvard-Oxford atlas with the relative axial plane position along 
sagittal view are represented.

It is worthwhile to note as significant supervoxels covered regions such as hippocam-
pus, amygdala, ventricles, thalamus, brain stem, cerebral sulci, inter-hemispheric por-
tions and separation areas between gray and white matter. These findings are a further 
confirm that salient skeletons are an alternative way of detecting AD patterns, able to 
give supplemental information regarding the disease.

Table 2 Comparison of the classification performances of the salient multiplex network 
features (SMF), the original multiplex network features (OMF) and their combination 
(Both) in terms of accuracy, sensitivity specificity and the relative standard errors 
for the different groups: AD-NC and cMCI-NC

Metric Feature Name AD (48)‑NC (52) MCIc (48)‑NC (52)

Accuracy SMF 0.79± 0.01 0.76± 0.02

OMF 0.86± 0.01 0.84± 0.01

Both 0.87± 0.01 0.82± 0.01

Specificity SMF 0.81± 0.02 0.82± 0.02

OMF 0.96± 0.01 0.94± 0.01

Both 0.93± 0.02 0.86± 0.02

Sensitivity SMF 0.77± 0.02 0.71± 0.02

OMF 0.74± 0.01 0.72± 0.01

Both 0.78± 0.02 0.76± 0.02
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Discussion
The proposed approach aims at reducing dense and large brain networks preserving and 
underlining the meaningful information. In fact, nowadays especially in the neurosci-
ence field, the necessity to perform multimodal longitudinal and even multi-scale studies 
has been increasing more and more and the management of large and numerous data-
set has been becoming a really challenging task. Methodology includes two reduction 
steps. The first concerns the threshold study to extract the two fundamental topologies 
of the brain networks. This investigation provides two strategical aspects. On one hand, 
it confirms human structural brain networks analogously to the functional ones [29] can 
be described approximately as combination of a small-world and scale-free topology. On 
the other hand, all the brain correlation networks exhibit the general tendency to bring 
out these two topologies within a threshold intermediate range [0.6; 0.8]. This suggests 
that at too low thresholds, these structures are blurred by network noise while at too high 
thresholds, they begin to fail because link and node number becomes too scarce. The sec-
ond reduction step consists in the use of the salience indicator to detect the most impor-
tant links of the brain networks. Salient and original network features were evaluated and 
compared with a multiplex network approach. The analyses highlighted different advan-
tages provided be salient skeletons: (i) the reduction of the computational burden keep-
ing the fundamental information; (ii) accurate classification respectively of NC versus AD 
and NC versus cMCI subjects; (iii) identification of anatomical regions related to the dis-
ease; (iv) additional information compared to the complete networks. Indeed, as to the 
latter point, only network properties associated to the 15 salient network hubs are able 
to statistically distinguish NC, AD and cMCI. This becomes particularly interesting with 

Fig. 10 Important supervoxel visualization. The figure shows the supervoxels (white boxes), significantly 
connected with Alzheimer, along the different axial planes of the Harvard-Oxford atlas. The insets depicted in 
the bottom right corners represent position of each axial plane along sagittal plane
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a view of finding new biomarkers of disease progression that can be useful for the early 
diagnosis of neurodegenerative disease both in terms of discrimination accuracy and for 
the discovery of novel anatomical regions affected by the disease. It is worth to notice 
that mild cognitive impairment subjects represent a spurious class as there is no a priori 
clinical reason for this impairment to be related to AD instead of other neurodegenera-
tive disease, this is why we tend to specifically focus the validation on cMCI subjects who 
do not have any clinical ambiguity. Therefore, cMCI can be accurately discriminated on 
the basis of the knowledge obtained from models constructed on NC and AD subjects 
[30]. Literature has a great number of articles dealing with the discrimination of NC vs. 
AD and NC vs. cMCI. However, the different data, processes, assessment and classifica-
tion techniques used do not always allow a completely fair comparison. This is why it is 
important to organize International challenges [12, 31] to validate different methodolo-
gies with a common set of data and evaluation procedures. Apart the differences due to 
the previously enclosed reasons, in Table 3 it can be observed that our performances are 
comparable with the state-of-the-art [32, 33] although the optimization of the diagnostic 
accuracy was not the primary goal of this work.

Conclusions
In this article, we proposed a novel method for reducing complexity of dense and 
large brain networks, keeping and especially highlighting, their informative content. 
A threshold analysis was performed to bring out the two main topologies (small-
world and scale-free) of the brain networks. In fact, the most of the behaviors of 
integration and segregation involved in brain organization are explained by these 
topologies. We also examined how a neurodegenerative disease, such as Alzheimer, 
can change structural connectivity of these brain networks extracting high salient 
skeleton for each one, in order to turn particular attention to the hubs and highways 
of these correlation networks which could be damaged by AD.

We assessed the informative power of the high salient networks through a multi-
plex network approach. Feature extracted from the skeleton multiplex network give 
in cross-validation, for the distinction of AD subjects from normal controls, an accu-
racy of 0.85± 0.01 which reaches 0.91± 0.01 combining these features with those 
obtained using the original multiplex network. The improvement of the classification 

Table 3 This table reports a comparison in terms of accuracy between our method 
and some of the most recent works regarding the study of the early AD diagnosis using 
MRI features

Salvatore et al. [34] cMCI vs. NC (20-fold) 0.72± 0.12

Salvatore et al. [35] AD vs. NC (fivefold) 0.90± 0.05

Lama et al. [36] AD vs. NC (leave-one-out) 0.80

AD vs. NC (tenfold) 0.77

Salvatore et al. [37] AD vs. NC (fivefold) with MMSE 0.96± 0.01

cMCI vs. NC (fivefold) 0.79± 0.03

Proposed method AD vs. NC (fivefold) 0.87± 0.01

cMCI vs. NC (fivefold) 0.82± 0.05
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performances and the different features extracted from the skeletons prove that sali-
ent links underline an information, at least in part, distinct from that obtained with 
the initial networks. This was also confirmed by the hub study. Indeed, even though 
70% of the original network hubs are preserved, a comparison among the same hubs 
of the salient skeletons and the complete networks demonstrated that only the net-
work metrics associated to the hubs of the salient networks allow us to distinguish 
the three clinical groups with a 1% significance level. It was also showed as these hubs, 
anatomically, pinpoint brain regions related to AD. Therefore, having a method able 
to underline the relevant information of these structures is fundamental. Methodol-
ogy importance was also emphasized by the study of the anatomical regions selected 
by the important classification supervoxels corresponding to areas, such as hip-
pocampus, notably connected with Alzheimer disease progression. In addition, on an 
independent set of subjects, the methodology was validated performing two binary 
classifications: NC versus AD subjects and NC versus cMCI subjects. Results dem-
onstrate the reliability of the salient network approach that permits us to reduce sig-
nificantly the original networks ( 92% of the links and 82% of the nodes) keeping high 
performances that undergo a reduction smaller than 10% . It is important to notice 
this performance reduction is negligible if compared to the time saved for the whole 
analyses that would be lasted twice as long using the complete networks. Method-
ology here developed can have application in the study of other neurodegenerative 
diseases and in all fields where, managing a great quantity of data and large complex 
networks in a way computationally convenient, and revealing network characteristics 
that otherwise would remain masked, can be really important. Further in-depth to 
this study could be the investigation into other network properties of the salient net-
works and an examination on a larger dataset of MCI subjects. In addition, a study 
about hub vulnerability in AD and NC salient networks could be really interesting.
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