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Background
Named entity recognition (NER) assigns a named entity tag to a designated word by 
using rules and heuristics. The named entity, which presents a human, location, and an 
organization, should be recognized [1]. Named entity recognition is a task that extracts 
nominal and numeric information from a document and classifies the word into a per-
son, an organization, or a date category [2]. NER classifies all words in the document 
into existing categories and “none-of-the-above”.

Biomedical named entity recognition is very important in language processing of bio-
medical texts, especially in extracting information of proteins and genes such as RNA or 
DNA from documents. Finding named entities of genes from texts is a very important 
and difficult task [3]. Finding a gene name in texts corresponds to finding a company 
name or a human name in newspapers. Recognizing biomedical named entities seems 
to be more difficult than recognizing normal named entities [4]. Numerous research 
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studies have recognized named entities by using supervised learning algorithms based 
on many rules [5].

Supervised learning approaches have used Hidden Markov Models (HMMs) [6], 
decision trees [7], support vector machines (SVMs) [8], and conditional random fields 
(CRFs) [9, 10]. Supervised learning methods normally train with data of many features 
based on various linguistic rules, and evaluate the performance with test data that could 
not be found in the training data.

In this paper, we compare the performances of recurrent neural networks of deep 
learning with conditional random fields. A recurrent neural network (RNN) uses a Jor-
dan-type algorithm and an Elman-type algorithm. We also measure the performance of 
conditional random fields using word embedding as their features. Word embedding has 
increased performance in natural language processing, machine translation, voice rec-
ognition, and so on [11]. Word embedding has been used as features in natural language 
processing and is mapped from a word in the higher-dimensional space into a real-num-
bered vector in the lower-dimensional space. Word2Vec, canonical correlation analysis 
(CCA), and global vector (GloVe) are used as word embedding methodologies in this 
paper. We compared two RNN algorithms and CRFs using three word embedding meth-
ods for named entity recognition in biomedical literature.

In the rest part of “Background”, we explain named entity recognition, particularly for 
biomedical texts. We introduce detailed methodologies and basic features used in this 
paper in “Methods”. “Results and discussion” shows the experimental results and evalua-
tions, and “Conclusion” is our conclusion.

Biomedical named entity recognition

Named entity recognition (NER) classifies all unregistered words appearing in texts and 
is a subtask of information extraction. Normally, NER uses eight categories—location, 
person, organization, date, time, percentage, monetary value, and “none-of-the-above” 
[12, 13]. NER first finds named entities in sentences and declares the category of the 
entity. In the sentence:

“Apple [organization] CEO Tim Cook [Person] Introduces 2 New, Lager iPhones, 
Smart Watch at Cupertino [Location] Flint Center [Organization] Event [14].”

“Apple” is recognized as an organization name instead of a fruit name in terms of its 
context. The words “Tim” and “Cook” are altogether recognized as a single word hav-
ing a meaning of CEO of the Apple Company and a person’s name. “Cupertino” is a city 
name in California and is recognized as a location name, and “Flint” and “Center” are 
considered as a single name and recognized as an organization name.

Named entity recognition has three approaches—dictionary based, rule based, and 
machine learning based. A dictionary-based approach stores as many named entities as 
possible in a list called a gazetteer. This approach seems to be very simple, but at the 
same time has limitations. The NER is difficult because the target words are mainly 
proper nouns or unregistered words. In addition, new words can be generated fre-
quently, and even the same word stream could be recognized as diverse named entities 
in terms of their current context [15, 16]. The second approach of the NER is a rule-
based approach [17]. This approach ordinarily depends on the rules and patterns of 
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named entities appearing in real sentences. Although rule-based approaches can use 
context to solve the problem of multiple named entities, every rule should be written 
before it is actually used. The third approach, the machine learning-based approach, tags 
the named entities to words even when the words are not listed in the dictionary and the 
context is not described in the rule set. For these approaches, support vector machines 
(SVMs) [18], Hidden Markov Models (HMMs) [6, 19], Maximum Entropy Markov Mod-
els (MEMMs) [20], and conditional random fields (CRFs) [9, 10] are mainly utilized.

Natural language processing researchers have been interested in the information 
extraction of genes, cancer, and protein from biomedical literature [21–24]. Biomedical 
named entity recognition, which is essential to biomedical information extraction, has 
been treated as the first stage of text mining in biomedical texts. For years, recognizing 
technical terms in the biomedical area has been one of the most challenging tasks in nat-
ural language processing related to biomedical research [25]. In this paper, we use five 
categories (protein, DNA, RNA, cell type, and cell line) instead of the categories used in 
the ordinary NER process. An example of the NER tagged sentence is as follows:

“IL-2 [B-protein] responsiveness requires three distinct elements [B-DNA] within 
the enhancer [B-DNA].”

Biomedical NER faces difficulties for five reasons. First, because of current researches, 
the number of new technical terms is rapidly increasing. It is very difficult to build a gaz-
etteer that includes all of the new terms. Second, the same words or expressions could 
be classified as differently named entities in terms of their context. Third, the length of 
an entity is quite long, and the entity could include control characters such as hyphens 
(e.g., “12-o-tetradecanoylphorbol 13-acetate”). Fourth, abbreviation expressions are fre-
quently used in the biomedical area, and they experience sense ambiguity. For exam-
ple, “TCF” could refer to “T cell factor” or to “Tissue Culture Fluid” [26, 27]. Finally, 
in biomedical terms, normal terms or functional terms are combined, which is why a 
biomedical term can become too long. For example, “HTLV-I-infected” and “HTLV-I-
transformed” include the normal terms “I”, “infected”, and “transformed”. It is difficult for 
biomedical NER to segment the sentence with named entities. Spelling changes also cre-
ate a problem [28]. In addition, the named entity of one category could subsume another 
named entity of another category [29].

Methods
We perform named entity recognition for words in a sentence by using CRFs and RNN, 
and compare the performance of each method. We use a BioNLP/NLPBA 2004 corpus 
[30, 31] of 22,402 sentences. We use 18,546 sentences as a training data set, and 3856 
sentences as a test data set. The corpus are tagged with “protein”, “DNA”, “RNA”, “cell 
line”, and “cell type” categories. The next section describes CRFs and word embedding, 
and the rest explains RNN.

Conditional random fields

A CRF is a statistical sequence modeling framework first introduced in [32]. CRFs are a 
class of statistical modeling methods often applied in pattern recognition and machine 
learning, where they are used for structure prediction. Whereas an ordinary classifier 
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predicts a label for a single sample without regard to “neighboring” samples, a CRF can 
take context into account [33]. The reason why CRFs are more effective than HMMs is 
that CRFs use the conditional probability property instead of the independence assump-
tion mainly used in HMMs. CRFs also avoid label bias problems and avoid the weak-
nesses of other Markov models derived from MEMMs and graphic models. CRFs show 
better performance than MEMMs and HMMs in bioinformatics, computational linguis-
tics, and voice recognition. CRFs are also used for the prediction and analysis of labels 
for data in natural language writing. Features can be chosen randomly, and they are to be 
normalized to obtain solution [32, 34].

In this model, X = {x1, x2, x3, . . . xT } are the input data in which components are con-
nected in sequence, and Y =

{
y1, y2, y3, . . . yT

}
 are the labels for each component of the 

input data. In other words, when a new x is given, a y value is predicted using the follow-
ing model:

where z(x) standardizes the probability value, and fk is a feature function, which is a 
characteristic function on feature k. This function returns 1 when the given input 
yt, yt−1, xt includes a feature k, and returns 0 otherwise. ωk is the weight of the feature. 
In this study, a CRF suite [35] was used to make predictions by using the average percep-
tron generated by the CRF algorithm.

Word embedding

Word embedding is also called word representation or distributed representation. It 
learns vector representation for every word appearing in the corpus. Previous research 
studies represented a word as a one-hot representation. The one-hot representation uses 
a vocabulary-sized vector, and takes a 1 when the word appears in the document and 
0 when it does not [36]. Word embedding reduces the dimensions and sparseness of 
the original vector and fills the vector with real numbers. Figure 1 shows the difference 
between one-hot representation and word embedding.

(1)p
(
y|x

)
=

1

z(x)

T∏

t=1

exp

{
k∑

k=1

ωk fk
(
yt , yt−1, xt

)
}

(2)z(x) =
∑

y

exp

(
∑

k

ωk fk
(
y, x

)
)
,

Fig. 1 One‑hot vs. word embedding. The left vector inside a table is one‑hot representation, and the right 
vector inside a small rectangle is word embedding representation
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Word2Vec

Word2Vec assumes that the words sharing the same context could have similar mean-
ings. It classifies words near to the given word into related words and learns the words 
using artificial neural networks. Word2Vec has two structures: Continuous Bag of 
Words (CBOW) and skip gram architectures. Figure 2 shows the Word2Vec architecture 
[37].

The CBOW side has surrounding words w(t − 2), w(t − 1), w(t + 1), and w(t + 2) as 
input, and predicts w(t) as output. The skip-gram side uses w(t) as its input and predicts 
w(t − 2), w(t − 1), w(t + 1), and w(t + 2) as output.

Global vector (GloVe)

GloVe is an unsupervised learning algorithm for obtaining vector representations for 
words. Training is performed on aggregated global word-word co-occurrence statis-
tics from a corpus, and the resulting representations showcase interesting linear sub-
structures of the word vector space [38]. GloVe considers the global context as well as 
the local context [39].

where X is a word co-occurring in a matrix, Xij is the frequency of the co-occurrence 
of word i and word j, and Xi =

∑v
k Xik is the total number of occurrences of word 

i in the corpus. The occurrence probability of a word j in the context of a word i is 
Xij = P

(
j|i
)
= Xij/xi . e is word embedding, and ẽ  is a separate-context word embed-

ding. f
(
Xij

)
 indicates the weight and has three conditions. First, f(0) = 0. Second, f(x) does 

not decrease not to give weights to very rarely co-occurring words. Third, f(x) should be 

(3)
v∑

i,j=1

f
(
xij
)
(eTi ẽj + yi + ỹj − logXij)

2,

Fig. 2 Word2Vec architecture
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relatively smaller than the large value of x so it does not give weight to frequently co-
occurred words.

Canonical correlation analysis (CCA)

Canonical correlation analysis (CCA) was introduced by Hotelling [40]. CCA is a sta-
tistical method to investigate the relationship between two variable sets, and it can 
concurrently examine the correlation of variables belonging to different sets. CCA 
finds correlations between two variable sets (X, Y), and also finds parameters that 
maximize the correlation coefficients [41]. CCA can be calculated directly from the 
data set, and can also be calculated after transforming the data sets into covariance 
matrices. These two methods are represented based on singular value decomposition. 
In [42, 43], if CCA is used to predict labels in data, string theory guarantees the cor-
respondence to lower-dimensional embedding. CCA tries to find two projection vec-
tors to maximize the correlation. Using random variables (X, Y ∈ R), where X is a word 
representation and Y is its related context representation, CCA tries to find k-dimen-
sional projection vectors that maximize the correlation between two variables [44].

Assuming that we have two variables x ∈ Cd1 , y ∈ Cd2 , CCA can be defined as a 
problem to maximize the correlation between two variables on X and Y vectors. With 
a pair of vectors x = ŵT

x x, y = ŵT
y y , we can use the following correlation expression:

where Cxy = E
[
xyT

]
, Cxx = E

[
xxT

]
, and Cyy = E

[
yyT

]
 . The first eigenvectors ŵx1 , ŵy1 

can be the first correlation P1, and the second eigenvectors can be the second correlation 
P2 [45].

Recurrent neural network

In machine learning and cognitive science, artificial neural networks (ANNs) are a fam-
ily of models inspired by biological neural networks that are used to estimate or approxi-
mate functions that can depend on a large number of inputs and are generally unknown 
[46]. ANNs work well in nonlinear functions and pattern recognition. Many researchers 
working in data mining, artificial intelligence, and bioinformatics have been interested in 
ANNs for its diverse applications [47].

Figure 3 [48] shows a simple ANN structure. ANNs use an activation function with 
a combination function of input variables and input values. The input layer takes input 
values for its training, and the hidden layer is located between the input layer and the 
output layer. Training is performed mainly in the hidden layer and tries to find the opti-
mum weight value set labeled on each edge. A sigmoid function is used on each node to 
calculate each node’s output after summing its inputs.

A recurrent neural network (RNN) has connections between nodes to form a directed 
cycle. Unlike normal feedforward networks, RNN can also use feedback systems [49]. 
RNN has shown outstanding performance in various natural-language processing tasks. 
The basic idea of RNN comes from the mechanism of sequential labeling. Normal ANNs 

(4)p =
E[xy]√[
x2
]
E
[
y2
] =

wT
x Cxywy√

wT
x Cxxwxw2

yCyywy
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assume independence between their inputs and outputs. RNN applies the same tasks to 
every component of the sequence, and the output is affected by the previous calculation 
results. In other words, the network is designed so that input xt of time t and the previ-
ous hidden layer’s output of time t − 1 can contribute to the hidden layer’s output of time 
t. Although RNN can be applied to any sequence length, shorter sequences show better 
performance [50].

We apply an RNN algorithm by using an RNN tutorial [51]. RNN has two types: the 
Elman-type network [52] and the Jordan-type network [53]. The Elman-type network 
adds a context layer to the normal RNN and feeds back the hidden layer’s output to 
the context layer’s input. This network feeds back the output value to the hidden layer 
rather than the input layer. The hidden layer of this network plays the same role as the 
input layer of a normal RNN. Figure 4 shows the basic structure of the Elman-type 
RNN. The output of the hidden layer, a sigmoid function of each node, and the output 
value of this network are explained below:

Fig. 3 Simple neural network. This network takes x values as its inputs and makes o values as its outputs. This 
network is composed of an input layer, a hidden layer, and an output layer

Fig. 4 Elman‑type network. Output of hidden layer goes to input of context layer
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In (5), which shows the output of the hidden node, U is a matrix of raw input values 
and current hidden nodes, and V is a matrix of the context node and the previous hid-
den node. Expression (6) shows a sigmoid function, and (7) shows the output value.

The Jordan-type network shown in Fig. 5 is very similar to the Elman-type network, 
except that the feedback is coming from the output layer rather than the hidden layer. 
The hidden layer’s output is calculated by the following expression:

We use negative log-likelihood as a loss function. The gradient descent uses the 
mini-batch gradient descent method. This method does not apply the gradient descent 
method to each data, but calculates the gradient by batch and reflects it to the next 
learning. We apply a mini-batch gradient descent to one batch in one sentence. Because 
the length of the sentences in the corpus are all different, this method works well.

(5)h(t) = f (Ux(t)+ Vh(t − 1))

(6)f(x) =
1

1+ e−x

(7)yt = g(Wh(t))

(8)h(t) = f
(
Ux(t)+ Vy(t − 1)

)

Fig. 5 Jordan‑type network. Feedback starts from output layer, not the hidden layer

Table 1 N-Gram description

Feature Description

Unigram wi−2, wi−1, wi, wi+1, wi+2

Bigram wi−2|wi−1, wi−1|wi, wi|wi+1, wi+1|wi+2

Trigram wi−2|wi−1|wi, wi−1|wi|wi+1, wi|wi+1|wi+2
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Feature

This study uses n-Gram features for a baseline experiment of the conditional random 
fields. Recurrent neural networks use raw word sequences for their inputs. Table  1 
lists the unigrams, bigrams, and trigrams used in this study.

For the sentence, “Tumor and serum beta-2-microglobulin expression in women 
with breast cancer”, let us assume that  wi is “breast”. Then,  wi−2,  wi−1,  wi+1 and  wi+2 are 
“women”, “with”, “cancer” and “.”, respectively.  wi−1|wi of the bigram is “with|breast”, 
and  wi−2|wi−1|wi is “with|breast|cancer”.

Results and discussion
We use a BioNLP/NLPBA 2004 shared corpus for the experiment. In this experiment, 
we compare the performance of RNN and CRFs with word embedding. For the base-
line, only n-Gram (unigram, bigram, trigram) features of CRFs are utilized. The Jor-
dan-type RNN and Elman-type RNN are compared, and at the same time, Word2Vec, 
GloVe, and CCA of the CRFs are also compared. For performance evaluation, we set 
the word embedding dimension to 100, the window size to 5, the number of hidden 
units to 100, and the number of hidden layers to 1.

We use the F1 score as the performance measurement. The F1 score is calculated by 
the following expression:

where the precision is a ratio of true positives from the positive side, and recall is a ratio 
of true positives from the true side.

In this experiment, the Jordan-type RNN shows an F1 value of 60.75%, and the 
Elman-type RNN has an F1 value of 58.80%. For the CRFs’ performance measure-
ment, we apply various dimensions of word embedding (10, 30, 50, 80, 100), window 
sizes (3, 5, 7, 9, 11), and the minimum frequency (3).

(9)F1 score =
2 ∗ precision*recall

precision+ recall
,

Fig. 6 Experimental results of Word2Vec in CRFs. X‑axis indicates window size, and Y‑axis indicates 
performance. Five lines correspond to five dimension sizes
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Figures 6, 7 and 8 show the experimental results of each word embedding method 
with various dimensions and window sizes.

Word2Vec shows the highest performance when the dimension size is 80 and the 
window size is 5. However, the same line shows the lowest performance when the 
window size is changed to 7. In Fig. 6, the line with dimension size of 50 shows a rela-
tively stable and high performance for all window sizes. Word2Vec does not seem to 
need high-dimensional representation, and lower-dimensional representations show 
an increase in performance proportional to the window size. Higher-dimensional rep-
resentations do not exhibit particular characteristics in Word2Vec.

In GloVe, a representation of 50 dimensions and 11 window sizes shows the highest 
performance. Like Word2Vec, GloVe also shows relatively stable and high performance 
when its size of dimension is 50. Of course, the 30-dimensional representation also 
shows a good result.

Figure 8 shows that lower-dimensional cases have relatively higher performance than 
higher-dimensional cases when CCA is used for word embedding.

Fig. 7 Experimental results of Global Vector in CRFs. The X‑axis indicates window size, and Y‑axis indicates 
performance. Five lines correspond to five dimension sizes

Fig. 8 Experimental results of CCA in CRFs. X‑axis indicates window size, and Y‑axis indicates performance. 
Five lines correspond to five dimension sizes
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Table 2 lists the results compared with well-known former research results. Our sys-
tem shows an F1 score of up to 72.82%, which is the highest of all the results in Table 2, 
when CRFs of Word2Vec are used. Zhou et  al. [54] used HMM and SVM to achieve 
72.55% for the BioNLP/NLPBA shared task 2004, and their achievement has been the 
highest until now. At the same competition, Song et al. achieved 66.28% by using HMM 
and CRF. Ponomareva et al. [55] used HMM and achieved 65.7%, and Saha et al. [29] 
used Maximum Entropy to obtain an F1 score of 67.41%. Findel et al. [56], Settles [57], 
and Tsai et  al. [58] reported scores of 69.8% to 70.2%, which could not overcome the 
results from Zhou and Su. Our system shows a maximum score of 72.82%, which is 
approximately 0.3% points higher than Zhou and Su’s scores when using Word2Vec-
based CRFs. Word embedding is also advantageous in that it is automatically con-
structed through the unsupervised learning, while the existing methodology uses data 
that is directly labeled by a person. Our approach does not require any domain knowl-
edge, a dictionary, or other outside resources, but we were able to show the highest per-
formance of all tested methods.

Conclusion
Bio-NER has more difficulties than normal NER because technical terms in biomedical 
texts have unusual characteristics. We compared various machine-learning approaches 
based on CRFs and RNN. In this research, RNN exhibited a lower performance than 
CRFs. The disadvantage of RNN is that it does not remember old information. Also, 
since we did not find the optimal activation function and initialization method, RNN has 
lower performance than CRFs. We use a single hidden layer. However, RNN could be a 
very useful method in Bio-NER because of its unsupervised learning property. From an 
experiment, our method shows the highest performance of all the other experiments.

For the future study, our research will proceed in three directions. First, we will design 
a more optimized deep artificial neural network structure for the Bio-NER. Because we 
had limited knowledge and experience in deep artificial neural network, this study used 
a relatively simple model. Therefore, we will develop deep artificial neural network spe-
cialized on this problem based on accumulated knowledge and technology. Second, we 

Table 2 Performance comparison by using BioNLP/NLPBA 2004 corpus

System Methodology F1 score (%)

Our system CRF

 Base line 71.09

 Word2vec 72.82

 Glove 72.74

 CCA 72.73

RNN

 Jordan 60.75

 Elman 58.80

Zhou and Su [54] HMM, SVM 72.55

Song et al. [9] SVM, CRF 66.28

Ponomareva et al. [55] HMM 65.7

Saha et al. [29] Maximum entropy 67.41
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would like to develop unsupervised learning methods for the Bio-NER. The lack of an 
annotated corpus is a barrier to new research. Although it has unsupervised learning 
properties, RNN requires an annotated corpus. We should develop fully- or semi-super-
vised learning methods for Bio-NER. Third, various linguistic resources for domain 
knowledge should be built for performance development. Gazetteers, word embedding 
methods, and other resources should be developed.

Abbreviation
NER: named entity recognition; RNN: recurrent neural network; CRF: conditional random fields; CCA : canonical correla‑
tion analysis; GloVe: global vector; SVM: support vector machines; HMM: Hidden Markov Models; MEMM: Maximum 
Entropy Markov Models; NLP: natural language processing.
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