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Background
Ovarian cancer is the eighth most common cancer and has the fifth fatality-to-case ratio 
in United States. It is also undetected until it goes at late stage. According to a statis-
tics of Centers for Disease Control and Prevention (CDC) in 2012, about 20 thousands 
women in United States were diagnosed with ovarian cancer, and about 75% died from 
it. In addition, when ovarian cancer is found in its early stage, the probability of 5-year 
survival yields up to 92%. However the early detection rate is only 19%. It is clarify that 
the early detection of ovarian cancer improves the clinical output [1, 2].

For early diagnosis, many researches have been performed: finding multiple bio-
markers [3], early detection using menopausal information [4], and finding optimal 
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combination using machine learning algorithms [3, 5]. Specifically, many of them have 
been developed for distinguishing between benign and cancer [3–7].

One of the most popular screening test for ovarian cancer is CA-125 blood test. 
CA-125 is a protein in the blood. The level of CA-125 is high from many women with 
ovarian cancer. CA-125 is also useful for guiding treatment to patients with ovarian can-
cer, since a high level of CA-125 decrease if treatment is working well [8–10].

However, checking CA-125 level has led to misdiagnosis of ovarian cancer. The prob-
lem with using CA-125 for screening test for ovarian cancer is that common conditions 
other than cancer can also cause the level of CA-125 high. In addition, someone who has 
ovarian cancer does not have high level of CA-125.

For detecting ovarian cancer, in previous studies, we shows the multiple biomarker has 
high performance rather than single biomarker [3–7].

In this paper, the goal of our experiment is to find alternative biomarker combina-
tion which shows high diagnosis performance, using a variety of machine learning tech-
niques instead of CA-125. We perform two major tasks. Each task describes as follows:

1. We search the optimal marker combinations from 16 serum biomarker. Using 4 dif-
ferent algorithms, we select the best combination from each combination set.

2. We compare the methods, which is widely used for classification, of optimal combi-
nation for distinguishing normal and cancer samples.

Methods
Serum samples were obtained from 101 patients with ovarian cancer and from 92 
healthy women provided through Hallym University Chuncheon Sacred Heart Hospital. 
To validate our approach, we do not care about cancer stage, and the state of menopause 
which is important factor associated with the risk of malignancy [11, 12]. The 16 serum 
biomarkers, which is commonly discussed for ovarian cancer researches, are used to our 
experiment [12–14].

To select optimal marker combination which can diagnose cancer and normal data, 
we use four algorithms: random forest (RF) [15], genetic algorithm (GA) [16], T-test and 
logistic regression (LR) [17]. The size of combination is set from 2 to 4 for reducing a 
time consuming. The top marker combinations for each algorithm are computed to five-
fold cross-validation. We repeated it 1000 times in order to decrease the deviation of 
the result. The final best marker combinations are selected to average receiver operating 
characteristic (ROC) Area Under the Curve (AUC). ROC AUC is described on the next 
subsection in a detail.

With the selected optimal marker sets, for each combination size, we apply the three 
method, which is commonly used for classification: linear discriminant analysis (LDA) 
[18], K-nearest neighbor (KNN) [19] and logistic regression (LR). We compare the accu-
racy for classification between normal and cancer data.

Receiver operating characteristic area under the curve (ROC AUC)

In order to assess the test performance, sensitivity and specificity is commonly used 
and through two indicators, we can find how well a classifier can distinguish between 
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patients and healthy people. When a certain diagnosis system is used, sensitivity is a 
measure that how well the system distinguish the samples, which is associated with con-
dition. Specificity is a measure that how well the system distinguish the samples, which 
does not have associated condition. In addition, ROC curve is widely used to determine 
the accuracy of diagnosis [20, 21].

ROC is a plot that illustrates the performance of a binary classifier. In a plot, the x-axis 
indicates 1-specificity and y-axis presents sensitivity. The accuracy of diagnosis is meas-
ured to AUC. Figure  1 shows the ROC graph for a settings of the decision criterion. 
According to AUC value, the quality of test is classified. The numbers on the curve pre-
sent the degree of accuracy as follows; no discrimination (AUC < 0.5), fairly acceptable 
(0.5 < AUC < 0.7), excellent (0.7 < AUC < 0.9) and outstanding (0.9 < AUC).

Results
In this section, we describe the result of each tasks: Marker selection and classification. 
For marker selection, we shows the performance of selected marker sets and analysis 
AUC values of combinations from single marker AUC values. For classification, we com-
pare the three different classification methods.

Marker selection results

Table 1 shows the optimal combination lists for the size of combination. The first col-
umn in Table 1 indicates algorithm for marker selection. Each describes as follows: GA is 
genetic algorithm, RF is random forest and LR is logistic regression. The second column 
presents the number of combinations. The listed combinations which ranges from 2 to 4, 
are selected to average AUC. Each combinations are chosen the highest AUC value from 
all possible combinations with the number of combination. The bold presents the high-
est AUC value in each algorithm.

The GA and RF yields 0.9 AUC value and 0.98 AUC value. With slight improvement, 
T-Test and LR perform 0.99 AUC value. In four results, GA have the lowest AUC value 
of 0.86 on 2 combination. The lowest performance among high score in each algorithm 
also perform in GA.

Fig. 1 Receiver operating characteristic area under the curve (ROC AUC). The number on each curve 
indicates the measure of diagnosis accuracy



Page 132 of 135Song et al. BioMed Eng OnLine 2018, 17(Suppl 2):152

Except RF, the rest of algorithm shows the best AUC value to 4 combinations. How-
ever, there are no major differentiation of AUC value between 3 and 4 marker combina-
tions. Intuitively, we find that it is not necessary to use 4 marker combination.

Table 2 describes top 10 single markers sorted to AUC value. TTR, HE4-ELISA and 
Prolactin which have AUC value bigger than 0.9, are well captured to important bio-
marker when selecting the marker combination, except GA. We analysis that GA shows 
the low AUC compared to the rest of combinations, since combined markers have AUC 
value which is even less than 0.8. Figure 2 shows ROC curve for the best 5 single marker.

Classification

Table  3 shows the accuracy of classifications for each marker combination. In marker 
sets selected by GA, 2 combination shows the best performance of 0.88 using KNN. 
The 3 combination performs the lowest accuracy of 0.81 in overall results. In marker 
sets chosen by RF, 3 and 4 combination yield almost same accuracy using LR. The high 
score of 2 combination and 3, 4 combination display a significant gap with 0.12. Marker 
sets chosen by T-Test also shows totally same performance of 0.95 using LR. In optimal 
marker combinations using LR, a classifier using LR yields 0.95 accuracy, which is same 

Table 1 The AUC value for each combinations for each feature selection algorithm

Algorithm Size Combinations AUC 

GA 2 ApoCIII, TTR 0.86

3 IL‑6, CEA, OPN 0.90

4 MIF, ApoAI, OPN, IL‑6 0.90

RF 2 CA125, HE4‑ELISA 0.92

3 Prolactin, TTR, HE4‑ELISA 0.98

4 TTR, Prolactin, CA125, HE4‑ELISA 0.98

T‑Test 2 TTR, ApoCIII 0.95

3 TTR, ApoCIII, Prolactin 0.98

4 TTR, ApoCIII, Prolactin, OPN 0.99

LR 2 Prolactin, TTR 0.98

3 ApoCIII, HE4‑ELISA, Prolactin 0.99

4 HE4‑ELISA, PDGF‑AA, Prolactin, TTR 0.99

Table 2 Top 10 AUC value of single marker computed to logistic regression

Marker AUC 

TTR 0.94

HE4‑ELISA 0.92

Prolactin 0.91

CA125 0.88

ApoCIII 0.84

MIF 0.80

OPN 0.78

PDGF‑AA 0.76

IL‑6 0.73

CRP 0.71
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as T-Test. However, a classifier using logistic regression shows the stable performance 
across all combination size.

Not surprisingly, the GA algorithm which has a lowest AUC value for marker selec-
tion, performs the lowest accuracy of 0.80 for 3 combination. All marker selection algo-
rithm except GA, shows better performance for the 3 and 4 combinations rather than 
2 combinations. The performance between 2 combination and 4 combination for RF, 
T-Test and LR are about 0.11, 0.6 and 0.2 apart, respectively. The classifier using logistic 
regression shows the outstanding performance in over 70% of marker sets. We also find 
that TTR and Prolactin contains in combination which shows the good performance.

Fig. 2 ROC curve for the best five single marker

Table 3 Accuracy of three classification method for each marker combination

Algorithm Combinations LDA KNN LR

GA ApoCIII, TTR 0.88 0.88 0.87

IL‑6, CEA, OPN 0.67 0.79 0.81

MIF, APoAI, OPN, IL‑6 0.74 0.86 0.83

RF CA125, HE4‑ELISA 0.69 0.83 0.78

Prolactin, TTR, HE4‑ELISA 0.91 0.93 0.95

TTR, Prolactin, CA125, HE4‑ELISA 0.92 0.91 0.94

T‑Test TTR, ApoCIII 0.88 0.88 0.87

TTR, ApoCIII, Prolactin 0.93 0.93 0.95

TTR, ApoCIII, Prolactin, OPN 0.93 0.93 0.95

LR Prolactin, TTR 0.91 0.92 0.93

ApoCIII, HE4‑ELISA, Prolactin 0.93 0.94 0.93

HE4‑ELISA, PDGF‑AA, Prolactin, TTR 0.92 0.94 0.95
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Discussion
In this paper, we present the exploration for the marker selection and classification 
between cancer and normal samples, using machine learning algorithms. For marker 
selection, we find all methods except genetic algorithm, can capture in combin-
ing marker sets a marker, which has a high AUC value. Among them, logistic regres-
sion shows high performance for all combinations in general. For classification, logistic 
regression also presents the highest accuracy. Logistic regression also shows the stable 
accuracy on classification. It indicates that logistic regression can capture optimal com-
bination and classify two difference class well. The experimental results shows that logis-
tic regression is an outstanding algorithm for both problem.

Conclusions
We find the combination which contains TTR and Prolactin gives high performance for 
cancer detection. With the stability and accuracy, we can find Her-ELISA, PDGF-AA, 
Prolactin and TTR is the best biomarkers for classifying cancer samples from healthy to 
cancer data. Early detection of ovarian cancer can reduce high mortality rates. Finding a 
combination of multiple biomarkers for diagnostic tests with high sensitivity and speci-
ficity is very important. For future works, we can apply our approach to urine samples or 
can be considerer to highly influential factor for detecting ovarian cancer, such as age, 
the stage of cancer and the state of menopause.
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