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Abstract 

Background: Simulation of a left ventricle has become a critical facet of evaluating 
therapies and operations that interact with cardiac performance. The ability to simulate 
a wide range of possible conditions, changes in cardiac performance, and production 
of nuisances at transition points enables evaluation of precision medicine concepts 
that are designed to function through this spectrum. Ventricle models have historically 
been based on biomechanical analysis, with model architectures constituted of con-
tinuous states and not conducive to deterministic processing. Producing a finite-state 
machine governance of a left ventricle model would enable a broad range of applica-
tions: physiological controller development, experimental left ventricle control, and 
high throughput simulations of left ventricle function.

Methods: A method for simulating left ventricular pressure-volume control utiliz-
ing a preload, afterload, and contractility sensitive computational model is shown. 
This approach uses a logic-based conditional finite state machine based on the four 
pressure-volume phases that describe left ventricular function. This was executed with 
a physical system hydraulic model using MathWorks’  Simulink® and Stateflow tools.

Results: The approach developed is capable of simulating changes in preload, 
afterload, and contractility in time based on a patient’s preload analysis. Six pressure–
volume loop simulations are presented to include a base-line, preload change only, 
afterload change only, contractility change only, a clinical control, and heart failure 
with normal ejection fraction. All simulations produced an error of less than 1 mmHg 
and 1 mL of the absolute difference between the desired and simulated pressure and 
volume set points. The acceptable performance of the fixed-timestep architecture 
in the finite state machine allows for deployment to deterministic systems, such as 
experimental systems for validation.

Conclusions: The proposed approach allows for personalized data, revealed through 
an individualized clinical pressure–volume analysis, to be simulated in silico. The 
computational model architecture enables this control structure to be executed on 
deterministic systems that govern experimental left ventricles. This provides a mock 
circulatory system with the ability to investigate the pathophysiology for a specific 
individual by replicating the exact pressure–volume relationship defined by their left 
ventricular functionality; as well as perform predictive analysis regarding changes in 
preload, afterload, and contractility in time.
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Introduction
Every year since 1919, cardiovascular disease (CVD) accounted for more deaths than 
any other major cause of death in the United States [1]. Based on data collected by the 
National Health and Nutrition Examination Survey (NHANES), CVD was listed as 
the underlying cause of death in 30.8% of all deaths in 2014, accounting for approxi-
mately 1 of every 3 deaths in the U.S., while CVD attributed to 53.8% of all deaths in 
that year. Additionally, data accumulated from 2011 to 2014 revealed that approxi-
mately 92.1 million American adults currently have one or more types of CVD and 
that by 2030, projections estimate that 43.9% of the U.S. population will have some 
form of this disease.

Research has revealed that CVD is a leading contributor to Congestive Heart Failure 
(CHF) [2]. CHF is a medical condition that occurs when the heart is incapable of meet-
ing the demands necessary for maintaining an adequate amount of blood flow to the 
body, resulting in ankle swelling, breathlessness, fatigue, and potentially death [2]. In 
2012, the total cost for CHF alone was estimated to be $30.7 billion with 68% attributed 
to direct medical costs. Furthermore, predictions indicate that by 2030, the total cost of 
CHF will increase almost 127% to an estimated $69.7 billion [1]. This prediction is based 
on data that revealed that one-third of the U.S. adult population has the predisposing 
conditions for CHF. With research revealing that 50% of people who develop CHF will 
die within 5 years of being diagnosed [1, 3], the need to evaluate treatments for this wid-
ening patient population is of growing importance.

One treatment alternative for patients with late-stage CHF is the use of a ventricular 
assist device (VAD) to directly assist with the blood flow demands of the circulatory sys-
tem [2]. Implantable VADs have proven their potential as a quickly implemented solu-
tion for bridge to recovery, bridge to transplant, and destination therapy [4]. Given the 
severity of CHF, and the impending need for supplemental support from these cardiac 
assist devices, effective methods of identifying the recipient cardiovascular profile and 
matching that to the operation of the VAD is critical to the success of the intervention.

The effectiveness of CHF diagnosis and treatment therapy depends on an accurate 
and early assessment of the underlying pathophysiology attributed to a specific type of 
CVD, typically by means of analyzing ventricular functionality [2, 5, 6]. Clinical applica-
tion of non-invasive cardiac imaging in the management of CHF patients with systolic 
and/or diastolic dysfunction has become the standard with the use of procedures such 
as echocardiography [7–10]. Echocardiography is a non-invasive ultrasound procedure 
used to assess the heart’s structures and functionality, to include the left ventricular ejec-
tion fraction  (LVEF), left ventricular end-diastolic volume  (LVEDV), and left ventricular 
end-systolic volume  (LVESV). Three-dimensional echocardiography of adequate quality 
has been shown to improve the quantification of left ventricular (LV) volumes and  LVEF, 
as well as provide data with better accuracy when compared with values obtained from 
cardiac magnetic resonance imaging [2, 11]. At present, echocardiography has been 
shown to be the most accessible technology capable of diagnosing diastolic dysfunction; 
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therefore, a comprehensive echocardiography examination incorporating all relevant 
two-dimensional and Doppler data is recommended [2]. Doppler techniques allow for 
the calculation of hemodynamic variations, such as stroke volume (SV) and cardiac out-
put (CO), based on the velocity time integral through the LV outflow tract area.

A left ventricular pressure–volume (LV-PV) analysis, employing hemodynamic prin-
ciples, has effectively performed as a basis for understanding cardiac physiology and 
pathophysiology for decades [12, 13]. A LV-PV analysis has been primarily restricted to 
clinical investigations in a research environment; therefore, it has not been extensively 
used due to the invasive nature of the procedure [14, 15]. A broader predictive applica-
tion for detecting and simulating CHF is more easily attainable with the development of 
single-beat methodologies that only rely on data collected through non-invasive tech-
niques. These techniques include echocardiographic measurements of the left ventric-
ular volume (LVV), Doppler data, the peripheral estimates of left ventricular pressure 
(LVP), and the timing of the cardiac cycle [16–21].

Utilizing data obtained non-invasively, population and patient-specific investiga-
tions can be conducted by simulating the LV-PV relationship obtained through the PV 
analysis by means of a mock circulatory system (MCS) [22, 23]. An MCS is a mechani-
cal representation of the human circulatory system, essential for in vitro evaluation of 
VADs, as well as other cardiac assist technologies [24–29]. An MCS effectively simulates 
the circulatory system by replicating specific cardiovascular conditions, primarily pres-
sure [mmHg] and flow rate [mL/s], in an integrated bench-top hydraulic circuit. Utiliz-
ing these hydraulic cardiovascular simulators and data obtained through a clinical PV 
analysis, the controls that govern the LV portion of the MCS could be driven to produce 
the PV relationship of: a CVD profile, specific population, or patient [30]. With research 
revealing the increasing need for these medical devices [31], a comprehensive in vitro 
analysis could be completed to assure a particular cardiac assist device treatment will be 
effective beforehand. The ability of an MCS to be able to replicate the exact PV relation-
ship that defines the pathophysiology for a specific individual allows for a robust in vitro 
analysis to be completed, and a “patient specific diagnosis” created, ensuring a higher 
standard of patient care [32, 33].

The following is how this manuscript is presented. “Background” section summaries 
the principal theories governing the modeling of the PV relationship, its background in 
simulating cardiovascular hemodynamics within an MCS, and how a PV loop control-
ler should perform for subsequent in vitro testing. “Method” section presents the pro-
posed methodology for developing LV-PV control functionality is presented and utilizes 
a logic-based conditional finite state machine (FSM) and a physical system modeling 
approach, then the experimental results are presented in “Results” section. “Discus-
sion” section concludes with a discussion regarding the results of this investigation, fol-
lowed by “Conclusion” section which outlines the limitations of the approach and future 
investigations.

Background
Pressure–volume relationship

The efficacy of the PV relationship, often referred to as a PV loop, to describe and quan-
tify the fundamental mechanical properties of the LV was first demonstrated in 1895 by 
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Otto Frank [34]. Frank represented the cardiac cycle of ventricular contraction as a loop 
on a plane defined by ventricular pressure on the vertical axis and ventricular volume 
on the horizontal. By late twentieth century, the PV analysis was considered the gold 
standard for assessing ventricular properties, primarily due to the researched conducted 
by Suga and Sagawa [35–37]. Yet, this approach has failed to become the clinical stand-
ard for evaluating LV functionality due to the invasive nature of the procedure [14, 15]. 
However, due to recent advances single-beat methodologies, the practical application 
for PV analysis is expanding [18–20]. Most recently are the efforts published in 2018 by 
Davidson et al. with regard to the development of a beat-by-beat method for estimat-
ing the left ventricular PV relationship using inputs that are clinically accessible in an 
intensive care unit (ICU) setting and are supported by a brief echocardiograph evalua-
tion [20].

There has been extensive clinical and computational research into understanding the 
PV relationship, which is presented in Fig. 1 [12, 21, 30, 38]. However, for the purpose 
of repeatability within a MCS, the culmination of this knowledge can be summarized 
by simplifying the performance of the LV through three principal factors: preload, after-
load, and contractility [24, 25]. These have significant implications on VAD performance 
[39].

A schematic of the LV pressure–volume loop in a normal heart is presented in Fig. 1a. 
In Phase I, ventricular filling occurs with only a small increase in pressure and a large 
increase in volume, guided along the EDPVR curve. Phase I can additionally be divided 
in two sub-phases, rapid filling governed by elastance of the ventricle and atrial systole 
that brings the ventricle into optimal preload for contraction. Phase II constitutes the 
first segment of systole called isovolumetric contraction. Phase III begins with the open-
ing of the aortic valve; ejection initiates and LV volume falls as LV pressure continues 
to increase. Phase III can be divided into two sub-phases: rapid ejection and reduced 
ejection. Isovolumetric relaxation begins after the closure of the aortic valve constituting 
Phase IV.

Ventricular preload refers to the amount of passive tension or stretch exerted on the 
ventricular walls (i.e. intraventricular pressure) just prior to the systolic contraction [14, 
29]. This load determines the end-diastolic sarcomere length and thus the force of con-
traction. Because the true sarcomere length is not easily measured clinically, preload 
is typically measured by ventricular pressure and volume at the point immediately 
preceding isometric ventricular contraction. This correlation is described through the 
end-systolic pressure–volume relationship (ESPVR); as well as through the end-dias-
tolic pressure–volume relationship (EDPVR). The effects of increasing preload on the 
PV relationship is displayed in Fig.  1b; reduced isovolumetric contraction period and 
increased stroke volume.

Afterload is defined as the forces opposing ventricular ejection [14]. Effective arte-
rial elastance  (Ea) is a lumped measure of total arterial load that incorporates the mean 
resistance with the pulsatile factors that vary directly with heart rate, systemic vascu-
lar resistance, and relates inversely with total arterial compliance.  Ea is directly defined 
as the ratio of left ventricular end-systolic pressure  (LVESP) to SV. In practice, another 
measure of afterload is the  LVESP at the moment ventricular pressure begins to decrease 
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to less than systemic arterial pressure. The effects of increasing afterload are presented 
in Fig. 1c; increase in peak systolic pressure and decrease in stroke volume.

A acceptable clinical index of contractility that is independent of preload and afterload 
has not been completely defined [29]. In non-pathological conditions, contractility is 
best described by the pressure–volume point when the aortic valve closes. Contractility 
is typically measured by the slope of the ESPVR line, known as  Ees, which is calculated 
as �P

�V  [38]. An additional index of contractility is dP/dtmax which is the derivative of the 
maximum rate of ventricular pressure rise during the isovolumetric period. The effects 
of increasing contractility on the PV relationship is revealed in Fig. 1d; revealing the abil-
ity for the stroke volume to accommodate with increasing peak systolic pressure.

For a given ventricular state, there is not just a single Frank-Starling curve, rather there 
is a set or family of curves [29]. Each curve is determined by the driving conditions of 
preload, afterload, and inotropic state (contractility) of the heart. While deviations in 
venous return can cause a ventricle to move along a single Frank-Starling curve, changes 

Fig. 1 Left Ventricular Pressure–Volume Relationship (Stouffer [30]). a Schematic of LV pressure–volume loop 
in a normal heart. In Phase I, preceding the opening of the mitral valve, ventricular filling occurs with only a 
small increase in pressure and a large increase in volume, guided along the EDPVR curve. Phase II constitutes 
the first segment of systole called isovolumetric contraction. Phase III begins with the opening of the aortic 
valve; ejection initiates and LV volume falls as LV pressure continues to increase. Isovolumetric relaxation 
begins after the closure of the aortic valve constituting Phase IV. b Effects of increasing preload on a LV-PV 
loop with afterload and contractility remaining constant. Loop 2 has an increased preload compared to 
loop 1 by rolling the arterial elastance  (Ea) line parallel while keeping the slope  (Ea) constant, resulting in an 
increase in SV. c Effects of increasing afterload on a LV-PV loop with preload and contractility held constant. 
This consists of increasing the slope of the  Ea line. d Effects of increasing contractility on a LV-PV loop with 
preload and afterload remaining constant. This consists of increasing the slope  (Ees) of the ESPVR line. Note 
that in b, c, and d, loop 2 represents the increase in the respective principle factor, i.e. preload, afterload, and 
contractility, when compared to loop 1
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in the driving conditions can cause the PV relationship of the heart to shift to a different 
Frank-Starling curve. This allows clinicians to diagnose the pathophysiological state of a 
dysfunctional heart by analyzing the PV relationship of a patient.

Additionally, it provides the ability to simulate diseased states: heart failure [14], 
valvular disease [29], or specific cardiovascular dysfunction seen in pediatric heart 
failure [40].

Pressure–volume loop computational modeling

Comprehensive computationally modeling of the LV-PV relationship has been effec-
tively reported since the mid-1980s, following the extensive work completed by Suga 
and Sagawa [34–36]. In 1986, Burkhoff and Sagawa first developed a comprehen-
sive analytical model for predicting ventricular efficiency utilizing Windkessel mod-
eling techniques and an understanding of the PV relationship principles previously 
developed by Suga and Sagawa. With the advancement and routine use of innova-
tive technologies in the early twenty-first century (e.g. conductance catheter, echo-
cardiography), there was a significant increase in research efforts to determine the 
potential clinical applications [12–15], improving predictive strategies [16–19], and 
refining computational models [41–43].

An elastance-based control of an electrical circuit analogue of a closed circulatory 
system with VAD assistance was developed in 2009 by Yu et al. [42]. Their state-feed-
back controller was designed to drive a voice coil actuator to track a reference vol-
ume, and consequently generate the desired ventricular pressure by means of position 
and velocity feedbacks. The controller was tested in silico by modifying the load con-
ditions as well as contractility to produce an accurate preload response of the system. 
The MCS analogue and controller architecture was able to reproduce human circu-
latory functionality ranging from healthy to unhealthy conditions. Additionally, the 
MCS control system developed was able to simulate the cardiac functionality during 
VAD support.

In 2007, Colacino et al. developed a pneumatically-driven mock left ventricle as well 
as a native left ventricle model and connected each model to a numerical analogue of 
a closed circulatory system comprised of systemic circulation, a left atrium, and inlet/
outlet ventricular valves [43]. The purpose of their research was to investigate the dif-
ference between preload and afterload sensitivity of a pneumatic ventricle, when used 
as a fluid actuator in a MCS, when compared to elastance-based ventricle compu-
tational model. Their research concluded that the elastance-based model performed 
more realistically when reproducing specific cardiovascular scenarios and that many 
MCS designs could be considered inadequate, if careful consideration is not made to 
the pumping action of the ventricle. Subsequent in vitro testing utilizing this control 
approach successfully reproduced an elastance mechanism of a natural ventricle by 
mimicking preload and afterload sensitivity [25]. Preload was modified by means of 
manually changing the fluid content of the closed loop hydraulic circuit, while after-
load was varied by increasing or decreasing the systemic arterial resistance within a 
modified Windkessel model.
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Recent advancements in contractility‑based control

An MCS simulates the circulatory system by accurately and precisely replicating spe-
cific cardiovascular hemodynamic variables, mainly the respective pressure (mmHg) 
and flow rate (mL/s) for key circulatory constituents, in an integrated bench-top 
hydraulic circuit [23]. While this human circulatory system model is not an all-inclu-
sive replacement for an in vivo analysis of a cardiac assist device’s design, it is an effec-
tive method of evaluating fundamental design decisions beforehand by determining 
its influence on a patient’s circulatory hemodynamics in a safe and controlled envi-
ronment. Published research efforts typically either involve the development of the 
system [22, 25, 26, 44–46] or the dissemination of the results of a particular in vitro 
investigation [27, 28].

In 2017, Wang et al. was able to replicate the PV relationship with controllable ESPVR 
and EDPRV curves on a personalized MCS based on an elastance function for use in 
the evaluation of VADs [21]. The numerical elastance models were scaled to change 
the slopes of the ESPVR and EDPVR curves to simulate systolic and diastolic dysfunc-
tion. The results of their investigation produced experimental PV loops that are con-
sistent with the respective theoretical loop; however, their model only includes a means 
of controlling preload and contractility with no afterload control. Their model assumes 
afterload remains constant regardless of preload changes; due to the Frank-Starling 
mechanism, the ventricle reached the same  LVESV despite an increase in  LVEDV and 
preload.

Jansen-Park et al., 2015, determined the interactive effects between a simulated patient 
with VAD assistance on an auto-regulated MCS which includes a means of producing 
the Frank-Starling response and baroreflex [24]. In their study, a preload sensitive MCS 
was developed to investigate the interaction between the left ventricle and a VAD. Their 
design was able to simulate the physiological PV relationship for different conditions of 
preload, afterload, ventricular contractility, and heart rate. The Frank-Starling mecha-
nism (preload sensitivity) was modeled by regulating the stroke volume based on the 
measured mean diastolic left atrial pressure, afterload was controlled by modifying sys-
temic vascular resistance by means of an electrically controlled proportional valve, and 
contractility was changed depending on the end diastolic volume. The effects of con-
tractility, afterload, and heart rate on stroke volume were implemented by means of two 
interpolating three-dimensional look-up tables based on experimental data for each 
state of the system. The structure of their MCS was based on the design developed by 
Timms et al. [27]. The results of their investigation revealed a high correlation to pub-
lished clinical literature.

In 2011, Gregory et al. was able to replicate a non-linear Frank-Starling response in a 
MCS by modifying preload by means of opening a hydraulic valve attached to the sys-
temic venous chamber [44]. Their research was able to successfully alter left and right 
ventricular contractility by changing preload to simulate the conditions of mild and 
severe biventricular heart failure. The EDV offset and a sensitivity gain were manually 
adjusted through trial and error to produce an appropriate degree of contractility with a 
fixed ventricular preload. The shape of the ESPVR curve was then modified by decreas-
ing MCS volume until the ventricular volumes approached zero. These efforts, validated 
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using published literature, improved a previously established MCS design developed by 
Timms et al. [28].

These control architectures were primarily hardware determined, rather than soft-
ware-driven. In some cases, reproducibility is inhibited due to the tuning of hemody-
namic conditions by manually adjusting parameters until a desired response is achieved. 
Utilizing a conditional logic-based conditional finite state machine (FSM) and physical 
system modeling control approach, a software-driven controller could be developed to 
respond to explicitly-defined preload, afterload, and contractility events. This would 
enable the regulation of the PV relationship within an MCS’s LV section, without the 
limitation of dedicated hardware.

Logic‑based finite state machine (FSM) and physical system modeling tools

MathWorks’  Simulink® is a model based design tool utilized for multi-domain physical 
system simulation and model-based design [47].  Simulink® provides a graphical user 
interface, an assortment of solver options, and an extensive block library for accurately 
modeling dynamic system performance.  Stateflow® is a toolbox found within  Simulink® 
for constructing combinatorial and sequential decision-based control logic represented 
in state machine and flow chart structure.  Stateflow® offers the ability to create graphi-
cal and tabular representations, such as state transition diagrams and truth tables, which 
can be used to model how a system reacts to time-based conditions and events, as well as 
an external signal. The Simscape™ toolbox, utilized within the  Simulink® environment, 
provides the ability to create models of physical systems that integrate block diagrams 
acknowledged by real-world physical connections. Dynamic models of complex systems, 
such as those with hydraulic and pneumatic actuation, can be generated and controlled 
by assembling fundamental components into a schematic-based modeling diagram. An 
additional toolbox that was utilized in this approach was the Simscape Fluids™ toolbox 
which provides component libraries for modeling and simulating fluid systems. The 
block library for this toolbox includes all the necessary modules to create systems with a 
variety of domain elements, such as hydraulic pumps, fluid reservoirs, valves, and pipes. 
The advantage of using these toolbox libraries is that the blocks are version controlled 
and conformal to regulatory processes that mandate tractable computational modeling 
tools.

Method
Overview of methodology and model architecture

A method for simulating LV-PV control functionality utilizing explicitly defined preload, 
afterload, and contractility is needed for cardiovascular intervention assessment. The 
resulting solution must be capable of being compiled for hardware control of an MCS; 
deterministic processing compatible logic and architecture that would enable runtime set-
point changes. The approach used was a logic-based conditional finite state machine (FSM) 
based on the four PV phases that describe left ventricular functionality developed with a 
physical system hydraulic plant model using  Simulink®. The proposed aggregate model 
consists of three subsystems to include: a preload/afterload/contractility-based setpoint 
calculator (“PV loop critical point determination” section), a FSM controller (“PV loop 
modeling utilizing a state machine control architecture approach” section), and a hydraulic 
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testing system (“Hydraulic testing model utilizing MathWorks’ Simulink® and SimscapeTM 
toolbox” section). The last subsystem acts as the simulated plant to evaluate the control 
architecture that is formed by the first two subsystems. The proposed method allows for 
multiple uses which include the simulation of parameter effects in time and the simulation 
of personalized data, revealed through an individualized clinical PV analysis. This method 
provides the means to be simulated in silico and can be subsequently compiled for control 
of in vitro investigations. This provides an MCS with the ability to investigate the patho-
physiology for a specific individual by replicating the exact PV relationship defined by their 
left ventricular functionality; as well as perform predictive analysis regarding changes in 
preload, afterload, and contractility with time. Of critical importance were the non-isovol-
umetric state behavior: non-linear EDPVR curve, rate-limited ejection, and energy-driven 
model of contraction. This investigation was developed utilizing Matlab R2017b and a Dell 
T7500 Precision workstation with 8.0 gigabytes of RAM, a Dual Core Xeon E5606 proces-
sor, and a Windows 7 64-bit operating system.

PV loop critical point determination

A preload, afterload, and contractility sensitive computational model was developed utiliz-
ing  Simulink® for determining critical points for switching between PV loop states; the four 
phases described in Fig. 1. These critical points are LV End-Systolic Pressure  (LVESP), LV 
End-Systolic Volume  (LVESV), LV End-Diastolic Pressure  (LVEDP), LV End-Diastolic Volume 
 (LVEDV), LV End-Isovolumetric Relaxation Pressure  (LVEIRP), LV End-Isovolumetric Relaxa-
tion Volume  (LVEIRV), LV End-Isovolumetric Contraction Pressure  (LVEICP), and LV End-
Isovolumetric Contraction Volume  (LVEICV). These can be resolved by the three equations 
that describe ESPVR, EDPVR, and  Ea. ESPVR is typically described as a linear equation 
with a positive slope  (Ees) and a negative or positive y-intercept, EDPVR can be defined 
with a third-order polynomial, while  Ea is also linear and has a negative slope with a positive 
y-intercept [13]. Eqs. 1, 2, and 3 define the system of equations used to produce the critical 
points, where ESPVR, EDPVR, and  Ea are Eqs. 1, 2, and 3 respectively.

The point where Eqs. 1 and 3 intercept is  LVESV and  LVESP and solving produces Eqs. 4 
and 5.

Setting Eq. 3 equal to zero yields  LVEDV, producing Eq. 6.

(1)PA = a1VA + a0

(2)PB = b3V
3
B + b2V

2
B + b1VB + b0

(3)PC = c1VC + c0

(4)LVESV =
c0 − a0

a1 − c1

(5)LVESP = a1

(

c0 − a0

a1 − c1

)

+ a0

(6)LVEDV =
−c0

c1



Page 10 of 24King et al. BioMed Eng OnLine           (2019) 18:10 

Substituting Eq. 6 into Eq. 2 produces  LVEDP.

Due to isovolumetric relaxation,

Thus, substituting Eq. 4 into Eq. 2 yields Eq. 8 for  LVEIRP.

Lastly, due to isovolumetric contraction,  LVEICV equals  LVEDV. The final unknown vari-
able value to complete the four-phase cycle is  LVEICP. This is resolved by utilizing an 
offset value based on  LVESP.

Figure  2 presents the computational model and example developed in Simulink™ 
to reflect Eq.  4 through 9; utilized to find the critical points which define the initia-
tion of each phase. Figure 2a reflects the system of equations in this example, capable 
of being solved in real-time. Figure 2b presents a graph of these equations, with criti-
cal points noted. For this example, based on data collected using DataThief on loop 1 
of Fig. 1b: a1 = 2.9745, a0 = − 17.133, b3 = 2.6435E−5, b2 = − 4.0598E−3, b1 = 0.16687, 
b0 = 8.5448, c1 = − 1.7504, and c0 = 185.02. The computational system produces 
 LVEDP = 12.043 mmHg,  LVEDV = 105.71 mL,  LVESP = 110.13 mmHg,  LVESV = 42.785 mL, 
 LVEIRP = 10.323  mmHg, and  LVEIRV = 42.785  mL. Using these parameters, LV Stroke 
Volume  (LVSV) = 62.93  mL, LV Ejection Fraction  (LVEF) = 0.595, LV Stroke Work 
 (LVSW) = 6929.9 mmHg*mL. These values are presented in Tables 1 and 2. These coef-
ficient values can be interchanged with clinical values for individualized PV assessment, 
and can be controlled over time for determining the effects of ventricular functional 
shifts. Utilizing DataThief [48], an open-source program used to extract data from 
images, these coefficients can be obtained from a plot of a patient’s left ventricular pres-
sure–volume analysis of preload change.

PV loop modeling utilizing a state machine control architecture approach

Utilizing Simulink™  Stateflow®, a sequential decision-based control logic represented 
in Mealy machine structure form was developed to control the transition between 
LV-PV phases. A Mealy machine is appropriate because this application requires that 
the output values are determined by both its current state and the current input val-
ues. A state transition diagram is presented in Fig. 3. The Variables in the block are 
parameters that are held constant: Piston cross-sectional area (A), b3, b2, b1, b0, Iso-
volumetric Rate, Isovolumetric Contraction Offset, Systolic Ejection Rate, and Sys-
tolic Ejection Offset. The Inputs are parameters that can change with time and are 

(7)LVEDP = b3

(

−c0

c1

)3

+ b2

(

−c0

c1

)2

+ b1

(

−c0

c1

)

+ b0

(8)LVEIRV = LVESV

(9)LVEIRP = b3

(

c0 − a0

a1 − c1

)3

+ b2

(

c0 − a0

a1 − c1

)2

+ b1

(

c0 − a0

a1 − c1

)

+ b0

(10)LVEICV = LVEDV

(11)LVEICP = LVESP − offset
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 LVESP,  LVESV,  LVEDV,  LVEIRP, time (t), simulated pressure (P), and simulated volume 
(V). The Output is the output variables of the model, which is Force (F) applied to 
the piston in Newtons, Cycle_Count, and Heart_Rate [bpm]. The organization of the 
state transition diagram follows FSM convention: the single curved arrow donates the 
initial time-dependent conditions of the model, the oval shapes are the states of the 
model, the dotted hoop arrows denote the output of the state until a specific condi-
tion is met, and the straight arrows are the transition direction once the condition 
annotated is satisfied. Time (t) is an input variable that discretely changes at the Fun-
damental Sampling Time of the simulation, 1

1024 s . Correspondingly, the FSM operates 
at a sampling rate of 1024 Hz. After every complete cycle, the output variables Cycle_
Count and Heart_Rate are calculated. Heart rate is determined based on the Cycle_
Time that is updated with the current time at the initiation of Phase 1 for every cycle. 
Isovolumetric Rate is defined as the rate of change in the output variable, F, during 
isovolumetric relaxation and contraction. For isovolumetric relaxation, this rate is 
one-third the magnitude when compared to isovolumetric contraction. The Isovolu-
metric Contraction Offset is defined as the value subtracted from the  LVEDV to start 

Fig. 2 Computational model of example PV loop developed in Simulink™ to reflect Eqs. 4, 5, 6, 7, and 8, to 
be utilized to find the critical points which define the initiation of phases 1, 2, and 4. a reflects the system 
of equations in this example, capable of solving in real-time. b presents a graph of these equations with 
critical points annotated. The driving values can be interchanged with clinical values for individualized PV 
assessment, as well as can be controlled over time for determining the effects of preload, afterload, and 
contractility changes. These values are presented in Tables 1 and 2
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Table 1 Input parameters for all simulations presented

Original Preload only Afterload only Contractility 
only

Control HFNEF

Simulation 
time [s]

10 10 10 10 10 10

Isovolumet-
ric rate 
[N*sample/s]

225 225 225 225 500 500

Isovolumetric 
Contraction 
offset [mL]

1 1 1 1 1 1

Systolic ejec-
tion rate 
[N*sample/s]

2 2 2 2 9 9

Systolic ejection 
offset [mmHg]

7 7 7 7 20 20

Resistance 0.03 0.03 0.03 0.03 0.05 0.045

Fluid chamber 
capacity [mL]

517.15 517.15 517.15 517.15 517.15 517.15

Preload pressure 
[psi]

0.01 0.01 0.01 0.01 0.01 0.01

Pressure full 
capacity [psi]

10 10 10 10 6 6.6667

Initial volume of 
fluid [mL]

110.13 110.13 110.13 110.13 210.667 210.48

A1 [2.9745

2.9745

2.7245

2.4745

2.9745 2.9745 2.9745 2.2245 1.2407 0.99741

1.9745

1.7245

1.4745

1.2245]

A0 − 17.133 − 17.133 − 17.133 − 17.133 33.857 72.586

B3 2.6435E−05 2.6435E−05 2.6435E−05 2.6435E−05 2.6928E−07 1.4046E−05

B2 − 4.0598E−03 − 4.0598E−03 − 4.0598E−03 − 4.0598E−03 − 9.3013E−06 − 2.5351E−03

B1 0.16687 0.16687 0.16687 0.16687 0.026968 0.15836

B0 8.5448 8.5448 8.5448 8.5448 2.9515 − 0.010234

C1 [− 1.7504 [− 1.1365 [− 1.4054

− 1.7504 − 1.1365 − 1.4054

− 1.60848 − 1.1365 − 1.4054

− 1.7504 − 1.7504 − 1.46656 − 1.7504 − 1.1992 − 1.3994

− 1.32464 − 1.2619 − 1.3934

− 1.18272 − 1.3247 − 1.3874

− 1.0408] − 1.3874 − 1.3814

− 1.4501] − 1.3754]

C0 [185.02 [185.02 [211.17 [235.76

185.02 185.02 211.17 235.76

190.02 170.02 211.17 235.76

195.02 155.02 200.96 220.7

185.02 200.02 140.02 185.02 190.75 205.63

205.02 125.0 180.53 190.56

210.02 110.02] 170.32 175.5

215.02] 160.11] 160.43]
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the initialization of the Phase 2 state to compensate for the radius of curvature cre-
ated due to transitioning from fill to eject, as well as the means by which end-diastolic 
pressure and volume are clinically quantified. The Systolic Ejection Rate is defined as 

Table 2 Results for  all simulations presented. Note, error was  calculated as  the  absolute 
value of the difference between the desired and simulated  LVESP,  LVESV,  LVEDP, and  LVEDV

Original Preload only Afterload 
only

Contractility only Control HFNEF

LVESP,i [mmHg] 110.13 110.13 110.13 110.13 126.4 140.32

LVESV,i [mL] 42.785 42.785 42.785 42.785 74.589 67.91

LVEDP,i [mmHg] 12.043 12.043 12.043 12.043 9.3686 21.522

LVEDV,i [mL] 105.71 105.71 105.71 105.71 185.81 167.75

LVEIRP,i [mmHg] 10.323 10.323 10.323 10.323 5.023 3.4517

LVEIRV,i [mL] 42.785 42.785 42.785 42.785 74.589 67.91

LVSV,i [mL] 62.93 62.93 62.93 62.93 111.22 99.84

LVEF,i 0.595 0.595 0.595 0.595 0.599 0.595

LVSW,i [mmHg*mL] 6929.9 6929.9 6929.9 6929.9 14058.3 14009.5

Simulated  LVESP,i [mmHg] 110.05 110.05 110.05 110.05 125.8 140.1

Error  LVESP,i [mmHg] 0.08 0.08 0.08 0.08 0.6 0.22

Simulated  LVESV,i [mL] 42.82 42.82 42.82 42.82 73.97 67.19

Error  LVESV,i [mL] 0.035 0.035 0.035 0.035 0.619 0.72

Simulated  LVEDP,i [mmHg] 12.71 12.71 12.71 12.71 9.87 22.23

Error  LVEDP,i [mmHg] 0.667 0.667 0.667 0.667 0.5014 0.708

Simulated  LVEDV,i [mL] 106 106 106 106 185.8 168

Error  LVEDV,i [mL] 0.29 0.29 0.29 0.29 0.01 0.25

LVESP,f [mmHg] 110.13 129.02 77.061 66.075 92.071 109.51

LVESV,f [mL] 42.785 49.134 31.667 67.953 46.92 37.021

LVEDP,f [mmHg] 12.043 16.783 12.044 12.043 6.1782 6.2607

LVEDV,f [mL] 105.71 122.84 105.71 105.702 110.41 116.64

LVEIRP,f [mmHg] 10.323 10.079 10.597 9.432 4.2242 3.0906

LVEIRV,f [mL] 42.785 49.134 31.667 67.953 46.92 37.021

LVSV,f [mL] 62.93 73.71 74.04 37.75 63.49 79.62

LVEF,f 0.595 0.600 0.700 0.357 0.575 0.683

LVSW,f [mmHg*mL] 6929.9 9509.5 5705.8 2494.3 5845.6 8719.1

Simulated  LVESP,f [mmHg] 109.9 128.7 77.84 66.74 92.73 109.9

Error  LVESP,f [mmHg] 0.23 0.32 0.779 0.665 0.659 0.39

Simulated  LVESV,f [mL] 42.95 49.19 31.9 68.18 46.65 37.16

Error  LVESV,f [mL] 0.165 0.056 0.233 0.227 0.27 0.139

Simulated  LVEDP,f [mmHg] 12.73 17.21 12.75 12.75 6.711 6.624
Error  LVEDP,f [mmHg] 0.687 0.427 0.706 0.707 0.5328 0.3633

Simulated  LVEDV,f [mL] 106.1 123.3 106.2 106.2 110.6 116.7

Error  LVEDV,f [mL] 0.39 0.46 0.49 0.498 0.19 0.06

ΔLVSV [mL] 0.00 10.78 11.12 − 25.18 − 47.73 − 20.22

ΔLVEF 0.000 0.005 0.105 − 0.238 − 0.024 0.087

ΔLVSW [mmHg*mL] 0.0 2579.6 − 1224.1 − 4435.7 − 8212.7 − 5290.5

Initial Heart Rate [bpm] 59.36 59.36 59.36 59.36 59.71 63.54

Final Heart Rate [bpm] 59.94 54.52 43.73 79.69 89.43 70.7

Mean Heart Rate [bpm] 59.9 57.62 49.28 65.04 73.7 65.36
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the rate of change in the output variable, F, during systolic ejection. Systolic Ejection 
Offset is defined as the value subtracted from the  LVESP to start the initialization of 
the Phase 3 state, establishing  LVEICP.

Hydraulic testing model utilizing MathWorks’  Simulink® and Simscape™ toolbox

A hydraulic testing model was developed for simulating hydraulic performance as pre-
sented in Fig. 4. This system was designed to replicate the dynamics of a force-based pis-
ton pump model that drives the pressure within a chamber between two opposing check 
valves. This constitutes similar conditions observed within the left ventricular portion 
of an MCS. The  Simulink® and Simscape™ block library provided all the necessary com-
ponents needed to create a hydraulic testing platform capable of simulating this applica-
tion. All modified parameter values are noted in the diagram, while any parameters not 
noted were left standard to the block’s original parameter values. Additionally, for any 
element parameter denoted as ‘Variable’, these values were not left constant for all simu-
lations presented. The values utilized in each simulation, not explicitly declared in Fig. 4, 
are displayed in Table 1.

The hydraulic testing model is a one-input, four-output system. The input is the force 
[N] applied to the piston and is regulated by means of the  Stateflow® control archi-
tecture. The outputs are simulated left ventricular volume (LVV) [mL], simulated left 
ventricular pressure (LVP) [mmHg], simulated aortic pressure (AoP) [mmHg], and left 
atrial pressure (LAP) [mmHg]. LVP and LVV are utilized by the  Stateflow® control logic 
to govern state transitions while AoP and LAP are used for system fidelity and plotting 
purposes. The input force is applied to the Ideal Force Source block element which is 

Fig. 3 State transition diagram of sequential decision-based control logic represented in Mealy machine 
structure form was developed to control the transition between left ventricular PV phases. The Variables, 
parameters that are held constant, are Piston cross-sectional area (A),  b3,  b2,  b1,  b0, Isovolumetric Contraction 
Offset, Systolic Ejection Rate, and Systolic Ejection Offset. The Inputs, parameters that can change with time, 
are LVESP , LVESV , LVEDV , LVEIRP , Time (t), Measured Pressure (P), and Measured Volume (V). The Output, the 
output variable of the model, is Force (F) applied to the piston in Newtons. The single curved arrow donates 
the initial time-dependent conditions of the model. The oval shapes are the five states of the model. The 
dotted hoop arrow denotes the output of the state until a specific condition is met. The straight arrows are 
the transition direction once the condition annotated is satisfied. The sample rate is 1024 Hz
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then directed to an Ideal Translational Motion Sensor which converts an across vari-
able measured between two mechanical translational nodes into a control signal pro-
portional to position. The position signal is then converted into volume [mL] based on 
a piston diameter of 2 inches, thus a cross-sectional area of π × 2.542 = 20.27 cm2. The 
input force [N] is also applied to a Translational Hydro-Mechanical Converter which 
converts hydraulic energy into mechanical energy in the form of translational motion 
of the converter output member. Two check valves (aortic and mitral), positioned in 
opposing directions, regulate the fluid flow direction as seen in the left ventricular sec-
tion of an MCS. A Constant Volume element is positioned between the two check valves 
to simulate a constant volume filling chamber. A Hydraulic Pressure Sensor is positioned 
between the opposing check valves to monitor LVP, then outputs the simulated values to 
the  Stateflow® control logic.

Upstream to the mitral valve is a Hydraulic Reference source block governed by the 
EDPVR curve function with respect to simulated volume, LVV, and increased by an off-
set of 2 mmHg to ensure proper flow through the mitral check valve. This establishes a 
dynamic LAP, the initial pressure condition of the left heart. LAP is outputted from the 
model here for plotting purposes. Downstream to the aortic valve is a Spring-Loaded 
Accumulator block. This block element consists of a preloaded spring and a fluid cham-
ber. As the fluid pressure at the inlet of the accumulator becomes greater than the pre-
scribed preload pressure, fluid enters the accumulator and compresses the spring, 
creating stored hydraulic energy. A decrease in the fluid pressure causes the spring to 
decompress and eject the stored fluid into the system. The spring motion is restricted by 
a hard stop when the fluid volume becomes zero, as well as when the fluid volume is at 
the prescribed capacity of the fluid chamber. These settings are utilized to regulate the 

Fig. 4 Presented is the hydraulic testing model developed utilizing  Simulink® and Simscape™. This system 
was designed to replicate the dynamics of a force-based piston pump model that drives the pressure within 
a chamber between two opposing check valves, conditions reflected within the left ventricular portion of an 
MCS. All block element parameter values that were modified are noted in the diagram, while any parameters 
not noted were left standard to the block’s original parameter values. Additionally, for any element parameter 
denoted as ‘Variable’, these values were not left constant for all simulations presented. The hydraulic testing 
model is a one-input, four-output system. The input is the force [N] applied to the piston and is regulated by 
means of the  Stateflow® control architecture. The outputs are simulated LVV [mL], simulated LVP [mmHg], 
simulated AoP [mmHg], and LAP [mmHg]
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compliance,�V
�P , of the aorta. Immediately following is Hydraulic Pressure Sensor meas-

uring AoP.
Additionally, a needle valve was positioned downstream to the aortic valve to simulate 

the resistance to flow contributed to the branching arteries of the aortic arch, as well as 
provide the capability to simulate the effects of increasing and decreasing resistance with 
time. As was previously stated, all block element parameter values that were modified 
are noted in the diagram presented in Fig. 4, while any parameters not noted were left 
standard to the block’s original parameter values. For any element parameter denoted 
as ‘Variable’, these values were not left constant for all simulations presented. For each 
simulation, these values are displayed in Table 1.

Results
The computational model effectively executed the trials assessing the performance of the 
FSM architecture. Solver settings and simulated fluid type were held constant through 
the analysis. The results presented were produced with the MathWorks’ ode14x (fixed-
step, extrapolation) using a fundamental sampling time of 1

1024 s. This solver was chosen 
to accelerate the simulations and ensure the resultant model is compatible with deter-
ministic hardware systems. Validation of this solver was performed against a variable-
step variable-order solver (ODE15 s) to ensure accuracy. The fluid selected is a glycerol/
water mixture with a fluid density of 1107.1 kg/m3 and a kinematic viscosity of 3.3 cen-
tistoke [49]. These characteristics equate to a fluid temperature of 25 °C or 77 °F.

The input variables utilized for each presented simulation are displayed in Table  1, 
while the results of each simulation are displayed in Table 2. All simulations were per-
formed utilizing discrete changes, evenly incremented between the designated initial 
and final  LVESP,  LVESV,  LVEDP, and  LVEDV over a 10 s total simulation time. Each discrete 
variable is controlled by means of a Lookup Table element block that outputs the modi-
fied variable value, dependent on the specific cycle count number. Note, any variable 
presented as a vector, changes with each cycle count, i.e. [1, 2, 3, · · · , n] where the nth 
value represents the input variable value for the entirety of the corresponding cycle. If a 
simulation has more cycles than input vector elements, then the system continues with a 
zero-order hold of the last value.

The parameters for the Spring-Loaded Accumulator block were developed based on 
a desired LVP response due to aortic compliance. The desired response consisted of 
a physiological correct AoP waveform and a peak-to-peak AoP amplitude of approxi-
mately 40  mmHg, corresponding to a normal range of 120/80. The baseline of this 
response was created at a heart rate of 60 bpm and a compliance of 1. This corresponded 
to an Isovolumetric Rate of 225 N*sample/s, a Resistance value of 0.03, a Fluid Chamber 
Capacity of 517.15 mmHg, a Preload Pressure of 0.01 psi, and a Pressure at Full Capac-
ity of 10.01 psi. Given the relationship 1

R∗C = I , where R is resistance, C is compliance, 
and I is the Impedance, I was held constant for all simulations using I = 33.333. For the 
simulations that required a heart rate beyond 60  bpm, the Isovolumetric Rate had to 
be consequently increased. Utilizing this relationship to sustain a peak-to-peak AoP 
amplitude of 40 mmHg, the Fluid Chamber Capacity and the Preload Pressure was held 
constant, while Resistance and Pressure at Full Capacity was modified to produce the 
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desired heart rate while sustaining aortic performance. Lastly, the Initial Volume of Fluid 
for each simulation was calculated to create an initial LVP corresponding to  LVESP. This 
was done to decrease the amount of initial cycles necessary to achieve simulation stabil-
ity to 1. All values utilized for these parameters are presented in Table 1. Error was cal-
culated as the absolute value of the difference between the desired and simulated  LVESP, 
 LVESV,  LVEDP, and  LVEDV.

A LV-PV loop; LVP, LAP, and AoP versus time; and volume versus time graphs for the 
10  s total simulation time was presented for each simulation. Note, the driving force 
[N] produced by the FSM can be derived from the presented LVP and LVV plots by 
means of Force [N] = Pressure [mmHg]×

[

1 N
cm2 /75.00615mmHg

]

× Piston area
[

cm2
]

 . 

The piston cross-sectional area is π × 2.542 = 20.27  cm2. The piston position [cm]  
can additionally be derived from the volume time plot by means of 
Piston position [cm] = Volume

[

cm3
]

÷ Piston area
[

cm2
]

.

Computational model verification

The LV-PV loop critical point computational model and FSM approach was effective 
at driving the hydraulic testing model to produce the characteristic LV-PV relationship 
as presented in Fig. 5. The computational model parameters are the same as those pre-
sented in Fig. 2. As can be shown from the graph, with known ESPVR, EDPVR, and  Ea 
curves, the computational model successfully provided the correct  LVESP,  LVESV,  LVEDP, 
 LVEDV,  LVEIRP, and  LVEIRV transition points within the state transition logic to produce 
the prescribed LV-PV relationship. Table 1 contains all input parameters and Table 2 pre-
sents the results of all simulations performed. For each LV-PV loop graph, the initial LV 
end-systolic and end-diastolic datasets are denoted with circle points. Figure 5a displays 
the LV-PV loop based on data collected using DataThief on loop 1 of Fig. 1b. The results 
presented reveal an error between the desired and simulated end-systolic and end-dias-
tolic transition points in the datasets of less than 1 mmHg and 1 mL, respectively.

The system takes one cycle to initialize from a rest state before the control topology 
functions consistently for the remainder of the simulation. Additionally, the isovolumet-
ric and systolic offsets and rates, necessary to achieve this response are noted in Table 1. 
Figure  5a also presents the LVP, LAP, and AoP versus time and volume versus time 
graphs for the 10 s total simulation time. The reference force [N] produced by the FSM 
as well as the piston position [cm] can be derived from these time graphs.

Fig. 5 The outlined approach was effective at simulating the characteristic LV-PV relationship. Preload, 
afterload, and contractility changes in time were simulated by means of manipulating the input variables 
of the computational model via evenly-spaced discrete increments that change per cycle count. The LV-PV 
loop, pressure versus time, and volume versus time graphs are presented for each simulation. Displayed in 
a is the derived LV-PV loop, based on the computational model parameters determined using DataThief on 
loop 1 of Fig. 1b and presented in Fig. 2. The parameters for this LV-PV loop constitutes the initial conditions 
for the subsequent simulations. b presents the system correctly responding to a discrete change in preload. 
c reveals the correct afterload change response to the PV relationship. d displays the correct system response 
to contractility change. Each simulation was run for a total simulation time of 10 s and the system takes one 
cycle before it settles. The system functions consistently for every preceding cycle. The heart rate begins at 
approximately 60 bpm for each simulation. The reference force [N] produced by the FSM as well as the piston 
position [cm] can be derived from these time graphs

(See figure on next page.)
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Preload, afterload, and contractility changes in time

As presented in Fig.  5b–d, the outlined approach was effective at simulating preload, 
afterload, and contractility changes in time by means of discretely manipulating the 
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computational model over time. The initial parameters of the computational model are 
the same as those presented in Fig. 5a and presented in Table 1. Presented for each simu-
lation is the LV-PV loop; LVP, LAP, and AoP versus time; and volume versus time graphs 
for the 10 s total simulation time.

As shown in Fig. 5b, the system displays the correct preload change response to the 
PV relationship as displayed in Fig.  1b. The  Ea was initially defined by the equation 
P = −1.7504(V)+ 185.02 . The y-axis intercept was increased from 185.02 mmHg at a 
rate of 5 mmHg per cycle, ending with a y-axis intercept of 215.02 mmHg for the last 
completed cycle. The results report an error of less than 1 mmHg and 1 mL for all tar-
geted pressures and volumes.

Presented in Fig.  5c, the system reveals the correct afterload change response 
to the PV relationship as shown in Fig.  1c.  Ea is initially defined by the equation 
P = −1.7504(V)+ 185.02 . The y-axis intercept was decreased from 185.02 mmHg at a 
rate of 15 mmHg per cycle, ending with a y-axis intercept of 110.02 mmHg for the last 
completed cycle. The slope of the  Ea was decreased from − 1.7504 mmHg/mL conclud-
ing with a slope of − 1.0408 mmHg/mL. This rate of change for the  Ea slope was derived 
from the 15 mmHg per cycle y-axis rate of increase to achieve a consistent x-intercept, 
as shown in Fig. 1c. The results indicate an error of less than 1 mmHg and 1 mL for all 
targeted datasets.

As presented in Fig. 5d, the system displays the correct contractility change response 
to the PV relationship as revealed in Fig.  1d. The ESPVR curve is initially defined by 
the equation P = 2.9745(V)− 17.133 . The slope of the ESPVR curve was decreased from 
2.9745 mmHg/mL, concluding with a slope of 1.2245 mmHg/mL for the last completed 
cycle. The results report an error of less than 1 mmHg and 1 mL for all targeted pres-
sures and volumes.

Clinical assessment of outlined approach

Figure 6 displays the results of simulating Heart Failure with Normal Ejection Fraction 
(HFNEF) and the Control developed by means of a preload reduction analysis con-
ducted in 2008 by Westermann et al. [50] and presented in Fig. 1 of their investigation. 
The ESPVR,  Ea, and EDPVR curve coefficients were developed utilizing DataThief to find 
the associated LVESP,  LVESV,  LVEDP, and  LVEDV for the initial and final loops, as well as 
evaluate the EDPVR curve. These datasets were analyzed over a 10  s total simulation 
time and for each simulation are the LV-PV loop; LVP, LAP, and AoP versus time; and 
volume versus time graphs. Both simulations reflect a mean heart rate [bpm] within the 
range of mean values noted in the reference material. All parameter values are presented 
in Table 1 and the results are in Table 2.

The Control is presented in Fig.  6a. The ESPVR curve was found to be defined 
by the equation P = 1.2407(V)+ 33.857 and the EDPVR curve was found to be 
P = 2.6928E− 7(V )3 +−9.3013E− 6(V )2 + 0.026968(V )+ 2.9515 .  Ea is ini-
tially defined by the equation P = −1.1365(V)+ 211.17 and defined by the equation 
P = −1.4501(V)+ 160.11 for the final cycle. The slope and y-intercept of  Ea was divided 
into evenly-spaced increments to constitute 4 intermediate discrete steps between the 
initial and final cycle parameters. The results indicate an error of less than 1 mmHg and 
1 mL for all targeted datasets.
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HFNEF is presented in Fig.  6b. The ESPVR curve was found to 
be P = 0.99741(V)+ 72.586 and the EDPVR curve was found to be 
P = 1.4046E− 5(V )3 +−2.5351E− 3(V )2 + 0.15836(V )+−0.010234 .  Ea is ini-
tially defined by the equation P = −1.4054(V)+ 235.76 and defined by the equation 
P = −1.3754(V)+ 160.43 for the final cycle. The slope and y-intercept of  Ea was divided 
into evenly-spaced increments to constitute 4 intermediate discrete steps between the 
initial and final cycle parameters. The results produced an error of less than 1 mmHg 
and 1 mL for all targeted datasets.

Fig. 6 The outlined approach was effective at simulating Heart Failure with Normal Ejection Fraction (HFNEF) 
and the Control developed by means of a preload reduction analysis conducted in 2008 by Westermann 
et al. [50] and presented in Fig. 1 of their investigation. The ESPVR,  Ea, and EDPVR curve coefficients were 
developed utilizing DataThief to find the associated  LVESP,  LVESV,  LVEDP, and  LVEDV for the initial and final loops, 
as well as evaluate the EDPVR curve. These datasets were analyzed over a 10 s total simulation time and for 
each simulation is the LV-PV loop; LVP, LAP, and AoP versus time; and volume versus time graphs. a presents 
the Control where the slope and y-intercept of  Ea was divided into evenly-spaced increments to constitute 4 
intermediate discrete steps between the initial and final cycle parameters. HFNEF is presented in b. The slope 
and y-intercept of  Ea was also divided into evenly-spaced increments to constitute 4 intermediate discrete 
steps between the initial and final cycle parameters. For both simulations, the results produced an error of 
less than 1 mmHg and 1 mL for all targeted datasets and reflect a mean heart rate [bpm] within the range 
of mean values noted in the reference material. The reference force [N] produced by the FSM as well as the 
piston position [cm] can be derived from these time graphs



Page 21 of 24King et al. BioMed Eng OnLine           (2019) 18:10 

Discussion
A novel method for simulating LV-PV control functionality utilizing explicitly 
defined preload, afterload, and contractility was delivered for cardiovascular inter-
vention assessment. The proposed aggregate model consists of three subsystems 
which include a preload, afterload, and contractility sensitive computational setpoint 
calculator (“PV loop critical point determination” section), a FSM controller (“PV 
loop modeling utilizing a state machine control architecture approach” section), and 
a hydraulic testing system (“Hydraulic testing model utilizing MathWorks’ Simulink® 
and SimscapeTM toolbox” section). The computation model provides pressure and 
volume setpoints based on the coefficients revealed by best fit equations for ESPVR, 
EDPVR, and  Ea. The acquired setpoints drive the FSM controller to perform the pre-
scribed PV relationship. Then the hydraulic testing system, which reproduces condi-
tions comparable to those found in a left heart MCS with cardiac piston actuation, 
simulates the PV relationship defined by the inputs to the computational model.

The resulting solution was capable of being compiled for hardware control in a 
MCS through the architecture and solver type employed; deterministic processing 
is achievable and runtime setpoint changes can be made.  Simulink® and its supple-
mental product library was effective at developing reproducible clinical conditions, 
which would be determined through an individualized clinical PV analysis, simu-
lated in silico for this work with ability to translate to future in vitro investigations. 
This provides an MCS with the capabilities to investigate the pathophysiology for 
a specific individual, with or without VAD support, by reproducing the precise PV 
relationship defined by their left ventricular functionality.

In silico verification of the LV-PV loop critical point computational model, FSM 
control architecture, and hydraulic testing system support this modeling approach 
as an effective means of simulating the LV-PV relationship. In this work, a novel 
method for simulating the characteristic EDPVR curve and LAP during diastolic fill-
ing was presented. This approach proved to be an effective means of capturing the 
nuisances in those sections of the PV curve that are critical for diastolic operation of 
mechanical circulatory support systems and not found in prior computational mod-
els [15, 41].

As shown in Fig. 5a and Table 2, the computational model was able to create spe-
cific points that the FSM was able to utilize as features governing the transition 
between LV-PV states, given a clinical preload analysis, similar to Fig. 1b. Addition-
ally, the hydraulic testing model was able to produce a suitable degree of realism to 
be able to evaluate the feasibility of this methodology, producing realistic conditions 
to include LAP and AoP. The delivered capabilities enable control of the PV relation-
ship beyond that presented in prior work on elastance based control with respect to 
dynamic afterload response [21, 24] and software-oriented control [44].

A key result of this investigation is a novel in silico method for simulating LV-PV 
relationships based on an analysis of a patient’s ESPVR, EDPVR, and  Ea curves. Dis-
played in Fig. 6 is the characteristic LV-PV loop of two individuals presented in the 
research conducted by Westermann et al. [50]. Simulated is Heart Failure with Nor-
mal Ejection Fraction (HFNEF) and the Control developed by means of a preload 
reduction analysis and quantified by means of data capture tools. Both simulations 
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reflect a mean heart rate [bpm] within the range of mean values described in the ref-
erence material. This capability enables the utilization of the breadth of published PV 
curves on various patient types in the literature; illustrating how the digitized data 
from these graphs can be utilized with the computational model presented. Addi-
tionally, this FSM model could be implemented in embedded physiological control 
applications that are utilizing model predictive control and require a computationally 
efficient left ventricular simulator.

Conclusion
The limitations of this approach are mainly the ideal hydraulic testing system and use of 
anticipatory limits in transition points of the PV loop. If a force is exerted into this com-
putational model of the hydraulic system, the system responds with the corresponding 
pressure instantaneously within that sample period. There was no modeled delay or rise 
time in the actuation components. This consideration is made in the FSM by increasing 
force incrementally instead of applying a constant desired force. Some parameters which 
define the hydraulic system, such as the parameters within the Spring-Loaded Accumula-
tor are ideal assumptions based off a desired performance of the system. The focus of this 
work was on the control architecture that can be adjusted to a variety of hardware plat-
forms through manipulation of the output signal magnitude and response characteristics. 
Additionally, pressure sensor feedback is ideal using this modeling approach. The sensor 
sampling rate was set to 512 Hz and assumed an ideal sensor with low noise. Additionally, 
a manual offset was made to the transition from diastolic filling to isovolumetric contrac-
tion of the system; enabling a ramping from the transition of fill to eject. Moreover, an 
offset was utilized in the transition from isovolumetric contraction to ejection in order to 
allow the pressure to slowly increase to the desired  LVESP during ejection.

Future work includes a sensitivity analysis regarding resistance, compliance, and 
force rates. This analysis will be useful in that it will quantify the exact limitations of the 
hydraulic testing system as well as the range of accuracy of the FSM approach. Isolated 
in  vitro testing of this approach will be conducted on a nested-loop hydraulic system 
before being incorporated into an MCS for investigating accurate cardiovascular hemo-
dynamic considerations, such as the accuracy of pressure and flowrate sensor feedback. 
Additionally, what-if scenarios will be conducted on a MCS in order to create feasible 
scenarios to which a patient may experience.

This research will assist in producing an investigatory method and MCS control logic 
that will advance the medical community by improving left ventricular in vitro analy-
sis capabilities. The ability of an MCS to be able to replicate the exact PV relationship 
that define the pathophysiology allows for a robust in  vitro analysis to be completed. 
This ventricular model for ventricular function could also be coupled with aortic and left 
atrium computational fluid dynamics (CFD) models that require inlet and outlet condi-
tions manifested by the left ventricle. The FSM approach is computationally efficient due 
to the explicit computation, and simple transition logic, which is preferential when small 
time steps and high iteration solvers are being employed. It was this efficiency and port-
ability in the outcome that has made this work impactful for a variety of investigative 
purposes.
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