
Partial volume correction for arterial 
spin labeling using the inherent perfusion 
information of multiple measurements
Yang Liu1 , Ze Wang2, Ruihua Liang1, Zhengrong Liang3 and Hongbing Lu1*

Abstract 

Background: Arterial spin labeling (ASL) provides a noninvasive way to measure cer-
ebral blood flow (CBF). The CBF estimation from ASL is heavily contaminated by noise 
and the partial volume (PV) effect. The multiple measurements of perfusion signals in 
the ASL sequence are generally acquired and were averaged to suppress the noise. 
To correct the PV effect, several methods were proposed, but they were all performed 
directly on the averaged image, thereby ignoring the inherent perfusion information 
of mixed tissues that are embedded in multiple measurements. The aim of the present 
study is to correct the PV effect of ASL sequence using the inherent perfusion informa-
tion in the multiple measurements.

Methods: In this study, we first proposed a statistical perfusion model of mixed tissues 
based on the distribution of multiple measurements. Based on the tissue mixture that 
was obtained from the high-resolution structural image, a structure-based expectation 
maximization (sEM) scheme was developed to estimate the perfusion contributions of 
different tissues in a mixed voxel from its multiple measurements. Finally, the perfor-
mance of the proposed method was evaluated using both computer simulations and 
in vivo data.

Results: Compared to the widely used linear regression (LR) method, the proposed 
sEM-based method performs better on edge preservation, noise suppression, and 
lesion detection, and demonstrates a potential to estimate the CBF within a shorter 
scanning time. For in vivo data, the corrected CBF values of gray matter (GM) were 
independent of the GM probability, thereby indicating the effectiveness of the sEM-
based method for the PV correction of the ASL sequence.

Conclusions: This study validates the proposed sEM scheme for the statistical perfu-
sion model of mixed tissues and demonstrates the effectiveness of using inherent 
perfusion information in the multiple measurements for PV correction of the ASL 
sequence.

Keywords: Partial volume (PV) effect, Arterial spin labeling (ASL), Expectation 
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Background
The arterial spin labeling (ASL) sequence provides a noninvasive way to measure the 
cerebral blood flow (CBF) by utilizing the magnetically labeled arterial blood water as 
an endogenous tracer to create a “label” image [1] and subsequently repeats the process 
to create a “control” image without labeling the arterial blood. The subtraction of the 
label and control images becomes the perfusion image, which reflects the amount of the 
arterial blood that is delivered to each voxel after the transit time [2]. Due to fast scan of 
the label and control images, the perfusion image (label/control difference) is very noisy; 
therefore, multiple label/control image pairs are commonly acquired and are averaged to 
impress the noise.

The spatial resolution of the ASL sequence was approximately 3–6  mm. The CBF 
estimation was contaminated by the partial volume (PV) effect, which results in less 
accuracy of the CBF quantification [3]. For accurate PV correction, the perfusion con-
tributions of different tissues inside a mixed voxel should be estimated separately [4]. 
Asllani et al. [5] proposed a linear regression (LR) method, in which the CBF values of 
both gray matter (GM) and white matter (WM) are assumed to be constant within an 
n × n × 1 regression kernel. Under this assumption, the LR method can generate the 
separate GM’s and WM’s CBF maps, but spatial smoothing may be also introduced into 
the CBF maps. Then, several methods have been proposed to alleviate the smoothing 
effect of the LR method [6–8]. For multiple inversion-time (TI) ASL data, Chappell et al. 
reported a PV correction method using a spatially regularized kinetic curve model [9]. 
To the best of our knowledge, all of the current PV correction methods were performed 
directly on the averaged image of the multiple label/control pairs, thereby ignoring the 
inherent perfusion information of the mixed tissues that are embedded in the multiple 
measurements.

The aim of the present study is to correct the PV effect of the ASL sequence by using the 
inherent perfusion information of multiple measurements. It was reported that the mul-
tiple measurements of the ASL sequence could be regarded as noisy realizations of the 
original distribution [10]. Therefore, for each voxel composed of mixed tissues, the PV cor-
rection problem turns to how to estimate the perfusion contributions of different tissues 
from multiple noisy measurements. Generally, for magnetic resonance imaging (MRI), 
the Rician noise model is widely accepted [11]. However, after the label/control difference 
operation, Gaussian noise is generally considered in the perfusion images of ASL sequence 
[12, 13]. For the purpose of this study, we first proposed a statistical perfusion model of 
mixed tissues for the ASL sequence, based on the Gaussian distribution of multiple meas-
urements. With the tissue mixture information obtained from the high-resolution struc-
tural image, a structure-based expectation maximization (sEM) scheme was developed to 
estimate the perfusion contributions of the mixed tissues from multiple measurements.

Methods
Perfusion model of a mixed voxel

Considering the low spatial resolution, the GM, WM, and cerebrospinal fluid (CSF) may all 
contribute to the label/control difference signal, ∆M. No ASL signal typically arises from 
CSF [14]; therefore, the perfusion signal ∆M at the spatial position i can be described as
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where PiGM and PiWM are proportions of GM and WM in the voxel i, respectively. ∆MiGM 
and ∆MiWM are the difference magnetizations for GM and WM, respectively.

In the current CBF calculation method, the CBF f of a tissue type is obtained by

where Ftissue is a tissue-specific parameter, and M0 represents the equilibrium brain tis-
sue magnetization obtained from the M0 image. For a mixed voxel, its CBF comes inde-
pendently from the GM part ( f PGM ) and the WM part ( f PWM ) and can be described as

For ASL perfusion studies, PiGM and PiWM can usually be estimated from a high-resolu-
tion structural image (e.g., T1 weighted image) of the same subject, and FGM and FWM can 
be derived from the two-compartment model for the ASL data [15]. Therefore, for a CBF 
estimation of a mixed voxel, the key problem is to estimate the magnetizations of GM and 
WM (i.e., ∆MiGM and ∆MiWM) from multiple measurements.

Statistical perfusion model of mixed tissues

As described in the Introduction section, multiple measurements could be regarded as 
noisy realizations of the original distribution [10], and Gaussian noise is generally consid-
ered in each measurement of the ASL sequence [12, 13]. Based on the Gaussian distribu-
tion of multiple ASL measurements, we first established a statistical perfusion model of 
mixed tissues.

1. The statistical model of multiple measurements

In the spatial domain, index i is defined to represent the spatial position of a concerned 
voxel. The intensities of this voxel were acquired by multiple measurements that constitute 
a column vector Y = {Yit, t = 1, …,T}, where T is the number of multiple measurements col-
lected. Based on the Gaussian assumption, each Yit is a noisy observation of a random vari-
able with a mean of Ȳi and a variance of σ 2

i  , i.e.,

where n represents statistically independent noise in Yit [16]. Since each measurement of 
the ASL sequence is independently scanned, the conditional probability of the measure-
ment vector Y can be described as

2. Statistical perfusion model of mixed tissues

The observation Yit contains perfusion contributions from GM and WM. The GM 
component is denoted by XitGM, with a mean of X̄iGM and a variance of σ 2

iGM . The WM 
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component is denoted by XitWM with a mean of X̄iWM and a variance of σ 2
iWM . Thus, 

we have

where X = {XitGM and XitWM, t = 1, …,T} represents a vector of size 2 × T, at position i.
The mean and variance values of each voxel can be calculated by the summation of all 

contributions at this voxel, i.e.,

By combining the voxel-wise perfusion model in Eq.  3 with the above observation 
model, we have

where SiGM and SiWM represent the variance of the GM and the WM signal, respectively. 
In this study, the PiGM and PiWM, which represent the proportions of GM and WM inside 
the concerned voxel i, can be estimated from the registered high-resolution structural 
image, which can be regarded as constants for a concerned voxel.

3. Normal statistical model

For the ASL sequence, the perfusion signal contains GM and WM components. Suppose 
that each tissue type is independent and follows a Gaussian distribution. Equation  6 
becomes

The estimation of p(Y|�MiGM ,�MiWM , SiGM , SiWM) derived from Eq. 5 would gener-
ate several nonlinear equations, which are difficult to solve. Given Ȳi = X̄iGM + X̄iWM in 
Eq. 7 and the description in Eq. 10, the EM algorithm may provide an alternative method 
and effective solution to estimate the model parameters {∆MiGM, ∆MiWM, SiGM, SiWM} 
based on the structural mixture information derived from a high-resolution image.

EM algorithm for parameter estimation

In the EM approach [17, 18], the observation Yit is regarded as an incomplete random 
variable. The XitGM and XitWM are regarded as complete variables, which can reflect the 
complete perfusion information at each measurement point t for a concerned voxel of 
position i. The probability distribution of the incomplete data {Yit} can be depicted by 
the complete data, {XitGM} and {XitWM}, using an integral equation under the condition of 
{Yit = XitGM + XitWM}:

(6)
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In this study, the EM algorithm was used to seek a solution to maximize the condi-
tional expectation of the complete data in Eq. 10. The E-step is to compute the condi-
tional expectation. The M-step subsequently attempts to maximize the expectation of 
the complete-data log likelihood using the latent variables that were computed in the 
E-step, given the observations.

E-step This step computes the likelihood p(X|Θ) of the complete data in Eq. 10, given 
{Yit} and parameter Θ(n) =

{

�M
(n)
iGM ,�M

(n)
iWM , S

(n)
iGM , S

(n)
iWM

}

 . The conditional expecta-

tion is depicted in Eq. 12.

Based on the deduction of the preceding conditional expectation, we have
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M-step: This step maximizes the conditional expectation to estimate the next iteration 
{

�M
(n+1)
iGM ,�M
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iWM , S

(n+1)
iGM , S

(n+1)
iWM

}

 , which can be described as

Based on the proposed sEM algorithm, we can estimate ∆MiGM and ∆MiWM using the 
multiple measurements of the ASL sequence.

Implementation of the sEM scheme for PV correction

The implementation of the proposed sEM scheme for PV correction can be summarized 
as follows:

1. Segmentation of high-resolution structural image. The segmented results and ASL 
data are co-registered. For each mixed voxel at position i, the percentages of GM and 
WM, PiGM and PiWM, were obtained.

2. Initialization of the model parameters 
{
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}

.

3. Constitute a column vector with all measurements of the mixed voxel at position i.
4. Iterative estimation of GM and WM components for the mixed voxel at position i 

using the column vector in step (3), following Eqs. 17–20.
5. Repeat steps (3) and (4) for the next voxel until all the voxels are corrected.
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Material and evaluation
In this study, the performance of the proposed sEM scheme was evaluated by both 
digital simulations and clinical data. The two simulations listed below were designed to 
evaluate its performance quantitatively, especially with regards to noise reduction, lesion 
detection, and its potential to estimate CBF from fewer measurements. After the simula-
tion studies, the in vivo ASL data were used to evaluate the clinical feasibility.

Simulation 1

In this simulation, a digital head phantom was generated from a structural MRI brain 
dataset with a voxel size of 1 × 1 × 1  mm3. After the normalization and segmentation 
of the MRI data using SPM8 software, the posterior probability images of GM and WM 
were generated. Next, the images were masked to remove the voxels with probabilities 
lower than 0.1 [7, 9]. The head phantom was simulated as follows:

1. The probability images were resampled to a size of 60 × 72 × 60, with a spatial resolu-
tion of 3 × 3 × 3 mm3 using SPM8.

2. Across the whole brain, the WM region was simulated as 20 mL/100 g/min.
3. The GM was simulated as 60  mL/100  g/min, with a hypo-perfused region 

(30  mL/100  g/min) and a hyper-perfused region (90  mL/100  g/min). Both of the 
regions were spherical regions with a radius of 5.

4. Based on the probability images and the signals of GM and WM, the perfusion signal 
of each voxel in the 3D perfusion image was generated according to Eq. 1.

5. It was reported that the noise level of the ASL data ranges from 6.7 to 13.2 accord-
ing to different labeling schemes and readout sequences [19]. To evaluate the noise 
impact on PV correction, three different levels of Gaussian noise, with a standard 
deviation (std) of 5, 10 and 15, respectively, were added into the 3D perfusion image 
to generate low-, middle-, and high-noise realizations. The highest noise was approx-
imately 25% (15/60) of the GM signal.

6. Generally, the number of label/control pairs is set as 40–60. To evaluate the proposed 
method, 40 noisy realizations were generated for each ASL sequence.

Simulation 2

To evaluate the benefit of PV correction on the lesion detection of small CBF altera-
tions, in this simulation, three regions with different sizes and simulated values, instead 
of the two regions used in step (3) of Simulation 1, were simulated inside the homoge-
neous GM tissues: (1) a spherical region of radius 5 with CBF of 75 mL/100 g/min, (2) 
a 3 × 3 × 3 cubic region with CBF of 45 mL/100 g/min, and (3) a 2 × 2 × 2 cubic region 
with CBF of 75 mL/100 g/min. The difference between the three regions and the homo-
geneous GM region were selected from the high std of noise, i.e., 15.

In vivo data

To test the feasibility of PV correction on in  vivo ASL data, the ASL scans were col-
lected from three healthy subjects, which were acquired by a Siemens 3T scanner 
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using the pseudo-continuous ASL perfusion imaging sequence with gradient-echo 
echoplanar imaging (EPI). The acquisition parameters were TR = 4  s, TE = 11  ms, 
FOV = 220 × 220  mm2, voxel size = 3.4 × 3.4 × 5  mm3, matrix = 64 × 64 × 20, flip 
angle = 90°, and post labeling delay = 1.5  s. Forty label/control pairs were acquired. 
A high-resolution structural image was also acquired with the following parameters: 
TR = 1900  ms, TE = 2.9  ms, FOV = 250 × 250  mm2, matrix = 256 × 256 × 176, and flip 
angle = 90°.

The ASL and structural images were preprocessed using SPM8. For each subject, the 
ASL images was realigned separately for the label and control image series. After realign-
ment, the images were normalized, followed by pair-wise subtraction. The correspond-
ing structural image was normalized and segmented to generate probability images of 
GM and WM, which were later masked with probabilities lower than 0.1. Finally, the 
probability images were co-registered with ASL data to obtain PiGM and PiWM at each 
position i, using a transformation of the structural and ASL coordinates with an MNI 
coordinate.

Comparison of PV correction

As is well-known, the EM algorithm is quite sensitive to the initialization. Consider-
ing the limited number of measurements and the intensive computation load of the EM 
algorithm, a relatively accurate initialization from an estimation that uses an uncor-
rected image or other spatial PV correction method (e.g., the LR method) would lead to 
accurate estimations and fast convergence. To compare the effect of the PV correction 
using different methods, the simulated data and the in vivo data were all analyzed using:

1. No correction. The averaged image was used as the result.
2. The LR method. The averaged image was used to separately estimate the GM and the 

WM CBF maps using the LR method with a 5 × 5 × 1 regression kernel, which was 
suggested to provide the best compromise between smoothing and PV correction [5, 
7].

3. The sEM method, which is the EM algorithm initialized with an estimation from no 
correction. In this method, �M

(0)
iGM and �M

(0)
iWM were set as the mean value of GM 

and WM regions from no correction, and S(0)iGM and S(0)iWM were set as the std of GM 
and WM. The iteration number was set as 100 to ensure the convergence.

4. The sEM-LR method, which is the EM algorithm initialized with the LR method. In 
this method, each 3D difference image was first corrected with the LR method to 
obtain the initialization of 

{

�M
(0)
iGM ,�M

(0)
iWM , S

(0)
iGM , S

(0)
iWM

}

 . With this initialization, 

the GM and WM maps were estimated using the sEM method. The iteration number 
was also set as 100 to ensure the convergence.

For the simulation data, the root mean square error (RMSE) analysis was performed 
for a quantitative evaluation of these correction methods.

For the in vivo data, the GM CBF ratio, which is the ratio between the estimated GM 
CBF and the mean GM CBF of the uncorrected maps, was calculated for each voxel. 
This index can avoid the bias introduced from a different calibration method in which 
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the CBF value is calculated and permits the assessment of the relative CBF changes after 
correction [9].

The region of interest (ROI) analysis

In this study, the consistency of the mean GM CBF across the whole range of GM prob-
abilities was used to quantitatively evaluate the estimated results from different PV 
correction methods. To this aim, nine ROIs were automatically defined based on the 
GM probability images, with the probability range between [10–20%], [20–30%],…, 
[90–100%], respectively. Next, the mean value of GM CBF in each ROI was calculated. 
It should be noted that the less independent are the GM CBF values from the GM prob-
ability, the better the performance of PV correction is.

Results
Simulation results

Figure  1 shows the middle slice of the GM CBF estimation for Simulation 1 using no 
correction, LR, sEM, and sEM-LR methods. Clearly, the CBF maps derived from the LR, 
sEM, and sEM-LR methods outperformed those of no correction, with less noise and 
better restoration. At the edges of hypo- and hyper-CBF regions, the GM map that was 
estimated by the LR method exhibited a visible smoothing effect.

Figure 2 shows the results of ROI analysis using Simulation 1 when the different PV-
corrected methods were performed. It demonstrated that the GM CBF estimation using 
no correction was underestimated, compared with the ground truth. Corrected by the 
LR and sEM-LR methods, the GM CBF curves of different GM probabilities were almost 

Fig. 1 GM CBF maps (middle slice) estimated using different correction methods under different noise 
levels. From left to right: no correction, LR, sEM, and sEM-LR methods. From top to bottom: different levels of 
Gaussian noise, with a standard deviation of 5, 10 and 15, respectively. The dotted box areas of ground truth 
and the corrected results with LR, sEM and sEM-LR were magnified into view
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consistent with the true line, while that of sEM method was a little underestimated at the 
relative low GM probability. The performance of the LR and the two sEM-based meth-
ods seems to be less affected by the noise level.

To illustrate the effect of different correction methods on the CBF accuracy under 
different noise levels, the profiles of the lines passing the centers of the hypo- and 

Fig. 2 ROI analysis for GM CBF under different noise levels. Each data point represents the mean GM CBF for 
all voxels falling within a 10 percentile range of the GM probability. From top to bottom: different levels of 
Gaussian noise, with a standard deviation of 5, 10 and 15, respectively
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hyper-CBF regions of the GM CBF maps are shown in Fig. 3, which demonstrates that 
the sEM and sEM-LR methods provided accurate GM CBF estimations with preserved 
details and tissue interfaces but are affected by the noise level. Table 1 gives the RMSE 
values of the estimated CBF maps and the true map, and the differences between them 
indicated that the sEM-LR method outperformed the LR method at different noise 
levels.

The effect of the PV correction on lesion detection is shown in Fig.  4. It is obvious 
that, although the alterations were small, all of the regions with CBF alterations can be 
detected by using two sEM-based methods, even if the std of the noise was same as the 
CBF alteration. However, the two small regions (region 2 and region 3 in Fig. 4) were dif-
ficult to detect when corrected by the LR method.

Fig. 3 The profiles of the GM CBF estimation through the center of the hypo- and hyper-perfusion region in 
the slice shown in Fig. 1. From top to bottom: different levels of Gaussian noise, with a standard deviation of 
5, 10 and 15, respectively

Table 1 RMSE between  the  estimated GM CBF and  true values in  Simulation 1 using 
different methods (unit: mL/100 g/min)

Noise: 5 Noise:10 Noise: 15

LR 3.5621 3.6076 3.6243

sEM 3.8028 4.2388 4.8365

sEM-LR 1.4603 2.4051 3.4356



Page 12 of 18Liu et al. BioMed Eng OnLine           (2019) 18:12 

Fig. 4 Detection of small lesions using different correction methods. Region 1: a spherical region of radius 
5 with CBF of 75 mL/100 g/min, region 2: a 3 × 3 × 3 cubic region with CBF of 45 mL/100 g/min, region 3: a 
2 × 2 × 2 cubic region with CBF of 75 mL/100 g/min. From left to right: no correction, LR, sEM, and sEM-LR 
methods. From top to bottom: different levels of Gaussian noise, with a standard deviation of 5, 10 and 15, 
respectively

Fig. 5 The CBF results estimated from different numbers of the label/control pairs using the sEM-LR method. 
From top to bottom: different levels of Gaussian noise, with a standard deviation of 5, 10 and 15, respectively
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Table 2 RMSE between  the  estimated GM CBF and  true values under  different numbers 
of label/control pairs, when using the sEM-LR algorithm (unit: mL/100 g/min)

Std of noise Number of label/control pairs

10 20 30 40

5 2.7288 2.0557 1.6624 1.4603

10 5.7988 3.2497 3.0240 2.4051

15 7.5917 5.4996 4.5987 3.4356

Table 3 The standard deviation of CBF ratio for three subjects, using different methods

No correction LR sEM sEM-LR

Subject 1 0.111 0.030 0.061 0.060

Subject 2 0.091 0.040 0.049 0.039

Subject 3 0.078 0.036 0.055 0.060

Fig. 6 Estimated results (middle slice) from three healthy subjects, which show the GM CBF ratio (the 
estimated GM value to the mean GM CBF without PV correction). From left to right: probability, no correction, 
LR, sEM, and sEM-LR methods. The GM CBF images have been masked at a GM probability > 10%
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Figure  5 demonstrates the GM CBF maps (middle slice) that were estimated from 
fewer measurements, which indicate that with the increase of measurement numbers, 
the CBF estimation was more accurate and was less affected by noise. The RMSE val-
ues of the CBF maps that were estimated from different numbers of measurements are 
listed in Table 2, which also illustrate that the restoration was better with the increased 
number of multiple measurements. In most cases, the RMSEs using the sEM-LR method 

Fig. 7 ROI analysis for three healthy subjects shown in Fig. 6; each data point represents the mean GM CBF 
for all voxels falling within a 10 percentile range of the GM probability. From top to bottom: each healthy 
subject for in vivo data
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with fewer measurements (Table 2) were lower than those of the LR method with nor-
mal measurements (the corresponding RMSE shown in Table 1).

The computation times of each correction method to correct Simulation 1 were 
compared using the same computer (Intel CPU E3-1240, RAM of 16G). The computa-
tion time of the LR method for the 60 × 72 × 60 averaged image was 19.2 s. With the 
stopping criterion of 100 iterations, the computation costs for the sEM and sEM-LR 
methods were 177 s and 982 s, respectively. With the stopping rule of the difference 
between two adjacent iterations less than 0.001, the time costs of them were 4 s and 
792  s, respectively. It should be noticed that the majority time of the sEM-LR was 
used for the initialization of all spatial label/control difference images using the LR 
method, which was about 790 s.

In vivo data

Figure 6 gives the GM CBF ratio of three subjects by using different correction meth-
ods. For a better demonstration of the results, the regions enclosed within dotted 
boxes were zoomed. Compared with the results without correction and estimated 
from LR method, the proposed sEM and sEM-LR methods reserved more details, 
especially at the tissue interface.

Figure 7 shows the ROI analysis of the ASL data using different methods. For each 
subject, the results of the LR and the two sEM-based methods demonstrate less vari-
ation (lower standard deviation) than that of the uncorrected data (Table  3), which 
indicate less independence of the GM CBF values from the GM probability.

Discussion
The present study proposed a sEM scheme for the PV correction of the ASL sequence. 
For an accurate estimation of CBF, a statistical perfusion model of mixed tissues was 
first established. Then, based on the prior tissue mixture obtained from a high-resolu-
tion structural image, a structure-based EM algorithm (sEM scheme) was proposed to 
estimate the perfusion contributions of GM and WM tissues of the mixed voxels from 
multiple measurements of the ASL sequence. When the contributions of different tis-
sues were estimated, the PV effect embedded in the multiple measurements was natu-
rally resolved.

Different from the previous PV correction studies, the proposed method innovatively 
utilizes multiple measurements of label/control differences (perfusion images), instead 
of using the simple averaged image, to estimate the CBF contribution of the GM and 
WM components in each mixed voxel. The evaluation using computer simulations and 
the in vivo data demonstrated its superiority in PV correction, especially in the following 
aspects: (1) Edge preservation. Since the CBF contributions were estimated iteratively 
from the multiple measurements of a mixed pixel, with less influence from neighbor-
ing voxels, the EM estimation was superior in edge preservation and could detect small 
lesions with a radius of approximately 3.4  mm (calculated from a spherical volume of 
2 × 2 × 2  m3 cube). (2) Noise suppression. Unlike the simple averaging of multiple 
noisy measurements, the sEM scheme restored the GM and WM components from a 
series of noisy realizations with Gaussian distribution. Thus, the scheme could not only 
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suppress noise, but also could detect small CBF signals effectively, even if strong noise 
was applied. (3) Fast scan. The CBF estimation using fewer measurements indicated that 
the proposed method could achieve reasonable imaging quality with fewer label/control 
pairs and have the potential to shorten the scan time.

Unlike our previous work in which the EM algorithm was used to estimate the tissue 
mixture inside a mixed voxel [18, 20], in this study, we attempted to integrate the 3D 
structural image with perfusion series and develop a new sEM scheme for the perfu-
sion estimation of different tissues in a mixed voxel from the multiple measurements of 
the ASL sequence. Since the contributions of GM and WM to the perfusion signal are 
independent and different, the proposed sEM scheme could estimate their different con-
tributions effectively. However, if they are correlated or contribute same to the perfusion 
signal, the sEM method would not help, in which the simple averaging should be good 
enough.

It is known that the EM algorithm is quite sensitive to the initialization. If the initial 
values of the model parameters, such as ∆MiGM and ∆MiWM, can be set as close as pos-
sible to the true values, better estimations could be obtained with fast convergence. To 
evaluate the effect of parameter initialization on the CBF estimation, the EM algorithm 
initialized with parameters estimated without correction and those estimated using the 
LR method were performed on both simulated and in vivo data. The results indicated 
that both sEM-based methods (sEM and sEM-LR) outperformed the LR method, while 
the sEM-LR method performed better than the sEM method only at relatively low GM 
probabilities (Fig. 2). Following the Markov random field model, the perfusion of a voxel 
is generally affected by neighboring voxels [21]. Since the proposed sEM method only 
considers perfusion correction from multiple measurements of the same voxel, a more 
accurate CBF estimation could be expected if spatial correction is considered further. 
Therefore, the combination of the proposed sEM with spatial prior obtained from the LR 
method, i.e., the sEM-LR method, could achieve better performance with the considera-
tion of a spatial neighborhood.

Considering the iterative nature of the EM algorithm, the computation load of differ-
ent methods was compared. The results indicated that the time cost of the sEM correc-
tion was comparable with other methods if a reasonable stopping criterion was used. The 
major cost of the sEM-LR method came from the initialization of all spatially different 
images by using the LR method, and not from EM optimization itself. The results also 
suggest that the use of the difference between two adjacent iterations that were less than 
0.001 as the stopping criterion could reduce the computation time remarkably, because 
most voxels without the tissue mixture could reach the criterion very quickly. If parallel 
computation was performed, the computation time will be further greatly reduced.

Several limitations of this study should be addressed. Firstly, the proposed method 
needs multiple measurement information to correct PV effect, thus, this method is more 
suitable for the ASL sequence with time series, not for 3D ASL sequence. Secondly, the 
present study assumed that the voxels located at the same 3D spatial position differed 
only in noise. In practice, the distribution may be affected by temporal CBF variation, 
which may induce a bias of the CBF estimation for the in  vivo data. In this study, we 
focus on the feasibility to use multiple measurements for an accurate CBF estimation 
under this assumption, and further studies will be performed to investigate the PV 
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correction by using multiple measurements with consideration of temporal CBF varia-
tion. Although further improvement is required, this study validates the proposed statis-
tical perfusion model and demonstrates the effectiveness and necessity of using inherent 
perfusion information in multiple measurements for PV correction of the ASL sequence.

Conclusions
In this study, we proposed a statistical perfusion model of mixed tissues for each voxel 
of the ASL data. Based on this model, the sEM scheme was developed to estimate the 
contributions of different tissues to the perfusion signal of the mixed voxel with its mul-
tiple measurements. Compared to the traditional PV-corrected method, the proposed 
sEM-based method performs better in edge preservation, noise suppression, and lesion 
detection while demonstrating the potential to estimate CBF within a shorter scanning 
time. The results also indicated the effectiveness of using inherent perfusion information 
in multiple measurements for PV correction of the ASL sequence.
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