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Abstract 

Background: Improving imaging quality is a fundamental problem in ultrasound 
contrast agent imaging (UCAI) research. Plane wave imaging (PWI) has been deemed 
as a potential method for UCAI due to its’ high frame rate and low mechanical index. 
High frame rate can improve the temporal resolution of UCAI. Meanwhile, low 
mechanical index is essential to UCAI since microbubbles can be easily broken under 
high mechanical index conditions. However, the clinical practice of ultrasound con-
trast agent plane wave imaging (UCPWI) is still limited by poor imaging quality for 
lack of transmit focus. The purpose of this study was to propose and validate a new 
post-processing method that combined with deep learning to improve the imaging 
quality of UCPWI. The proposed method consists of three stages: (1) first, a deep learn-
ing approach based on U-net was trained to differentiate the microbubble and tissue 
radio frequency (RF) signals; (2) then, to eliminate the remaining tissue RF signals, the 
bubble approximated wavelet transform (BAWT) combined with maximum eigenvalue 
threshold was employed. BAWT can enhance the UCA area brightness, and eigenvalue 
threshold can be set to eliminate the interference areas due to the large difference of 
maximum eigenvalue between UCA and tissue areas; (3) finally, the accurate microbub-
ble imaging were obtained through eigenspace-based minimum variance (ESBMV).

Results: The proposed method was validated by both phantom and in vivo rabbit 
experiment results. Compared with UCPWI based on delay and sum (DAS), the imag-
ing contrast-to-tissue ratio (CTR) and contrast-to-noise ratio (CNR) was improved by 
21.3 dB and 10.4 dB in the phantom experiment, and the corresponding improvements 
were 22.3 dB and 42.8 dB in the rabbit experiment.

Conclusions: Our method illustrates superior imaging performance and high repro-
ducibility, and thus is promising in improving the contrast image quality and the clini-
cal value of UCPWI.

Keywords: Microbubble, Ultrasound contrast agent, Radio frequency (RF) signal, 
U-net, Eigenspace, Ultrasound contrast agent plane wave imaging
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Background
Ultrasound contrast agents (UCAs) [1] enable ultrasound diagnosis to discover small 
lesions and have triggered a new round of technical innovation in the ultrasound imag-
ing [2–4]. UCA for clinical use are usually microbubbles whose mean diameter is less 
than a red blood corpuscle. The microbubble is inert-gas-filled and encased by a shell to 
stabilize it and prevent the dissolution. After entering the body by intravenous injection, 
UCA can enhance the ultrasonic backscattering intensity and image contrast, resulting 
in the improvement of visual effect of imaging and the accuracy of clinical diagnosis.

With further development, ultrasound contrast agent imaging (UCAI) has become 
more widely used in clinical diagnosis. Meanwhile, conditions such as low mechanical 
index which are essential to UCAI have been highly emphasized in clinical examination 
[5, 6] since microbubbles can be easily broken under high mechanical index conditions. 
Plane wave imaging (PWI), due to its’ several advantages, has been deemed as a poten-
tial method for UCAI and attracted a lot of attention [7, 8]. The high frame rate of PWI 
makes it possible to track fast moving microbubbles. And the low mechanical index of 
PWI can reduce the disruption of microbubbles to a large extent. However, the clinical 
practice of ultrasound contrast agent plane wave imaging (UCPWI) is still limited by 
poor image quality for lack of transmit focus. Over the past 25 years, many methods [9–
18] have been applied to improve UCPWI and shown promising results. These methods 
enhance the contrast between the microbubbles and other tissues by utilizing the non-
linear characteristics of microbubbles [9, 10]. Pulse inversion [11], amplitude modula-
tion [12], chirp-encoded excitation [13], golay-encoded excitation [14], second harmonic 
imaging [15], sub-harmonic imaging [16], super-harmonic imaging [17] and bubble 
approximated wavelet transform (BAWT) [18] are the representatives of methods that 
have significant effect. Most of these methods improve the imaging contrast-to-tissue 
ratio (CTR) based on the time–frequency difference between microbubbles and tissues. 
In most cases, the tissues only produce linear echoes while the harmonic components 
are contributed by microbubbles. Although it is feasible to distinguish tissues and micro-
bubbles according to their spectral difference, when the mechanical index beyond some 
level, tissues will also produce harmonic signals due to the nonlinear distortion of wave-
forms, and the spectrum aliasing between the microbubbles and tissues will become an 
unfavorable factor [19]. Our previous work [20] used a bubble area detection method 
to improve the image quality; the outstanding performance showed that removing the 
tissue signal interferences is a promising research direction for UCPWI improvement. 
However, when facing strong scattering points, the previous work still showed its defi-
ciencies in the recognition of tissue signals.

To identify ultrasound radio frequency (RF) signals from different areas effectively, 
we introduced deep learning [21], which offers excellent classification capability. As an 
important branch of machine learning, deep learning allows computational models to 
dig out high-throughput features from huge amount of data. The continuous improve-
ment of computer hardware in recent years has enabled deep learning to make full use 
of its advantages and made it become a non-negligible choice for medical data analysis. 
Generally, the application of deep learning includes four parts: the data set, the network 
structure, the cost function and the optimization algorithm [22]. In the last century, the 
achievement of the Convolutional Neural Network (CNN) in the field of face recognition 
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has attracted widespread attention [23]. CNN is one of the most widely used algorithms 
in deep learning and has been successfully applied in computer vision, speech recogni-
tion, and medical image analysis [24, 25]. Recurrent neural network (RNN) is another 
commonly used network, which is particularly advantageous for the processing of 
sequential data [26]. Different from the traditional neural network structure, each node 
of the RNN is connected. The RNN has a memory of the historical input data. U-net 
network was proposed in 2015 [27]. Based on CNN, U-net added the upsampling layer 
for deconvolution operation. The combination of the convolutional layer and the pooling 
layer is equivalent to a quadratic feature extraction structure. This structure empowers 
the network consider the deep and the shallow features simultaneously, and thus it can 
improve the effectiveness of the network.

In this study, we extended our previous work [20] and proposed a new post-processing 
method for UCPWI, Table  1 shows the key differences between the previous method 
and the proposed. The proposed method consists of three stages: (1) First, we applied 
the idea of deep learning to trained a model based on U-net, which can effectively iden-
tify tissue signal interferences. (2) Then BAWT combined with maximum eigenvalue 
threshold was employed to eliminate the remaining tissue RF signals. (3) Finally, the 
accurate microbubble image was obtained through eigenspace-based minimum variance 
(ESBMV) imaging algorithm. Both phantom and rabbit in vivo experiments were per-
formed to validate the proposed method. The experimental results showed the proposed 
method has a great potential in advancing the ultrasound diagnosis of contrast imaging.

Result
The U-net network was based on the keras deep learning framework and the TITAN Xp 
GPU was used for computing acceleration. It took about 25 min for one iteration. The 
subsequent beamforming algorithm was applied using matlab.

The training and testing accuracy of the three networks was up to 0.95 and the area of 
the receiver operating characteristic curve (ROC) was higher than 0.9, indicating that 
the networks have good prediction and generalization capabilities.

Phantom experiment results

First, to select the network structure and the beamforming algorithm that best meet 
the needs, we discussed the classification ability of the three network structures and 
imaging performance of the three beamforming algorithms. And then we compared 
the results when the three network algorithms combined with the three beamforming 

Table 1 Key differences between the previous methods and the proposed method

Method The previous method The proposed method

Strength Simpler, no need for large amounts of data More accurate bubble 
area prediction with 
trained model

Weakness Unable to accurately predict the location of bubble area Need to collect a lot 
of data to train the 
network
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algorithms, respectively, based on CTR and contrast-to-noise ratio (CNR) values. The 
expression of the CTR and CNR can be described as follows:

where IUCA and Itissue are the mean intensity of contrast and tissue, σUCA and σtissue are 
the corresponding standard deviation. Finally, the influences of BAWT and maximum 
eigenvalue threshold were discussed.

Figure 1 gives a comparison of the RF signal waveforms before and after deep learn-
ing classification. Based on the distance and the size of the phantom, the rectangular 
box in Fig. 1a denotes the microbubble areas, and the front part corresponding to the 
pork interfaces. In the original RF signal, the amplitudes of the pork signal and the 
microbubble signal have little difference. After classification with deep learning net-
work, the ranges of RF signals from microbubbles can be located easily. From experi-
ment, it can be observed that the strong interferences from pork tissues have been 
reduced effectively by U-net, and partially by CNN and RNN.

(1)CTR = 20 log
IUCA

Itissue

(2)CNR = 20 log
IUCA − Itissue

√

σ 2
UCA + σ 2

tissue

Fig. 1 The RF signal waveform before and after classification. a Before classification, b after CNN classification, 
c after RNN classification, d after U-net classification
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Figure 2 are the traditional DAS, MV, and ESBMV beamforming imaging results (the 
yellow rectangle in Fig. 2a is the tissue areas and the red one is the microbubble areas). 
There are strong scattering points in the pork signals.

Table 2 shows the CTR and CNR values when the three network algorithms combined 
with the three beamforming algorithms, respectively.

Among the three network structures, the effect of U-net is significant, and best meets 
our expectations. Among the three beamforming algorithms, ESBMV is better than DAS 
and MV.

Then we get rid of the residual tissue signals by utilizing the maximum eigenvalue of 
each imaging point. Taking the area at the width of 10 mm as an example, the maximum 
eigenvalue curve under different depths is shown in Fig. 3. The area in the red rectangle 
represents the microbubble area and the blue one represents the tissue area. Its maxi-
mum eigenvalue is quite larger than other areas due to the existence of strong scattering 

Fig. 2 The image result of the pork phantom experiment (the yellow rectangle in Fig. 5a is the tissue area 
and the red one is the microbubble area). a Traditional DAS, b traditional MV, c traditional ESBMV

Table 2 The CTR and CNR of the pork phantom experiment

Method CTR (dB) CNR (dB)

Original DAS − 7.5 − 13.4

Original MV − 9.4 − 11.5

Original ESBMV − 9.6 − 11.2

CNN + DAS − 22.1 − 4.9

CNN + MV − 23.3 − 4.5

CNN + ESBMV − 25.7 − 3.8

RNN + DAS − 17.2 − 6.1

RNN + MV − 18.8 − 5.6

RNN + ESBMV − 20.7 − 4.9

U-net + DAS − 22.8 − 4.5

U-net + MV − 24.2 − 3.8

U-net + ESBMV − 26.3 − 3.5
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signals produced by the microbubble. Hence, we can eliminate the pork section by set-
ting an eigenvalue threshold.

Besides, the microbubble area brightness can be enhanced by BAWT. Figure  4 
shows the results of the proposed method and when BAWT combined with maxi-
mum eigenvalue threshold was directly implemented without deep learning. For 
Fig.  4a, deep learning is not involved, and the performance is unsatisfactory when 
facing strong scattering points. For Fig. 4c, with deep learning, the proposed method 
can completely eliminates the pork information, including the strong scattering point 
which is difficult to remove, and the degree of retention of microbubble information 

Fig. 3 The maximum eigenvalue curve of different depths. The red rectangle represents the UCA area. The 
blue rectangle represents the tissue area

Fig. 4 The image result of the pork phantom experiment. a BAWT combined with maximum eigenvalue 
threshold (without deep learning), b ESBMV after U-net classification with BAWT, c the proposed method 
(Utilizing BAWT combined with maximum eigenvalue threshold)
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is high. Figure  4b is the result after deep learning classification. Notably, compared 
with Fig.  4a, large artifacts appeared near the boundary of the microbubble area as 
shown in Fig. 4b. In other words, the deep learning method has a slightly weak effect 
on the classification of the areas near the microbubbles. After eigenvalue threshold 
was set, the final result in Fig. 4c shows that artifact interferences near the boundary 
of the microbubble area have been reduced to a large extent.

Table 3 compares the CTR and CNR values when different methods implemented. 
As seen from the table, by utilizing BAWT combined with maximum eigenvalue 
threshold, the proposed method produced better CTR and CNR, and is more in line 
with our expectations.

In vivo experiment results

Figure 5 shows the rabbit abdominal artery imaging results. Figure 5a–c are the origi-
nal images based on different beamforming algorithms. For Fig.  5a, the yellow rec-
tangle is the tissue area and the red one is the microbubble area. The quality of the 
original image is very poor and the contrast area is submerged in the background 
noise. Figure 5d is ESBMV-based imaging result after using deep learning to classify 
RF signals. Deep learning weakens tissue signals to some extent. Figure 5e shows the 
result of the proposed method, the detected microbubble area is displayed in color to 
facilitate the actual observation.

The CTR and CNR of different beamforming algorithms are shown in Table 4.

Parameter choosing experiment results

Finally, to discuss the effect of iteration numbers, batch samples, and the length of the 
segmentation signals for the U-net, we also carried out many experiments. As was 
shown in Table 5, the network parameters have a certain influence on the deep learn-
ing classification results. In all of our experiments, the optimal signal length is 60, 
iteration is 150 and batch size is 100. When the deep learning is combined with the 
eigenvalue, the final imaging results have a small difference.

Table 3 The CTR and CNR of the pork phantom experiment

Method CTR (dB) CNR (dB)

Original DAS − 7.5 − 13.4

Original MV − 9.4 − 11.5

Original ESBMV − 9.6 − 11.2

BAWT combined with maximum eigenvalue threshold 
(without deep learning)

− 17.9 − 6.0

U-net + ESBMV − 26.3 − 3.6

U-net + ESBMV + BAWT − 27.9 − 3.3

U-net + ESBMV + BAWT + Eigenvalue threshold (the pro-
posed method)

− 28.8 − 3.0
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Fig. 5 The in vivo rabbit abdominal artery result. a DAS, b MV, c ESBMV, d ESBMV + deep learning, e the 
proposed method (the yellow rectangle in Fig. 8a is the tissue area and the red one is the microbubble area)

Table 4 The image CTR and CNR of in vivo rabbit experiment

method CTR (dB) CNR (dB)

DAS − 0.27 − 47.2

MV − 0.48 − 44.6

ESBMV − 0.97 − 37.9

U-net + ESBMV − 13.8 − 8.1

Proposed method − 22.6 − 4.4

Table 5 The result under different network parameters of the phantom experiment

Signal length + iterations + batch sizes Proposed method CTR (dB) Proposed 
method CNR 
(dB)

45 + 150 + 100 − 28.2 − 3.1

50 + 150 + 100 − 28.3 − 3.1

55 + 150 + 100 − 28.5 − 3.1

60 + 150 + 100 − 28.8 − 3.0

65 + 150 + 100 − 28.6 − 3.1

60 + 100 + 100 − 28.7 − 3.0

60 + 50 + 100 − 28.2 − 3.1

60 + 150 + 50 − 28.3 − 3.1

60 + 150 + 150 − 28.6 − 3.0
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Discussion
In this paper, a novel approach was presented to improve the quality of contrast-
enhanced ultrasound imaging by combining deep learning approach, BAWT and 
maximum eigenvalue threshold. Our work provides three main contributions: (1) A 
three-stage post-processing method has been proposed to improve UCPWI; (2) To the 
best of our knowledge, we are the first one to apply deep learning approach to improve 
the imaging quality of UCPWI; (3) The performance of the three network structures in 
tissue and microbubble RF signals classification were discussed. By considering the RF 
signal as a one-dimensional signal, the identification between tissue and microbubble 
RF signals was achieved with deep learning approach. A large number of RF signals were 
collected through experiments to construct a data set. The signals were processed by the 
U-net network, and the microbubble RF signals were located. Then BAWT combined 
with maximum eigenvalue threshold was used to eliminate the remaining tissue RF sig-
nals and enhance the brightness of the microbubble area. Finally, the accurate microbub-
ble imaging was obtained through ESBMV. Both phantom and in vivo rabbit experiment 
results showed different degrees of improvements in the quality of contrast-enhanced 
ultrasound imaging.

With the help of large training data sets and its learning ability, deep learning showed 
excellent performance in reducing most of the tissue signals. To reduce the residual 
interference areas, BAWT and maximum eigenvalue threshold was applied. BAWT can 
enhance the UCA area brightness, and eigenvalue threshold can be set to eliminate the 
interference area due to the large difference of maximum eigenvalue between UCA and 
other areas. Compared the improvements in different stages, most of the interference 
areas were reduced by the deep learning method, the role of BAWT and eigenvalue 
threshold is to further remove interference areas near the boundary. However, even 
the performance of the proposed method was mainly contributed by the deep learn-
ing method, the assistant of BAWT and eigenvalue threshold is still necessary to get the 
accurate location information of UCA area.

The proposed method has showed superior imaging performance in advancing the 
quality of UCPWI. The improvements in the phantom experiments and the in  vivo 
experiments also suggested the  proposed method has good robustness and adapts to 
different application scenarios. And with higher hardware environment, the proposed 
method can maintain the advantage of fast imaging speed. Therefore, the proposed 
method can be a general strategy in the clinical diagnosis of UCPWI to quickly obtain 
the location information of blood vessels or other target areas that can be influenced 
by contrast agent. In practice, an overall consideration is also suggested, after using 
the proposed method to quickly obtain the location information of the UCA area, the 
original image may be referred to confirm the boundary information and reduce the 
uncertainties.

There are some impact factors and limitations of the proposed method. The train-
ing data sets have a great impact on the performance of deep learning; richer data sets 
can make the network capture more features and perform better. The proposed method 
improved UCPWI by increasing the computational complexity, and thus the computing 
speed should be guaranteed by a higher hardware environment. Considering the large 
scale improvement of image quality and the development of hardware environments are 
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inevitable, to increase the computational complexity to improve UCPWI is still a worth-
while measure.

Conclusion
The purpose of this study was to propose and validate a new post-processing method 
that combined with deep learning to improve the imaging quality of UCPWI. The pro-
posed method consists of three stages: (1) First, with large training data sets, a deep 
learning model based on U-net was trained to differentiate microbubble and tissue radio 
frequency (RF) signals; (2) Then, to eliminate the remaining tissue RF signals, BAWT 
combined with maximum eigenvalue threshold was employed, BAWT can enhance the 
UCA area brightness, and eigenvalue threshold can be set to eliminate the interference 
areas due to the large difference of maximum eigenvalue between UCA and other areas; 
(3) Finally, the accurate microbubble imaging were obtained through ESBMV. Both 
phantom and in vivo rabbit experiments results validated the improvements. Compared 
with UCPWI based on DAS, the CTR and CNR was improved by 21.3 dB and 10.4 dB in 
the phantom experiment, and 22.3 dB and 42.8 dB in the in vivo experiment. The pro-
posed method showed that the deep learning can contribute to highlight the UCA area 
and can be regarded as a general strategy to improve the performance of UCPWI. In 
further study, we can concentrate on developing more appropriate network to enhance 
the difference between UCA and tissue area, especially the distinction in the border area 
near the microbubble area. At the same time, the training data sets have a great impact 
on the performance of deep learning, we will continue to collect standard and enrich the 
data sets in the future.

Materials and method
Deep learning network structure

Three deep learning networks (including CNN, RNN, and U-net) were designed to ana-
lyze the RF signals of UCPWI. The network extracted the internal complex structure 
of the input data to obtain high-level data representation. The structures of the three 
networks are shown in Fig. 6. Network with the best experimental results was adopted in 
the proposed method.

The structure of the CNN network is two convolution layers with 128 filters, a layer of 
maximum pooling, two convolution layers with 64 filters, a maximum pooling layer, one 
dropout layer, and two fully connected layers.

The structure of the RNN including four RNN layers with 100 neurons, one dropout 
layer, and three fully connected layers. The RNN layer can take into account the informa-
tion between each segment of the input signals. The output of RNN is not only related to 
the current input, but also the input at the previous moment.

The hidden layer of U-net consists of three upsampling layers, three downsampling 
layers, four dropout layers, fourteen convolutional layers, a fully connected layer, and 
three fusion layers. The network has a total of 607,112 parameters. The input layer 
was a set of one-dimensional RF signal with a length of 60, followed by a combination 
of convolution layer + active layer + dropout layer + downsampling layer, for a total 
of three times. The shallow convolution layer extracted the simpler features while the 
deeper convolution layer extracted more advanced and complex features. The number 
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of the filters increased with the depth of the network. And the number of obtained 
feature maps increased by 32, 64, and 128 in order. Following the downsampling layer 
was a deconvolution step, where the number of filters decreased with the increase 
of the network depth, and the size of the feature map increased. Each deconvolution 
feature map was connected with the corresponding convolutional feature map. After 
that was a fully connected layer.

The convolutional layer was used to extract the signal characteristics. The size of the 
convolutional filter in CNN and U-net structure was chosen to be 3 × 1 with a step 
size of 1. In actual processing, we performed zero-padding on the edges of the data 
so that the size of the data obtained after the convolution process was constant. The 
nonlinear activation function we used after each convolutional layer was the recti-
fied linear unit function (ReLU) [28]. Compared to the most commonly used sigmoid 
functions [29] in previous years, ReLU can accelerate the convergence of network. 
The downsampling layer used the maximum pooling with a size of 2 × 1, which means 
that the maximum value of this 2 × 1 window is retained and the resulting feature 
map size is halved. The downsampling layer was used to reduce the feature dimen-
sions and extract some of the most important features.

Fig. 6 The structure of the three networks. a CNN, b RNN, c U-net
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The dropout layer was a commonly used method to suppress overfitting [30]. The 
fully connected layer combined the extracted local features into global features. After 
the fully connected layer, the softmax activation function was used to obtain the prob-
ability of each signal belongs to these two categories. The cost function we used was 
cross-entropy.

The optimization algorithm we used was Adam [31], which can adjust the learning 
rate adaptively to update the weights. The Adam algorithm has four hyper parameters: 
(1) the step-size factor, which determines the update rate of the weight the smaller the 
step, the easier it is for the network to converge, but the training time will be longer. (2) 
Epsilon, which is usually a small constant, to prevent the denominator from being zero. 
(3) Beta1 controls the exponential decay rate of the first moment of the gradient; (4) 
Beta2 controls the exponential decay rate of the second moment of the gradient.

Table 6 shows the parameter values of the three networks.

Bubble approximated wavelet transform and eigenvalue threshold

By identifying the microbubble RF signals with deep learning, we can reduce interfer-
ences from other tissues specifically. However, the microbubble signals detected by deep 
learning tend to contain small portion of tissue signals, which will degrade the image 
quality due to the intensity disparity between microbubble and tissue signals. To remove 
the remaining tissue signals and further improve the contrast imaging quality, BAWT 
combined with eigenvalue method was employed.

BAWT is a new type of post-processing technology for contrast imaging, which 
improves the imaging CTR while retaining the advantages of low-energy and high-
frame-rate of PWI. First, the microbubble scattering sound pressure obtained by 
simulating the microbubble model was used as a new mother wavelet [18]. Then the 
continuous wavelet transform was performed on the RF signal and obtained a series of 
wavelet coefficients which had the same scale as the original RF signal.

In the time domain, BAWT represents the convolution operation of the processed sig-
nal and the mother wavelet at different scale factors, describing their correlation. Since 
the microbubble signal has a greater correlation with the mother wavelet, the resulting 
wavelet coefficient is larger. In contrast, the correlation between the tissue signal and 
the mother wavelet is relatively low, and the corresponding wavelet coefficient is small. 
Therefore, BAWT can further suppress the tissue signals to a certain extent, enhance the 
microbubble signals, and result in the improvement of the imaging CTR. The selection 
of the mother wavelet was based on the high-matched spectrum between the mother 
wavelet and the actual bubble echo. The scale factor changes the center frequency of the 

Table 6 The network parameter value

Parameter name Parameter value Parameter name Parameter value

Batch size 100 Epoch 150

The length of the signal 60 Step-size factor 1 × 10−5

Beta1 0.9 Beta2 0.999

Epsilon 1 × 10−8 Dropout rate 0.5
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passband of the bubble approximated wavelet. The optimal scale factor should be chosen 
at whose center frequency falls at the second harmonics of the microbubbles [20].

The bubble approximated wavelet was constructed based on Doinikov model [32], 
which has been proven to predict the ‘compression-only’ behavior of Sonovue very well. 
The Doinikov model can be described as

where ρl = 10 00 kg/m3 denotes the density of the surrounding liquid. P0  = 101,000 Pa as 
the atmospheric pressure. γ  = 1.07 as the gas thermal insulation coefficient. R0 = 1.7 μm 
as the initial radius of microbubble. R is the instantaneous radius of microbubble. R′ is 
the first-order time derivative of R, with essentially R′  = dR/dt and R″  =  d2R/dt2. σ(R0) 
= 0.072 N/m as the initial surface tension. χ  = 0.25 N/m as the shell elasticity modulus. 
ŋl = 0.002 PaS as the liquid viscosity coefficient. k0 = 4e−8 kg and k1 = 7e−15 kg/s as 
the shell viscosity components. α  = 4 μs as a characteristic time constant. Pdrive(t) is the 
driving ultrasound.

The pressure scattered by the microbubble can be expressed as

where d denotes the distance from the center of the microbubble to the transducer.
Following this, the bubble approximated wavelet can be obtained by solving Eqs.  (3) 

and (4) based on ODE solver provided by Matlab with the initial condition of R(t = 0)  
=  R0, R′(t =  0)= 0. The solver solves the second-order ordinary differential equation by 
Runge–Kutta method.

It has been proved that the eigenvalue has the ability to distinguish the microbubble 
and tissue area [20]. Based on the observation of the experiments, we found that the 
amplitude of the maximum eigenvalue in the UCA area is obviously higher than the tis-
sue area.

The eigenvalues can be calculated as follows.
Assuming that the delayed array signal is xd(k). The array signals were divided into 

multiple sub-arrays of the same length and the average of the sample covariance of all 
sub-arrays was used as the final covariance matrix

where M is the array number of the probe. M − L + 1 is the number of overlapping sub-
arrays. L is the length of the subarray. (·)H is the conjugate transpose. p is the subarray 
number.
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Diagonal loading technology was introduced to improve the stability of the algorithm, 
which is

where I represents the identity matrix. trace(R) is the main diagonal element sum of R. δ 
is a constant not greater than 1/L.

Next, the covariance matrix was decomposed and the eigenvalues were sorted. The 
signal subspace was composed of the eigenvectors corresponding to the larger eigenval-
ues and the eigenvectors corresponding to the smaller eigenvalues constructed the noise 
subspace as

where Λ = diag[�1, �2, . . . �L] are the eigenvalues in descending order. U = [V1,V2,…
VL] is the eigenvector matrix. Vi is the eigenvector corresponding to λi. RS is the signal 
subspace. RP is the noise subspace. N is used to decompose R into the signal subspace 
Us= [U1,U2,…UN] and noise subspace UP= [UN+1,UN+2,…UL]. In general, λN is set to be 
smaller than λ1 α times or larger than λL β times.

ESBMV beamformer

The final image was obtained through the beamforming algorithm. The beamforming 
algorithm is a key component of ultrasound imaging and plays an extremely important 
role in improving the imaging quality. The beamforming algorithm improves the image 
quality by adaptively weighting each image point of the received array signal. delay 
and sum (DAS) is the most common algorithm. The echo signals received by different 
array elements are delayed and summed. Since each imaging point has a fixed weight, 
its resolution and contrast are low, and the image quality is poor. The minimum vari-
ance (MV) algorithm [33] starts the development of the adaptive beamforming. It can 
flexibly assign different weights to each imaging point according to the characteristics 
of the echo signal. MV calculates the weight by minimizing the output energy and can 
effectively improve the image resolution. Since the improvement of the contrast of MV 
is not significant, the eigenspace-based minimum variance [34] algorithm was proposed. 
ESBMV decomposes the array signal into two mutually orthogonal signal subspaces 
and noise subspaces based on the eigenvalues, and then projects the MV weights to the 
decomposed signal subspaces, thereby improving the imaging contrast.

The ESBMV was calculated as follows.

1. MV minimizes the array output energy 

 where R is the covariance matrix of the delayed signal. w is the weight vector. d is the 
direction vector.

2. Calculate the MV weight 

(6)R̃ = R+ εI , ε = δ ∗ trace(R)

(7)R = UΛUH = USΛSU
H
S +UPΛPU

H
P = RS + RP

(8)minwHRw, subject to wH d = 1

(9)WMV =
R−1d

dHR−1d
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3. The final MV output is 

4. Calculate the signal covariance matrix according to Eq.  (5) and decompose the 
covariance matrix according to Eq. (7).

 The ESBMV weight can be expressed as 

5. Finally, the ESBMV output is 

Implementation of the proposed method

Figure 7 is the schematic view of the proposed method.
The entire algorithm flow is as follows:

1. The original RF signal was classified by U-net and the microbubble area was roughly 
located.

2. BAWT was used to enhance the signal of the microbubble area, and the classified RF 
signal was replaced with the wavelet coefficient under the optimal scale factor.

(10)SMV(k) =
1

M − L+ 1

M−L+1
∑

p=1

WH
MVx

p

d(k)

(11)WESBMV = USU
H
S WMV

(12)SESBMV(k) =
1

M − L+ 1

M−L+1
∑

p=1

WH
ESBMVx

p

d(k)

Fig. 7 The algorithm flow
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3. The signal covariance matrix was calculated according to Eq.  (5) and decomposed 
according to Eq. (7) (L = 32, α = 0.4).

4. Based on the previous steps, the maximum eigenvalue of each imaging point were 
obtained.

5. The maximum eigenvalue threshold was set to determine whether it is a microbub-
ble area (c times larger than the maximum eigenvalue of each scan line, c = 0.15).

6. For the microbubble area, the ESBMV output was calculated according to Eq. (12).
7. The final image was obtained after envelope detection and logarithmic compression 

(dynamic range: 60 dB).

The collection of data set

The experimental platform was designed based on an ultrasonic research platform Ver-
asonics Vantage 128 (Verasonics, Inc., Kirkland, WA, USA), a linear array transducer 
(L11-4v), four homemade gelatin phantoms, a medical syringe, a computer, Sonovue 
microbubble (Bracco Suisse SA, Switzerland), four pieces of fresh pork and three female 
rabbits (4 months, 2 kg). All animal experiments were performed according to protocols 
approved by Fudan University Institutional Animal Care and Use Committee.

Verasonics was used to excite the ultrasound wave and collect the RF data. The micro-
bubble signal samples were echo signals scattered from microbubble area, including the 
microbubble solution in the beaker, the microbubble echoes in the phantom and the 
microbubble echoes in rabbit carotid artery; the tissue signal samples were echo signals 
scattered from tissue area, including the pork signals, gelatin phantom signals, rabbit 
kidney signals, rabbit carotid artery signals and rabbit belly arterial signals. To enrich 
the data, we changed the experimental parameters (such as the transmit frequency, the 
transmit voltage, the concentration of the gelatin used to make the phantom, the loca-
tion and size of the internal tube of the phantom, the microbubble concentration).

Phantom (with pork) and rabbit abdominal artery experiments were used for inde-
pendent testing. The phantom was made of gelatin with a wall-less tube whose diam-
eter was 3 mm (11 cm in length, 11 cm in width, 6 cm in height). The fresh pork (taken 
from the belly) was used to simulate the complexity of biological tissue. For the phantom 
experiment, we placed a piece of fresh pork (12 mm in thickness, 40 mm in length, and 
25  mm in width) over the phantom. The ultrasonic coupling gel was applied between 
the pork and the phantom to ensure the signal transmission. The flowing Sonovue solu-
tion (diluted by 1000 times with 0.9% physiological saline) was injected into the tube by 
a medical syringe. For the rabbit experiment, the rabbit was first anesthetized and then 
placed on an autopsy table where the four limbs were fixed by ropes. Before imaging, 
the area of interest was epilated to remove the influence of cony hair. Medical ultrasonic 
coupling gel was applied to the area of interest. A total of 500 μL Sonovue microbubbles 
(no dilution) were injected through the right ear vein, which was followed by 500 μL of 
physiological saline.

Figure 8a, b shows the homemade phantom and the rabbit experiment targeting the 
kidney, respectively.
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Table 7 gives the detailed parameters of the ultrasound instrument for the independ-
ent testing and cross validation experiment. The mechanical index was less than 0.1. The 
bandwidth of the probe is 4–11 MHz.

The RF signal collected by Versonics have a dimension of 2100 × 128, where 128 was 
the number of element channels and 2100 was the length of the signal on each scan line. 
The RF signals (time domain) on each scan line were processed in segments, with a step 
size of five sampling points. The length of signal is 60 in each segment and these seg-
ments are taken as data samples to train the network.

The total number of the collected data samples is 8,694,572, of which the microbubble 
signal samples account for 45% and the tissue signal samples account for 55%. Such huge 
data sets can meet our requirement. The data were randomly divided into a training set 
and a test set, the training set accounted for 80% and the test set accounted for 20%.

Abbreviations
UCAI: ultrasound contrast agent imaging; UCAs: ultrasound contrast agents; PWI: plane wave imaging; RF: radio 
frequency; BAWT : bubble approximated wavelet transform; DAS: delay and sum; MV: minimum variance; ESBMV: eigens-
pace based minimum variance; CTR : contrast-to-tissue ratio; CNR: contrast-to-noise ratio; UCAs: ultrasound contrast 

Fig. 8 The experiment photos. a The phantom made of gelatin with a wall-less tube whose diameter was 
3 mm (11 cm in length, 11 cm in width, 6 cm in height). b In vivo rabbit, the region of interest was epilated to 
remove the influence of cony hair before imaging, medical ultrasonic coupling gel was applied to the region 
of interest. A total of 500 μL Sonovue microbubbles (no dilution) were injected through the right ear vein, 
which was followed by 500 μL of physiological saline

Table 7 Parameters of the ultrasound instrument for the experiment

Experiment parameters Value (independent testing) Value (cross validation)

Transducer element number 128 128

Transducer element kerf 0.05 mm 0.05 mm

Transducer element width 0.27 mm 0.27 mm

Transducer element pitch 0.3 mm 0.3 mm

Transducer spacing between elements 0. 295 mm 0. 295 mm

Transmit frequency 4 MHz 2.5 MHz, 3 MHz, 4 MHz, 5 MHz, 
6.25 MHz

Transmit voltage 10 V 1.6 V, 2.5 V, 5 V, 7.5 V, 10 V, 12.5 V, 15 V, 
17.5 V, 20 V

Transmit pulse Sine wave with two cycles Sine wave with two, three cycles

Sampling rate 25 MHz 25 MHz
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agents; ReLU: rectified linear unit function; CNN: Convolutional Neural Network; RNN: recurrent neural network; ROC: the 
area of the receiver operating characteristic curve; UCPWI: ultrasound contrast agent plane wave imaging.
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