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Background
Microfluidics is a science and technology that precisely manipulates and processes 
microscale fluids. It is commonly used to precisely control microfluidic  (10−9 to  10−18 L) 
fluids using channels that range in size from tens to hundreds of microns and is known 
as a “lab-on-a-chip” [1–4]. The microchannel is small, but has a large surface area and 
high mass transfer, favoring its use in microfluidic technology applications including 
low regent usage, controllable volumes, fast mixing speeds, rapid responses, and preci-
sion control of physical and chemical properties [1, 5, 6]. Microfluidics integrate sample 
preparation, reactions, separation, detection, and basic operating units such as cell cul-
ture, sorting and cell lysis [7]. For these reasons, interest in OOAC has intensified [8]. 
OOAC combines a range of chemical, biological and material science disciplines [9] and 
was selected as one of the “Top Ten Emerging Technologies” in the World Economic 
Forum [10].

OOAC is a biomimetic system that can mimic the environment of a physiological 
organ, with the ability to regulate key parameters including concentration gradients 
[11], shear force [12], cell patterning [13], tissue-boundaries, [14] and tissue–organ 
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interactions [15]. The major goal of OOAC is to simulate the physiological environment 
of human organs [16].

Human physiology is the science of studying the functions of the human body and its 
organ systems. This is of great significance to our understanding of the dysfunction and 
pathogenesis of the body, and therefore closely aligns with the fields of medicine, drug 
development and toxicology [17]. The most relevant and direct methods for studying 
human physiology are in vivo experiments that study human or model organisms. Bod-
ily functions rely on the interaction and adaptation of many lower-level components 
such as tissues, cells, proteins and genes. It is therefore challenging to reveal the under-
lying mechanisms of physiological phenomena simply through in  vivo studies [18]. In 
addition, drug development and toxicology require the assessment of the physiological 
effects of thousands of compounds [19]. Due to the limitations of low-throughput in vivo 
testing, biologists use in vitro cell culture. Cell culture refers to the growth and mainte-
nance of cells in a controlled environment [20]. For decades, traditional two-dimensional 
(2D) cell culture systems formed an important platform for life science research. Using 
2D systems, the functions of various cells are studied by culturing cells or cell products. 
However, 2D systems fail to accurately simulate the physiological manifestations of liv-
ing tissues/organs, intra-organ interactions and microenvironmental factors [21, 22] and 
often require verification in in vivo animal models. Due to species differences, animal 
experiments often fail to replicate human experiments [23], and due to both high costs 
and ethical issues, the use of animals as models for drug testing has come under scrutiny 
[24]. In preclinical testing, an inadequate description of the human tissue environment 
may lead to inaccurate predictions of the combined effects of overall tissue function [25]. 
OOAC was designed to overcome these shortcomings by providing more physiological 
model systems [26]. OOAC was proposed as a future replacement technology for experi-
mental animal models [27].

This review introduces recent advances from OOAC technology and discusses its 
future perspectives for cell biological assessments.

Organs‑on‑a‑chip design concept and key components

Design concept

Culture systems require the control of external and internal cell environments [28]. 
OOAC combined with micromachining and cell biology can control external parameters 
and accurately simulate physiological environments [16]. Dynamic mechanical stress, 
fluid shear and concentration gradients are required on the chip. Cell patterning should 
also be realized to fully reflect physiological processes.

Fluid shear force Microfluidics enables the dynamic culture of cells through micro-
pump perfusion, which facilitates the administration of nutrients and timely waste dis-
charge. The dynamic environment in which cells are located is more comparable to in vivo 
conditions than static culture. In addition, fluid shear stress induces organ polarity [29]. 
Importantly, OOAC exerts necessary physical pressure on the normal biological func-
tions of endothelial cells [30] by activating cell surface molecules and associated signaling 
cascades. Similarly, the incorporation of fluid into the OOAC device permits biological 
assessments at the single organ level [31]. The OOAC system summarizes flow through a 
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simple “rocker” on a chip fluid motion, or through a more complex programmable “pulsa-
tile” format, arranged in a single loop for organization-specific configurations [32].

Concentration gradient At the microscale level, the fluid acts primarily as a laminar 
flow, resulting in a stable gradient of biochemical molecules, controlled both spatially 
and temporally. Various biochemical signals driven by concentration gradients exist in 
biological phenomena, including angiogenesis, invasion, and migration [33–35]. Micro-
fluidics simulate complex physiological processes in the human body by altering flow 
velocity and channel geometry using microvalves and micro-pumps to achieve stable, 
three-dimensional (3D) biochemical concentration gradients.

Dynamic mechanical stress Normal day-to-day organ pressure includes blood pres-
sure, lung pressure, and bone pressure. These pressures play a major role in maintaining 
mechanically stressed tissues such as skeletal muscle, bone, cartilage and blood vessels 
[36–38]. Microfluidics enable the use of elastic porous membranes to create periodic 
mechanical stresses. This mechanical stimulation is considered a key determinant of dif-
ferentiation during physiological processes [39, 40].

Cell patterning The organization of the human body requires a complex and ordered 
arrangement of multiple cells to form a functional whole body interactions. Microfluidics 
control cell patterning for the construction of in vitro physiological models with complex 
geometries. Surface modifications [41], templates [42], and 3D printing [43] contribute 
to cell patterning on the chip. The 3D printing method enables multi-scale cell patterning 
by permitting the formation of hydrogel scaffolds with complex channels. The advantage 
of 3D printing is to allow user-defined digital masks to provide versatility in cell pat-
terns, critical for the in vitro reconstruction of the cellular microenvironment. Li et al. 
[44] developed methods to achieve rapid heterotypic cell patterning on glass chips using 
controlled topological manipulations. This method combines a polyvinyl acetate coating, 
carbon dioxide laser ablation, and continuous cell seeding techniques on a glass chip. This 
method enables controlled epithelial–mesenchymal interactions. In addition, mesenchy-
mal cells with similar properties can also be patterned on glass chips. This method can be 
helpful for large-scale investigation and pharmaceutical testing of cutaneous epithelial–
mesenchymal interaction and can also be applied to the patterning of other cells.

Key components

The OOAC involves four key components, including (1) microfluidics; (2) living cell tis-
sues; (3) stimulation or drug delivery; and (4) sensing [45]. The microfluidic component 
refers to the use of microfluidics to deliver target cells to a pre-designated location and 
includes a system of culture fluid input and waste liquid discharge during the culture 
process. Typically, this component is characterized by miniaturization, integration, and 
automation [7]. The living cell tissue component refers to components that spatially 
align a particular cell type in the case of 2D or 3D systems. The 3D arrangements are 
typically created by the addition of biocompatible materials such as hydrogels. These 
materials can prevent mechanical damage and shape three-dimensional arrangements. 
[42]. Although the 3D tissue structure more accurately simulates the in  vivo situation 



Page 4 of 19Wu et al. BioMed Eng OnLine            (2020) 19:9 

compared to 2D models, due to the limitations of technology and cost and the assem-
bly of extracellular matrix and the presetting and formation of vasculature, living cell in 
organ tissues are still mostly cultivated in 2D. For certain tissues, physical or chemical 
signals are required to simulate the physiological microenvironment, which promotes 
micro-tissue maturation and function. For example, electrical stimulation can help 
myocardial tissue maturation [46]. Different signal stimuli can be derived from for drug 
screening approaches [47]. The sensing component for detecting and compiling data 
can be an embedded sensing output component or a transparent chip based visual func-
tion evaluation system. Peel et  al. [48] used automated systems to image multicellular 
OOACs, producing detailed cell phenotypes and statistical models for measurements. 
Kane et  al. [49] developed a cell system to monitor cells in a 3D microfluidic setting. 
These assays featured time-lapse imaging microscopy to assess cellular electrical activity 
through quality control. A meaningful human-on-chip cell model cannot be described 
and accessed without microsensors-mediated reading of the metabolic state at charac-
teristic points in the system.

Emerging OOAC technologies

Liver OOAC

The hepatic system is the major site of drug/toxin metabolism. The liver constitutes a 
series of complex hepatic lobules that confer multicellular functional communication 
[50]. Maintaining the physiology of hepatocytes over an extended time period is chal-
lenging [51]. Kane et  al. designed the first liver based system that consisted of micro-
fluidic pores in which 3T3-J2 fibroblasts and rat liver cells were co-cultured to mimic 
an airway interface (Fig.  1) [52]. Rat hepatocytes cultured in the chip could continu-
ously and stably synthesize albumin and undergo metabolism. Lee et al. [53] designed 
a chip that mirrored the interstitial structure of endothelial cells and cultured primary 
hepatocytes, with culture media perfused outside the gap. This permeable endothelial 
gap separated hepatocytes in cord-based structures permitting their separation from the 
external sinusoidal region, simultaneously maintaining efficient substance exchange. Ho 
et al. [13] used radial electric field gradients that were produced using electrophoresis to 
pattern cells onto circular polydimethylsiloxane (PDMS) chips. These novel techniques 
simulated the hepatic lobule structure. Hegde et  al. [54] fabricated a 2-layer chip that 
separated the channels using a porous polyethylene terephthalate(PET) membrane and 
continuously perfused collagen and fibronectin-sanded rat primary hepatocytes into the 
lower channel through the upper chamber.

To improve the physiological models, 3D hepatocyte culture techniques have been 
used form microfluidic chips [55]. Ma et al. [56] produced a biomimetic platform for 
the perfusion of hepatic spheroids in situ. Yum et al. [57] produced systems to study 
how hepatocytes affect other cell types. High-throughput assays were developed to 
assess liver cell drug toxicity. Riahi et  al. [58] produced microfluidic electrochemi-
cal chip immunosensors to detect the biomarkers produced during hepatotoxicity. 
Chong et  al. [59] produced assays to monitor drug skin sensitization through the 
assessment of metabolite production and the activation of antigen presenting cells 
(APCs). This system holds value as a drug screening platform to identify compounds 
that produce systemic skin reactions. Lu et al. [60] developed biomimetic liver tumors 
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through integrating decellularized liver matrixes (DLM) with gelatin methacryloyl 
(GelMA) to mirror the 3D tumor microenvironment (TME). This system provides 
an improved disease model for a range of future anti-cancer pharmacological stud-
ies. Furthermore, a number of disease or injury states were tested. Kang et  al. [61] 
used their system to analyze viral replication of the hepatitis B virus. Zhou et al. [62] 
developed a system for modeling alcohol injury. Further characterization of cultured 
cytoplasm in metabolomics, proteomics, genomics, and epigenomic analysis will help 
improve the functional outcome of these studies.

Lung‑on‑a‑chip

Gas exchange in the lungs is regulated by the alveoli which can be challenging to repro-
duce in vitro. Microfluidics can establish extracorporeal lung models and lung patholo-
gies through accurate fluid flow, and sustained gaseous exchange. Current studies have 
focused on the regulation of airway mechanical pressure, the blood–blood barrier (BBB), 
[63] and the effects of shear force on pathophysiological processes. Huh et al. produced 
a lung-on-a-chip model (Fig. 2) [64] using soft lithography to divide the chip into regions 
separated by 10 μm PDMS membranes with an extracellular matrix (ECM). The upper 
PDMS regions had alveolar epithelial cells, whilst the lower regions contained human 
pulmonary microvascular endothelial cells, thus mimicking the alveolar–capillary bar-
rier. The structures of the membranes were altered under a vacuum to simulate expan-
sion/contraction of the alveoli during respiration. Inflammatory stimuli were introduced 
into the system through neutrophils that were passed to the fluid channels. This pro-
duced a pathological model of pulmonary edema through the introduction of interleu-
kin-2 (IL-2) [65]. This highlights the utility of the OOAC models to improve current 
in vivo assays.

Fig. 1 Schematic of the DLM-based liver tumor-on-a-chip. a Preparation of the DLM solution from a natural 
liver; b 3D schematic representation of the various components of the equipment (top and bottom, top and 
bottom microchannels, PET membrane, air inlet, and outlet) and their respective dimensions (reprinted with 
permission from [52] Copyright © 2006, Royal Society of Chemistry)
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In 2015, Stucki et al. [66] reported a lung chip that mimicked the lung parenchyma. 
The system included an alveolar barrier and 3D cyclic strain that mimicked respiration 
representing the first elastic membrane expansion model to simulate breathing. Blume 
et al. [67] produced 3D airway culture models that simulated pulmonary interstitial flow 
through the exchange of both fluid and media. This permitted more in-depth physiologi-
cal studies of the epithelial barrier. This model utilizes a stent with a permeable filter 
as a single tissue culture chamber and combined multiple chambers for improved inte-
gration. In the lung-on-a-chip, whilst simulating lung gas–liquid interfaces and respira-
tory dilation through the microfluidic system, pressure can be applied to the alveoli and 
attached capillaries, providing a shear flow profile. This realistically simulates the lung 
environment. Humayun et  al. [68] cultured airway epithelial and smooth muscle cells 
at different sides of a hydrogel membrane to assess their suitability as a physiological 
model. The system was combined with microenvironment cues and toxin exposure as a 
physiological model of chronic lung disease. Yang et al. [69] produced a poly(lactic-co-
glycolic acid) (PLGA) electrospinning nanofiber membrane as a chip matrix for cell scaf-
folds. Given the ease of the system, it is applicable to lung tumor precision therapy and 
tissue engineering approaches was highlighted.

Lung tissue organ chips are useful as implantable respiratory assistance devices. Peng 
et al. [70] designed lung assist devices (LAD) to permit additional gas exchange in the 
placenta for preterm infants during respiratory failure. The concept of large-diameter 
channels was achieved in the umbilical arteries and veins, providing LAD with high 
extra-corporeal blood flow. This has added utility because clinical trials for umbilical 
vasodilation thresholds were unethical. This study was the first to systematically quan-
tify umbilical vessel damage as the result of expansion by catheters. Dabaghi et al. [71] 
performed microfabrication for microfluidic blood oxygenators using double-sided gas 
delivery to improve gas exchange. Oxygen uptake increased to 343% in comparison 

Fig. 2 Lung-on-a-chip system. a An alveolar–capillary barrier was produced on porous flexible PDMS 
membranes coated with ECM using spaced PDMS microchannels. The device reproduced respiratory motion 
through a vacuum leading to mechanical stretching and the formation of an alveolar–capillary barrier; b 
following inhalation, the diaphragm contracts, reducing pleura pressure. The alveolar–capillary interface 
became stretched due to alveoli tension; c device development: a porous membrane between the upper 
and lower channels bound irreversibly following plasma exposure; d PDMS moved through the side of the 
channels and then was removed following vacuum pressure. e Actual images of the device (reprinted with 
permission from [64] Copyright © 2010, American Association for the Advancement of Science)
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to single-sided devices. Xu et  al. [72] used a microfluidic chip platform to mimic the 
microenvironment of lung cancer with cancer cell lines and primary cancer cells and 
tested different chemotherapeutic drugs. Another recent study mimicked asthma in a 
“small airway-on-a-chip” model [73]. With the models of human asthmatic and chronic 
obstructive pulmonary disease airways, therapeutics were tested and the chip model 
recapitulated in vivo responses to a similar therapy.

Kidney OOAC

The kidney is responsible for the maintenance of osmotic pressure drug excretion. Kid-
ney toxicity leads to an irreversible loss of renal filtration highlighting the need for drug 
screening systems. Filtration and reabsorption take place in the nephrons that consist 
of the glomerulus, renal capsule, and renal tubule. Microfluidics can simulate the fluid 
environment that support tubular cell growth, and provides porous membrane support 
for the maintenance of cell polarity [16].

Jang et al. [74] produced the first multi-layered microfluidic system (Fig. 3a) in which 
mouse kidney medullary collecting duct cells were used to simulate renal filtration. The 
device provided a biomimetic environment that enhanced polarity of the inner medul-
lary collecting duct through promoting cytoskeletal reorganization and molecular trans-
port in response to hormone stimulation. In 2013, the same microfluidic device was 
used to culture human primary renal epithelial cells [75]. These were the first toxicity 
studies of primary kidney cells. This device enables direct visualization and quantitative 
analysis of diverse biological processes of the intact kidney tubule in ways that have not 

Fig. 3 a Kidney tubular chip. Sandwich assembly of the PDMS channel, porous membrane, and PDMS 
reservoir (reproduced from [74]); b the channel can replicate the urinary cavity and capillary lumen of the 
glomerulus. The porous flexible PDMS membrane can be used to functionalize the protein laminin to mimic 
the glomerular basement membrane. Cyclic mechanical pressure to the cell layer via vacuum stretching of 
the flexible PDMS film can be produced (reprinted with permission from [76] Copyright © 2018, Royal Society 
of Chemistry)
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been possible in traditional cell culture or animal models, and it may also prove to be 
helpful for studying the basic molecular mechanisms of kidney function and disease.

The disadvantage of conventional cell culture systems is that cell differentiation into 
functional cells requires extended culture times and an external signal detection system. 
Musah et al. [76] described methods to induce pluripotent stem cell-derived podocytes 
to form human glomerular chips (Fig. 3b) in organ culture devices. These mimicked the 
structure and function of the glomerular capillary wall, which was not possible with 
previously employed methods. The chip was applicable for nephrotoxicity assessments, 
therapeutic development, regenerative medicine, and kidney development and disease. 
Sakolish et al. [77] produced a reusable microfluidic chip in human proximal tubules and 
glomeruli that permitted renal epithelial cells to grow under various conditions. Shear 
stress causes nephrotoxicity. Schutgens et  al. [78] designed stable tubule culture sys-
tems that permitted extended expansion and human kidney tissue analysis. Based the 
system, a multi-purpose primary renal epithelial cell culture model was developed that 
enabled rapid and individualized molecular and cellular analysis, disease modeling, and 
drug screening. Tao et  al. [79] presented a powerful strategy to generate human islet 
organoids from human induced pluripotent stem cells. This strategy was applicable to a 
range of applications for stem cell-based organic engineering and regenerative medicine.

Heart‑on‑a‑chip

Cardiovascular deaths are the leading cause of human mortality. The emergence of 
microfluidics has enabled in  vitro bionic studies of cardiac tissue. The myocardium is 
a major component of the heart. The beating of cardiomyocytes (CMs) can be used 
to directly assess drug effects and is directly related to heart pumping [80]. In 2012, 
Grosberg et  al. [81] used PDMS to produce an elastic film with a surface texture and 
implanted neonatal rat CMs on the membrane to form a muscle membranes. As the 
CMs contract, the muscle film curled to one side. By measuring the degree of this curl 
it was possible to analyze the differences in the size of the cell contractile capacities on 
the PDMS film. The experimental system was suitable for both single muscle membrane 
measurements and high-throughput automated multi-plate assays. Subsequently, in 
2013, Zhang et al. [82] utilized hydrogels to produce self-assembled myocardial sheets 
in a PDMS model. The CMs were derived from differentiated myocardium. Micro-organ 
tissue chips were produced from 3D printing technology that permitted the integration 
of myocardial and vascular systems [83]. The model utilized vascular endothelial cells 
to form vascular networks and CMs were added to the vascular network gap. The organ 
chip produced a screening platform for CV-related drugs.

Zhang et al. [84] introduced the heart-on-a-chip device that used high-speed imped-
ance detection to assess cardiac drug efficacy. The device records the contraction of 
CMs to reveal drug effects. The chip represented a preclinical assessment of drug car-
diac efficacy. Marsano et al. [85] built a heart organ platform (Fig. 4) that mimicked the 
physiological and mechanical environment of CMs. Direct visualization and quantitative 
analysis was performed, which was not permitted in traditional cell culture or animal 
models. This platform represents an advance in the field and provides standard func-
tional 3D heart models. This makes the device an innovative and low-cost screening 
platform to improve the predictive power of in  vitro models. Schneider [86] designed 
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convenient and efficient chips to generate heart tissue in a controlled environment based 
on human induced pluripotent stem cells. The viability and function of myocardial tis-
sue was maintained for an extended time period and detailed spatiotemporal pulsation 
dynamics were optically detected. This platform can be used for a variety of biomedical 
applications. In addition, Tzatzalos et al. [87] reported that the hiPSC-CMs can repre-
sent an unlimited potential for healthy and disease-specific CMs to assess the efficacy of 
drugs for dilated cardiomyopathy. These advances in drug development have important 
implications for cardiovascular tissue because cardiotoxicity is often seen in drug trials 
and is one of the main reasons clinical trials are suspended or drugs are withdrawn from 
the market.

Intestine‑on‑a‑chip

Oral drugs have to transverse the small intestine to enter the bloodstream. Villi are 
key to absorption and their morphology must be maintained on the chip [88]. Imura 
et al. [89] developed chips to simulate the intestinal system, consisting of a glass slide 
permeable membrane and PDMS sheet containing the channels. Caco-2 cells were 
cultured on the chips. Sung et al. produced the first 3D hydrogel structure to simulate 

Fig. 4 3D heart-on-a-chip. a Two separate PDMS microchambers were employed. The CMs are positioned 
in the central channel to create a 3D construct, whilst the medium is replaced trough side-channels; b 
the lower end of the compartment is pressurized to deform the PDMS membrane and compress the 3D 
structure. Compression is converted to uniaxial strains applied to the 3D cell structure; c PDMS layers are 
aligned and irreversibly combined. Upper layers are present in the culture chamber and the drive chambers 
represent the lower layers; d 3D illustration; e real-life chip; f SEM of the chip cross section (reprinted with 
permission from [85] Copyright © 2016, Royal Society of Chemistry)
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the human intestinal villi [90]. Kim et  al. produced bionic devices (Fig.  5) [91]. The 
microenvironment of the intestine was reconstructed through shear force and cyclic 
strains. Caco-2 cells show prolonged growth and maintained the microbial flora in 
the human intestine. The complex structure and physiology of the intestine provided 
a platform for drug screening and the role of the intestinal microbiome, inflammatory 
cells and peristaltic-related mechanical deformation during intestinal disease [92]. 
The device permitted the exploration of the etiology of intestinal disease and identi-
fied therapeutic targets and drugs. This study demonstrates the potential of intestine-
on-chip for personalized medicine studies on intestinal cells.

Intestinal cells were cultured alone or with endothelial cells including HUVECs 
[91]. Genome fidelity was low, so the chips mimicked intestinal function. Kasen-
dra1 et al. [93] combined intestinal tissue engineering [94] and OOAC technology to 
establish in vitro biological models of the human duodenum. The intestinal epithelial 
cells cultured in the chip were obtained from endoscopic biopsies or organ resections. 
This chip represented the closest model to the living duodenum and reproduced key 
features of the small intestine. Recent findings enhanced our knowledge of the intesti-
nal microbiome [95] and intestinal morphology [96].

Fig. 5 a Illustration of the intestine-on-a-chip device; b images of the device composed of transparent PDMS 
elastomers; c cross-sectional view of the channels and square illustrations showing a top view of the porous 
film; d schematic of intestinal monolayers cultured on the chips (top) and phase contrast images (bottom) 
plus (left) or minus (right) mechanical strains (30%); arrows indicate the direction). e pressure quantitation 
(reprinted with permission from [91] Copyright © 2012, Royal Society of Chemistry)
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Multi‑organs‑on‑a‑chip

An array of physiological pathways requires continuous media circulation and inter-
tissue interactions. Single organ chips fail to fully reflect the complexity, functional 
changes, and integrity of organ function [97]. The “multi-organ-on-a-chip”, otherwise 
referred to as the “human-on-a-chip” [98] simultaneously constructs multiple organs 
attracting obvious research attention. Multi-organs-on-a-chip culture cells of different 
organs and tissues simultaneously which are connected by channels (bionic blood vessel 
[99]), to achieve multi-organ integration, permitting the examination of interactions to 
establish a system [100, 101]. These can be separated into static, semi-static and flexible 
approaches [102]. Static multiple organs are integrated into single connected devices. In 
semi-static systems, the organs are joined via fluidic networks with  Transwell®-based 
[103] tissue inserts. In the flexible system, individual organ-specific platforms are inter-
connected using flexible microchannels. In such systems, the flexible nature is advan-
tageous and recreates multiple organs [102]. Although the multi-organs-on-a-chip 
concept remains in its infancy, major breakthroughs have been made, including the 
design of two-organs [104, 105], three-organs [106, 107], four-organs [108, 109], and ten 
organs on the chip [110].

In 2010, Van et al. [104] were the first to combine liver and intestines in a microfluidic 
device. The intestine and liver slices functioned on the chip and demonstrated its appli-
cability to organ interactions including the regulation of bile acid synthesis. This system 
enabled in  vitro studies and provided insight into organ–organ interactions. A larger 
number of organs have since been concentrated onto individual chips. Organ chips are 
required to maintain stable fluid connection, avoid bacterial contamination, and moni-
tor cell viability throughout the culture process. As the number of organs on the chip 
increases, the complexity of the system is enhanced, inevitably leading to unpredictable 
results. Simplifying existing systems is critical to achieving a wider range of applications. 
Lee et  al. [111] fabricated pumpless, user-friendly multi-organs-on-a-chip which were 
easily assembled and operated. Satoh et  al. reported a multi-throughput multi-organ-
on-a-chip system formed on a pneumatic pressure-driven medium circulation platform 
that was microplate-sized (Fig. 6) [112]. This system possesses the following advantages 
for application to drug discovery: simultaneous operation of multiple multi-organ cul-
ture units, design flexibility of the microfluidic network, a pipette-friendly liquid han-
dling interface, and applicability to experimental protocols and analytical methods 
widely used in microplates. This multi-organ culture platform will be an advantageous 
research tool for drug discovery.

The continued development of OOAC was dependent on advances in design, mode-
ling, manufacturability, and usability. Lantada et al. [113] produced an innovative combi-
nation of laser technologies. The assessment of human mesenchymal stem cells verified 
the effectiveness of the technique and the resultant chip was transparent, facilitating 
imaging procedures. Such technologies are feasible for mass-produced chips and hold 
utility for energy, transportation and aerospace industries.

OOAC technology has developed rapidly in recent years and has enhanced our knowl-
edge of all the major organs. Others not discussed in this review include blood vessels 
[99, 114, 115], the skin [116, 117], the BBB [118, 119], skeletal muscle [120, 121], and the 
CNS [122, 123].
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Stem cell engineering

The source of biological tissue is one of the most important parameters in OOAC 
design. Stem cells can be extracted from humans without tissue biopsy [124]. By defini-
tion, a stem cell is any cell that is self-renewing and has the potential to differentiate into 
one or more specialized cell types. The most common types include embryonic stem 
cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cells (ASCs). These 
cells can be used as a biological tissue source for OOAC (Fig. 7) [125]. The most com-
mon human ASCs are mesenchymal stem cells (MSCs) which are pluripotent stem cells 
extracted from adult tissue [126]. Bone marrow mesenchymal stem (bMSCs) cells are 
typically derived from bone marrow or adipose tissue, making them an attractive option 
due to their ease of extraction from tissue biopsies [127]. Due to their limited ability 
to differentiate, lack of consistent derivation protocols and clear biological responses, 
MSCs are less useful in OOAC models than their pluripotent counterparts. Human ESCs 
originate from blastocysts or internal cells of the embryo. Dependent on the source, they 
can be pluripotent and differentiate into any type of adult cell from any of the three germ 
layers [128]. However, human ESCs must be derived from human embryos which is eth-
ically controversial, in turn leading to regulations and restrictions. Due to the ethical 
debate surrounding ESCs and the technical difficulties of producing large numbers of 
genetically diverse cell lines, it is more difficult to apply human ESCs to clinical trials 
than their use as precision drug replacements in disease models for therapeutic drug 
evaluation [129]. Like ESCs, MSCs are pluripotent and can differentiate from all three 

Fig. 6 a Multi-throughput multi-organ-on-a-plate systems; b projection of a culture device containing a 
4 × 4 culture chamber illustrated through a culture chamber of an X–X’ cross section; c design of microfluidic 
networks in the microfluidic plates for 8-throughput 2-organ systems and a 4-throughput 4-organ system. 
Design of the microfluidic networks in microfluidic plates for eight-channel dual-organ systems and 
four-flux four-organ systems. Closed circles indicate the location of the hole leading to the top surface of the 
microfluidic plate. Dark and light-shaded areas are deep and shallow microfluidic channels, respectively. Areas 
surrounded by green lines represent the circulation culture unit. Blue lines indicate the wall of the culture 
room. Thin red lines surrounding the exit indicate the Laplace valve. d Media circulation was performed using 
pneumatic pressure in the two-organ system. Red arrows indicate the direction of media flow (reprinted with 
permission from [112] Copyright © 2017, Royal Society of Chemistry)
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germ layers [130]. As iPSCs are derived from adult tissue rather than embryonic tissue, 
they avoid the ethical issues associated with ESCs. No significant differences in gene 
expression levels, surface marker expression, and morphology between ESCs and iPSCs 
are observed in cells from the same genetic background [131, 132]. In addition to cir-
cumventing ethical controversies, another advantage of iPSCs over ESCs is that they can 
be obtained from donors of known disease phenotypes, which can be used for patient-
specific disease models and drug screening.

Since stem cells are more readily available than many primitive cell types and tis-
sue biopsies, and they are more physiologically representative than other cell lines and 
are likely to become the main tissue source for future OOAC (Fig. 8) [133]. Continued 
research into the methods by which stem cells differentiate into functional organ models 
on chips will contribute to improvements in stem cell methods and advances in OOAC 
technology [125, 134].

Conclusion and future perspectives
We have reviewed recent progress in OOAC technology. Microfluidic chips provide 
favorable support for the development of OOAC. Its development has attracted world-
wide research attention and great scientific advances have been made. A large number of 
OOACs have been designed and prepared. An array of human organs has been studied. 
The ultimate goal of OOAC is to integrate numerous organs into a single chip, and to 
build a more complex multi-organ chip model, finally achieving a “Human-on-a-chip”.

Fig. 7 Tissue sources for the organ-on-a-chip (OOAC) devices. Embryonic stem cells (ESCs), induced 
pluripotent stem cells (iPSCs), and adult stem cells (ASCs) can be differentiated and integrated into 
microfluidic chips as for cell lines and primary cells. The figure illustrates the advantages (white) and 
limitations (black) of ESCs, ASCs, iPSCs, primordial and tissue biopsies, and cell lines in OOC devices. Cell 
lines and primary cells are more common in oocytes as they typically display good biological response 
characteristics. However, cell lines do not represent normal physiological conditions and primary cell culture 
time is limited, and the quality is unstable. In contrast, stem cells are readily available and are an infinite 
cell source. Even with current limitations on differentiation and maturation protocols, stem cells represent 
a promising technology that can be incorporated into OOC devices (reprinted with permission from [125] 
Copyright © 2019, Elsevier)
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Although OOAC technology has developed rapidly, the human-on-a-chip theory 
remains distant. PDMS is the most widely employed material, but comes with dis-
advantages as the resultant film is thicker than the in vivo morphology. A decreased 
absorbance of small hydrophobic molecules influences solvent efficacy and toxicity. 
It is thus necessary to identify suitable alternative materials. At present, the cost of 
manufacturing and experimental implementation is relatively expensive, which is not 
conducive to the widespread use of organ chips, so components must be of low cost 
and easy to dispose. More expensive components should be reusable. In terms of inte-
grated system components, the media volume and connector size must be reduced for 
general use. Collecting samples on the chip may interfere with its operation, result-
ing in changes in the concentration of various metabolites. More suitable sensors are 
thus required. Universal cell culture mediums suitable for all organs are also required. 
Most critically, as the number of organs on the chip increases, functionality becomes 
more complex and generated data carry artefactual and non-translatable risks. This 
is currently unsolvable. In the case of long-term repeated administration or on-chip 
studies, the biomarkers identified in vitro may not fully reflect the in vivo equivalent.
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