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Abstract 

Background:  Individual motor units have been imaged using ultrafast ultrasound 
based on separating ultrasound images into motor unit twitches (unfused tetanus) 
evoked by the motoneuronal spike train. Currently, the spike train is estimated from the 
unfused tetanic signal using a Haar wavelet method (HWM). Although this ultrasound 
technique has great potential to provide comprehensive access to the neural drive to 
muscles for a large population of motor units simultaneously, the method has a limited 
identification rate of the active motor units. The estimation of spikes partly explains the 
limitation. Since the HWM may be sensitive to noise and unfused tetanic signals often 
are noisy, we must consider alternative methods with at least similar performance and 
robust against noise, among other factors.

Results:  This study aimed to estimate spike trains from simulated and experimental 
unfused tetani using a convolutive blind source separation (CBSS) algorithm and com-
pare it against HWM. We evaluated the parameters of CBSS using simulations and com-
pared the performance of CBSS against the HWM using simulated and experimental 
unfused tetanic signals from voluntary contractions of humans and evoked contraction 
of rats. We found that CBSS had a higher performance than HWM with respect to the 
simulated firings than HWM (97.5 ± 2.7 vs 96.9 ± 3.3, p < 0.001). In addition, we found 
that the estimated spike trains from CBSS and HWM highly agreed with the experimen-
tal spike trains (98.0% and 96.4%).

Conclusions:  This result implies that CBSS can be used to estimate the spike train of 
an unfused tetanic signal and can be used directly within the current ultrasound-based 
motor unit identification pipeline. Extending this approach to decomposing ultrasound 
images into spike trains directly is promising. However, it remains to be investigated in 
future studies where spatial information is inevitable as a discriminating factor.

Keywords:  Convolutive blind source separation, Spike train, Unfused tetanus, Twitch, 
Motor unit, Motoneuron
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Introduction
The smallest functional element that can be voluntarily activated in the neuromuscu-
lar systems comprises a motoneuron and a group of muscle fibres innervated by the 
motoneuron. This functional element is called a motor unit (MU). The gold standard for 
measuring the characteristics of a large population of MUs is based on high-density sur-
face electromyography (sEMG) [1]. High-density sEMG consists of a grid of electrodes 
that records mixed MU activities superficially from the skin (< 20 mm). Then, the activ-
ity is decomposed into single MU spike trains by blind source separation (BSS) tech-
niques, which use many electrodes [2, 3]. This approach provides access to the neural 
drive of the spinal cord via the motoneurons to specific muscles [4]. Although sEMG has 
been used successfully for MU analysis, it is well-known that it has limited spatial selec-
tivity and field of view.

Ultrafast ultrasound has been shown to image and analyse voluntarily activated MUs 
for a large field of view in the muscle (40 × 40  mm) [5–11], providing spatiotemporal 
mechanics at a high resolution (< 1 mm and > 1 kHz). This technique is based on record-
ing radio frequency signals (B-mode images) (Fig.  1A, B), calculating displacement 
velocity images (Fig. 1C) and separating the images into spatiotemporal components, i.e. 
each component is associated with a (1) spatial map and (2) a time signal (Fig. 1D). A 
subset of the components is putative estimates of the (1) MU territory and (2) a sequence 
of MU twitches (unfused tetanic signal) evoked by the spike trains [5, 6, 9, 10]. The spike 
trains are estimated from the unfused tetanic signal (Fig. 1E). The spike train estimation 
is currently based on a Haar wavelet method (HWM), which detects the twitch onsets 
due to the large gradient changes, and it has good performance [12]. Although this ultra-
sound-based pipeline (Fig. 1) has great potential to provide comprehensive access to the 
neural drive of the spinal cord to muscles for a large population of MUs simultaneously, 
the method currently has a limited identification rate of the active MUs [6].

The estimation of spikes partly explains the current pipeline’s limited identification 
rate of active MUs from each estimated unfused tetanic signal that often is noisy [6, 13]. 
Since HWM is based on large gradients, the noise in the unfused tetanic signals may 
induce false positives. Therefore, we must consider alternative methods with at least sim-
ilar performance and robust against noise, among other factors. An alternative method 
with great potential is based on convolutive blind source separation (CBSS), which has 
been used with great success on multichannel sEMG signals [2, 3, 14]. Since CBSS uses 
multiple samples over time to estimate each spike, it should be able to estimate spike 
trains from single-channel unfused tetanic signals robustly with high performance.

The main challenge of using CBSS to estimate the spike train from an unfused tetanic 
signal is that the unfused tetanus of a MU will consist of variable successive twitches 
[15–17], where the twitch duration is longer than the time between two succeed-
ing spikes (i.e. an ISI). In contrast, the MU action potential is more consistent, and its 
duration is shorter than the ISI. Previous studies of spike train estimation of an unfused 
tetanic signal, i.e. the HWM, have exploited the similarity of each twitch rise (onset gra-
dient) and observed that the twitch rise duration is shorter than the ISI [12]. Assum-
ing the twitch rise is the action potential counterpart, and the remaining twitch activity 
is another additive noise component, we hypothesise that estimating the spike train 
using CBSS should have a high agreement with the ground truth. If this is the case, this 



Page 3 of 17Rohlén et al. BioMedical Engineering OnLine           (2023) 22:10 	

Fi
g.

 1
 T

he
 m

et
ho

do
lo

gi
ca

l p
ip

el
in

e 
to

 id
en

tif
y 

vo
lu

nt
ar

ily
 a

ct
iv

at
ed

 m
ot

or
 u

ni
ts

 (M
U

s)
 u

si
ng

 u
ltr

af
as

t u
ltr

as
ou

nd
. A

 T
he

 u
ltr

as
ou

nd
 p

ro
be

 is
 p

la
ce

d 
on

 th
e 

sk
in

 to
 re

co
rd

 d
at

a 
fro

m
 th

e 
m

us
cl

e’
s 

cr
os

s-
se

ct
io

n 
(t

ra
ns

ve
rs

e 
vi

ew
). 

B 
Th

e 
re

co
rd

ed
 B

-m
od

e 
im

ag
es

. C
 C

al
cu

la
tin

g 
di

sp
la

ce
m

en
t v

el
oc

ity
 im

ag
es

. D
 S

ep
ar

at
in

g 
th

e 
ve

lo
ci

ty
 im

ag
es

 in
to

 s
pa

tio
te

m
po

ra
l c

om
po

ne
nt

s 
us

in
g 
in
st
an

ta
ne
ou

s 
bl

in
d 

so
ur

ce
 s

ep
ar

at
io

n 
(B

SS
) w

ith
 a

 fo
cu

s 
on

 s
pa

tia
l s

pa
rs

ity
, w

he
re

 e
ac

h 
co

m
po

ne
nt

 is
 a

ss
oc

ia
te

d 
w

ith
 a

 ti
m

e 
si

gn
al

 a
nd

 a
 s

pa
tia

l i
m

ag
e.

 A
 s

ub
se

t o
f t

he
 c

om
po

ne
nt

s 
is

 p
ut

at
iv

e 
es

tim
at

es
 o

f 
th

e 
(1

) M
U

 te
rr

ito
ry

 in
 th

e 
sp

at
ia

l m
ap

s 
an

d 
(2

) a
 s

eq
ue

nc
e 

of
 M

U
 tw

itc
he

s 
(u

nf
us

ed
 te

ta
ni

c 
si

gn
al

) e
vo

ke
d 

by
 th

e 
sp

ik
e 

tr
ai

ns
. E

 T
he

 s
pi

ke
 tr

ai
ns

 a
re

 e
st

im
at

ed
 b

as
ed

 o
n 

un
fu

se
d 

te
ta

ni
. P

re
vi

ou
sl

y 
us

in
g 

a 
H

aa
r w

av
el

et
 m

et
ho

d 
(H

W
M

). 
In

 th
is

 s
tu

dy
, w

e 
es

tim
at

e 
th

e 
sp

ik
es

 tr
ai

ns
 in

 E
 u

si
ng

 th
e 

un
fu

se
d 

te
ta

ni
c 

si
gn

al
s 

fro
m

 D
 u

si
ng

 c
on

vo
lu

tiv
e 

bl
in

d 
so

ur
ce

 s
ep

ar
at

io
n 

(C
BS

S)
 a

nd
 c

om
pa

re
 th

e 
pe

rf
or

m
an

ce
 a

ga
in

st
 a

no
th

er
 m

et
ho

d,
 i.

e.
 th

e 
H

aa
r w

av
el

et
 m

et
ho

d 
(H

W
M

)



Page 4 of 17Rohlén et al. BioMedical Engineering OnLine           (2023) 22:10 

method can be used directly in the current ultrasound-based pipeline to assess the neu-
ral drive to the muscle (Fig.  1). Indeed, it also implies the feasibility of extending the 
method to spatiotemporal data such that spikes can be estimated directly from the ultra-
sound-based image sequences.

This study aimed to estimate spike trains from simulated and experimental unfused 
tetani using a CBSS algorithm and compare it against the previously optimised and 
evaluated HWM [12]. We implemented the CBSS algorithm requiring three param-
eters based on fixed-point iterations [2, 3, 14] and peak detection [12]. We evaluated the 
parameters of CBSS using the estimated spike trains’ rate of agreement with the ground 
truth for the simulations. We also explored the algorithm’s parameters’ relation with the 
spike delta (time difference between truth or reference spikes and the estimated spikes) 
and its variation. Finally, we compared CBSS against the HWM based on their rate of 
agreement performance using simulated and experimental unfused tetanic signals from 
voluntary contractions of humans and evoked contraction of rats.

Methods
The overview of the methods includes (1) simulations describing the model and the 
parameters, (2) the experimental data, (3) the CBSS algorithm to estimate the spike train 
from an unfused tetanic signal, (4) the parameter evaluation of CBSS using simulated 
data, and finally, (4) the comparison between CBSS and HWM using simulated and 
experimental data.

Simulations

Simulation model

We used a simulation model that generated a motor unit (MU) unfused tetanus Y (t) at 
time t ≥ 0:

where t = {0, 1, . . . ,T } is the time, and n is the number of times that the MU fires. Fi is 
the i th twitch generated by the MU at its i th spike at time instant �i . The duration of Fi 
is longer than the inter-spike interval (ISI) �i+1 −�i . ε(t) is additive noise. Note that 
the twitch shape commonly varies within a contraction, which has been explained in 
other studies for voluntary contractions [15–17]. We express the corresponding spike 
train s(t) ≥ 0 as:

where δ is the Dirac Delta function.

Simulation parameters

Similar to a previous study [12], each simulated unfused tetanus Y (t) was based on simu-
lating n twitches and n spikes (Fig.  2). The twitches Fi, i ∈ {1, 2, . . . , n} were simulated 
using a twitch model [17] with five parameters (Fig. 2A) that were randomly sampled 

(1)Y (t) =

n∑

i=1

Fi(t −�i)+ ε(t),

(2)s(t) =

n∑

i=1

δ(t −�i),
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to generate varying twitch-shapes (Fig. 2B) suitable for low-threshold MUs at low force 
levels [13] (see Additional file 1: Table S1). The n spike times � = (�1,�2, . . . ,�n) were 
simulated using a Gaussian renewal process such that �i+1 −�i ∼ N (µISI , CV) , where 
µISI and CV =

σISI
µISI

 is the mean ISI and coefficient of variation [18] (Fig. 2C). We simu-
lated combinations of different average firing rates (8, 12, and 16 Hz) [6, 19] and ISI CV 
values (5, 20, and 40%) [20] feasible for low-threshold MUs.

Each twitch was summed to the respective spike resulting in an unfused tetanic signal 
(Fig. 2C). The unfused tetanus was differentiated with respect to time (from force to yank 
or displacement to velocity) [21] because of the stability of its mean value and velocity 
is used in MU identification using ultrasound. The last step was adding normally dis-
tributed noise so that the signal-to-noise ratio (SNR) was at three levels, i.e. 10, 20, and 
30 dB. For more information on the simulations, see Additional file 1.

Experimental signals

We retrospectively included, from previous studies, two datasets, including n = 21 
unfused tetani [12]. The first dataset included three 2-s-long unfused tetani from the 
biceps brachii of three healthy human subjects (28.3 ± 0.6  years; one male and two 
females) at very low isometric force levels using the ultrasound-based MU identifica-
tion pipeline with a (concentric) needle EMG electrode as [6] (see Additional file 1). The 
ultrasound and EMG systems were synchronised (sampling rates 2 kHz and 64 kHz).

The second dataset included 18 unfused tetani from the medial gastrocnemius of five 
adult female Wistar rats [22]. After a surgical procedure resulting in functionally isolated 
MUs, the Achilles tendon was connected to a force transducer while stretched to achieve 
isometric conditions where the force was measured simultaneously as a wire electrode 
(sampling rates 1 kHz and 10 kHz). Individual axons were stimulated based on average 
ISI times: 60, 70, 80, and 100 ms. For two rats, the last three stimuli intervals were used. 
The intervals between the individual stimuli were randomly set (mean ISI ± 50%). Before 
further analysis, the force-based signals were (1) filtered using a sixth-order zero-phase 
Butterworth bandpass filter with a high- and low-pass cut-off equal to 3 and 100 Hz and 
(2) differentiated. For detailed information about the functional isolation of MUs, see 
Additional file 1.

The convolutive blind source separation algorithm to estimate the spike train

Previously a shift-invariant model has been used to describe a multichannel sEMG sig-
nal assuming (1) constant action potential waveforms for the same MU in one channel 
and (2) that the waveform duration is shorter than every ISI [2, 3, 14]. This study consid-
ers a single-channel unfused tetanus Y (t) , which has the following two characteristics: 
(1) the twitch waveforms for the same MU vary [15–17], and (2) the twitch waveform 
duration is longer than the ISI [16, 23]. Given this, we express the time derivative of the 
unfused tetanic signal as:

(3)Ỹ (t) =

n∑

i=1

L∑

l=1

hi(l)s(t − l)+ ε̃(t),
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where i = {1, . . . , n} denotes the ith spike, hi(l) is a twitch rise waveform of length L as 
a response to the i th firing, s(t) is the spike train at time t , and ε̃(t) is additive noise 
including the remaining signal of the twitch waveforms after subtracting the twitch rise 
waveform. The convolutive mixture with finite impulse response filters in Eq. (3) can be 
represented as a linear and an instantaneous mixture by extending the observation sig-
nal, source signal, and noise using their R delayed versions [2, 3, 14]:

where L denotes the twitch rise waveform length and R denotes the extension factor. 
Then, the linear instantaneous mixture model is defined as:

where Ã contains the twitch rise waveforms hi . To estimate the spike train 
s = s(t), t = {0, 1, . . . ,T } using Eq.  (5), we used a linear instantaneous BSS model 
referred to as independent component analysis (ICA) [24].

Algorithm

Given an unfused tetanic signal (Fig.  3A), the spike train s was estimated by solv-
ing the separation problem in Eq.  (5) using a fixed-point algorithm [25], which has 
been used for decomposing multichannel EMG signals [2, 3]. After extending the sig-
nal (Fig.  3B), the next step, common to most BSS algorithms [24], was to spatially 
whiten the extended observation matrix using eigenvalue decomposition (Fig.  3C). 
The whitened extended observation matrix had a covariance matrix equal to the iden-
tity (Fig.  3C). After whitening, the fixed-point algorithm estimates the separation 
(projection) vector and, thereby, the source estimate (Fig. 3D). Here, the separation 
vector was initialised using a normally distributed random vector. The fixed-point 
algorithm is based on maximising the non-Gaussian distribution of the source vector 
using a cost function G(•) [25]. We used a contrast function associated with sparse-
ness since the spike train is sparse (mostly zeros with a few ones). Here, we choose 
G(x) = log(cosh(x)) due to its kurtotic distribution in line with the characteristics of a 
spike train that is kurtotic (and skewed) in contrast to a normal distribution.

After obtaining the source estimate, the spike train was estimated by peak detec-
tion to identify the time instants of the local maxima. The peak detection was based 
on (1) the height of the peaks and (2) the distance between consecutive peaks in mil-
liseconds (Fig. 3E). The height of the peaks was based on the number of mean abso-
lute distances ( nMAD ) of the source estimate. The distance between the consecutive 
peaks was based on the minimum peak distance ( MPD ) where the highest peak 
within that distance was selected. The resulting time instants of the local maxima 

Ỹ (t) =

[
Ỹ (t), Ỹ (t − 1), . . . , Ỹ (t − R+ 1)

]T
,

s̃(t) = [s(t), s(t − 1), . . . , s(t − L− R+ 2)]T,

(4)ε̃(t) = [ε̃(t), ε̃(t − 1), . . . , ε̃(t − R+ 1)]T,

(5)Ỹ = Ãs̃ + ε̃,
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were considered the estimated firing times of the spike train s (Fig. 3F). The overall 
CBSS algorithm is summarised in pseudo-code below:

Parameter evaluation for CBSS

We evaluated the algorithms’ three parameters jointly (based on simulations): the exten-
sion factor R and peak detection parameters nMAD and MPD . After initial tests to 
locate the global maxima, we evaluated the following parameters: R ∈ [10, 15, . . . , 40] , 
nMAD ∈ [1.0, 1.5, . . . , 4.0] , and MPD ∈ [10, 15, . . . , 40] ms. For each parameter combi-
nation, 2700 unfused tetani were generated based on the combinations of SNR values 
(30, 20, and 10 dB), ISI CV values (5, 20, and 40%), and firing rates (8, 12, and 16 Hz) as 
explained in a previous study [12].

The rate of agreement (RoA) between the simulated (or reference) and estimated 
spikes was based on the following metric: RoA = 100×CS

CS+FS+MS , where CS was the number 
of correctly identified spikes, FS was the number of false spikes, and MS was the number 
of missed spikes. The tolerance window for correctly identified spikes was set between 
0 and R+ 10 (extension factor delay) ms. This tolerance was selected based on maxi-
mal RoA (see Additional file 1: Fig. S1). We also analysed the time between a correctly 
estimated spike ( CS ) and the simulated spike (referred to as spike delta) and its variabil-
ity (spike delta variability) for different extension factors R . The difference in spike delta 
variation between different extension factors (in parameter evaluation) was tested using 
Levene’s test with a significance level of 5% [26].

Comparison between CBSS and HWM—simulated and experimental data

The parameters that maximised the mean RoA of CBSS were extracted based on aver-
aging the RoA of all simulated parameter combinations. For HWM, we used the opti-
mised parameters from a previous study with a similar parameter evaluation procedure 
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using the same RoA threshold (between − 5 and 25) [12]. Note that HWM consists of 
three steps: (1) computing the continuous Haar wavelet transform of the signal at a given 
pseudo-frequency, (2) standardising the wavelet transform coefficients based on z-score, 
and (3) finding the time instants of the local maxima of the wavelet coefficients using 
peak detection [12].

We reported the mean and standard deviation of the RoA values for each method, and 
we tested the pairwise differences between the spike trains of CBSS and HWM in three 
ways. First, we compared them using the same simulation procedure in the parameter 
evaluation for various SNR, ISI CV, and firing rate values and tested the pairwise differ-
ences using Wilcoxon signed rank test. Second, we compared them using the experimen-
tal unfused tetani. Third, we calculated the computational time to run each algorithm on 
the simulated data (2700 times) and tested the pairwise differences between the algo-
rithms. The significance level was set to 5%, and the p-values were corrected using Bon-
ferroni correction.

Results
Parameter evaluation for CBSS—simulations

The highest mean RoA for CBSS was achieved when R = 20 with 97.5 ± 1.6% (Fig. 4A). 
Given extension factor R = 20 , we found that the peak parameters associated with 
the highest RoA values and smallest standard errors were nMAD = 2 and MPD = 20 
(Fig. 4B, C).

We found that the spike delta differed for different extension factors (Fig. 5A), but also 
for the same extension factor at different iterations (Fig. 5B). The larger the extension 
factor, the greater variability in the mean spike delta (Fig. 5C). However, there was no 
difference (p > 0.05) in spike delta variability for the different extension factors (Fig. 5A, 
B, D). The spike delta variation was 2.2 ± 0.5 ms.

Comparison between CBSS and HWM—simulated data

Considering all parameter combinations, CBSS had a higher RoA than HWM (97.5 ± 2.7 
vs 96.9 ± 3.3, p < 0.001). By considering each simulation parameter separately, CBSS had 
a higher RoA than HWM in 12 of the 27 simulation parameter combinations (Table 1). 
In contrast, HWM had a higher RoA than CBSS in 6 parameter combinations. For the 
other nine combinations, there was no difference in RoA. Finally, CBSS was more robust 
to high ISI CV values than HWM (Table 1). However, there was no clear pattern with 
respect to noise levels or firing rates.

The computational time was much lower for HWM than for CBSS (p < 0.001). How-
ever, there is no practical difference since the computational time of HWM is approxi-
mately 2 ms and CBSS 11 ms for a signal that is about 10 s (Fig. 6).

Comparison between CBSS and HWM—experimental data

The three unfused tetani from human biceps brachii had an average firing rate of 11.4 Hz 
and an average ISI CV of 13.4%. The estimated spike trains from CBSS and HWM highly 
agreed with the EMG reference spikes (98.0 ± 3.4% and 96.3 ± 3.2%, respectively). See 
Table 2.
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The 18 unfused tetani from rat gastrocnemius had an average firing rate of 14.4  Hz 
and an average ISI CV of 30.6%. The estimated spike trains from CBSS and HWM highly 
agreed with the EMG reference spikes (98.0 ± 2.8% and 96.5 ± 5.6%, respectively). Given 
this, there was no difference between the two methods (p = 0.24). See Table 2.

Discussion
This work aimed to estimate simulated and experimental unfused tetani spike trains 
using CBSS and compare it against HWM [12]. For this purpose, we evaluated the 
parameters of CBSS using simulations and explored the algorithm’s parameters’ relation 
with the spike delta and its variation. Then, we compared CBSS against the HWM based 
on their RoA using simulated and experimental unfused tetanic signals from voluntary 
contractions of humans and evoked contraction of rats. The main finding was that CBSS 
had (on average) a higher performance than HWM with respect to the simulated firings 

Table 1  Comparing the performance of CBSS and HWM to estimate spikes based on simulated 
signals with varying parameters

FR firing rate, ISI inter-spike interval, CV coefficient of variation, SNR signal-to-noise ratio, CBSS = convolutive blind source 
separation, HWM Haar wavelet method, RoA rate of agreement. *p < 0.05, **p < 0.01, ***p < 0.001 using Bonferroni correction 
for multiple comparisons

Simulation parameters CBSS HWM Pairwise difference p-value

FR (Hz) ISI CV (%) SNR (dB) RoA (%) RoA (%)

8 5 30 99.3 ± 0.8 100.0 ± 0.2  − 0.7 ± 0.8 ***

8 5 20 99.7 ± 0.5 99.9 ± 0.3  − 0.2 ± 0.6 0.21

8 5 10 99.7 ± 0.6 99.5 ± 0.7 0.2 ± 1.0 1.00

8 20 30 99.1 ± 0.8 99.6 ± 0.7  − 0.4 ± 1.1 *

8 20 20 99.5 ± 0.8 99.5 ± 0.7 0.0 ± 0.9 1.00

8 20 10 99.2 ± 0.9 98.0 ± 1.3 1.3 ± 1.4 ***

8 40 30 97.5 ± 1.6 97.3 ± 2.0 0.3 ± 1.6 *

8 40 20 98.0 ± 1.4 96.8 ± 1.7 1.3 ± 1.8 ***

8 40 10 97.2 ± 1.7 93.9 ± 2.5 3.2 ± 2.3 ***

12 5 30 98.8 ± 0.5 98.7 ± 1.1 0.1 ± 1.3 0.38

12 5 20 98.8 ± 0.5 98.9 ± 1.0  − 0.1 ± 1.0 1.00

12 5 10 98.0 ± 1.2 98.8 ± 1.0  − 1.0 ± 1.4 ***

12 20 30 98.8 ± 0.6 98.5 ± 1.2 0.4 ± 1.5 **

12 20 20 98.9 ± 0.7 98.4 ± 1.4 0.3 ± 1.1 ***

12 20 10 97.6 ± 1.7 98.6 ± 1.2  − 0.8 ± 1.5 *

12 40 30 97.3 ± 1.5 95.2 ± 2.4 2.4 ± 2.2 ***

12 40 20 97.4 ± 1.6 95.3 ± 2.6 1.9 ± 2.4 ***

12 40 10 95.2 ± 2.6 94.9 ± 2.0 0.4 ± 2.5 1.00

16 5 30 98.4 ± 1.1 98.4 ± 1.2 0.1 ± 1.6 1.00

16 5 20 98.3 ± 0.8 98.4 ± 1.2  − 0.2 ± 1.4 1.00

16 5 10 94.8 ± 2.3 98.3 ± 1.3  − 3.8 ± 1.8 ***

16 20 30 98.5 ± 1.0 96.8 ± 1.4 2.0 ± 2.1 ***

16 20 20 98.1 ± 1.5 96.7 ± 1.8 1.6 ± 1.7 ***

16 20 10 93.6 ± 2.3 96.4 ± 1.7  − 3.3 ± 2.4 ***

16 40 30 96.0 ± 2.2 90.4 ± 2.8 5.6 ± 3.6 ***

16 40 20 95.6 ± 2.0 90.4 ± 2.6 5.1 ± 3.5 ***

16 40 10 89.6 ± 4.3 90.6 ± 3.2  − 0.6 ± 3.5 1.00

Mean ± SD (across all parameter combinations) 97.5 ± 2.7 96.9 ± 3.3 0.6 ± 2.8 ***
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than HWM (97.5 ± 2.7 vs 96.9 ± 3.3, p < 0.001). In addition, we found that the estimated 
spike trains from CBSS and HWM highly agreed with the experimental spike trains 
(98.0% and 96.4%).

We have shown that CBSS can be used to estimate the spike train of an unfused tetanic 
signal since the firings highly agree with the simulated (see Fig.  4A and Table  1) and 
EMG reference spike trains from two different experimental datasets (see Table 2). We 
found that the spike delta variability did not depend on the extension factor, although 
the spike delta differed for different extension factors and the same extension factor 
(Fig. 5A, B). This observation suggests that there are multiple local maxima, and the con-
vergence to different local maxima may depend on the initialisation of the separation 
vector [2]. Also, a larger extension factor leads to a larger spike delta variance (between 
trials, Fig. 5C), suggesting that the convergence issue increase with the extension factor 
value. This problem could be overcome using a more standardised initiation of the sepa-
ration factor or finding a standardised way to shift the estimated spikes without knowing 
the ground truth. Although there is potential for improvement, both CBSS and HWM 
used optimal RoA thresholds of the same length (0 to 30 ms and − 5 to 25 ms, respec-
tively), where CBSS had, on average, better performance than HWM (Table 1).

The computational time was about five times slower for CBSS than for HWM. This 
finding is explained by CBSS extending the signal from a vector to a matrix to make 
the convolutive approach an instantaneous linear problem suitable for independent 

Fig. 6  The computational time for the convolutive blind source separation (CBSS) and the Haar wavelet 
method (HWM). Each boxplot is based on 2700 computational time values, i.e. 100 signals containing 100 
spikes for 27 different simulation parameters. ***p < 0.001

Table 2  Comparing the performance of CBSS and HWM to estimate spikes based on experimental 
signals (voluntary and evoked contractions)

CBSS convolutive blind source separation, HWM Haar wavelet method, RoA rate of agreement (between estimated and EMG 
reference spikes). # To few unfused tetani to do a statistical test

Voluntary contractions Evoked contractions CBSS HWM Pairwise p-value

Unfused tetani Spikes Unfused tetani Spikes RoA (%) RoA (%) difference

3 58 98.0 ± 3.4 96.3 ± 3.2 1.7 ± 3.3 #

18 720 98.0 ± 2.8 96.5 ± 5.6 1.1 ± 4.5 0.24
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component analysis (ICA) [2, 3]. Then, fixed-point iterations are used to find a projec-
tion vector. However, this computational time difference is of no practical difference 
since the computational time of HWM is approximately 2 ms and CBSS 11 ms for a 
signal that is about 10 s (Fig.  6). For example, a time difference of 200  ms between 
visual feedback and movement leads to the perception of a delay [27]. The computa-
tional times are well within that time difference without optimisation.

This study considered observations of unfused tetani. Although CBSS can be used 
directly to estimate firings based on the estimated unfused tetanus from the ultra-
sound-based pipeline [6, 12], this study indicates the potential of either extending or 
including the temporal CBSS approach to the current spatially focused BSS method 
[6, 28] to improve the separation of displacement velocity images from ultrasound 
to increase the identification rate [8]. Another solution would bypass the estima-
tion of an unfused tetanic signal (Fig. 1D) and go directly to spikes (from Fig. 1C to 
Fig.  1E), thereby reducing the pipeline’s exposure to error propagation, i.e. estimat-
ing spikes based on occasionally poor estimates of an unfused tetanic signal. Given 
this, the next challenge emerges when expanding to ultrasound images, i.e. successive 
twitches within the same MU may differ. There is a possibility that twitches from a 
MU may be highly similar to the ones of other MUs. However, one could overcome 
this challenge by including spatial information, which has a high resolution (< 1 mm) 
as the MU relates to a physical component (muscle unit) in the spatial domain. A 
potential solution may be expanding current sEMG decomposition algorithms [2, 3] 
to include spatial dependence or sparsity in addition to the temporal deconvolution 
and validating it using an authentic simulation model [29]. Yet, all these approaches 
need to deal with the motion of non-MU-related structures that hides a large part 
of the movement caused by a MU in ultrasound images [11]. One potential solution 
could be to use the spatiotemporal clutter filtering approach to improve the sensitiv-
ity to detect microvascular networks or blood flows corrupted by significant tissue or 
probe motion artefacts [30]. Nevertheless, the implementation and validation of these 
approaches will be investigated in the future.

In conclusion, this study estimated simulated and experimental unfused tetani spike 
trains using a CBSS algorithm and compared its performance against a previously opti-
mised method, i.e. HWM. We found that the estimated spike trains from CBSS and 
HWM highly agreed with the simulated and EMG reference spike trains, and CBSS had, 
on average, higher performance. This result implies that the CBSS of an unfused tetanic 
signal can be used to estimate its spike train, and it can be used directly within the cur-
rent ultrasound-based MU identification pipeline. Extending this approach to decom-
posing ultrasound images into spike trains directly is promising. However, it remains to 
be investigated in future studies where spatial information is inevitable as a discriminat-
ing factor.
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