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Science and Occupational self-report biases and influenced by stigma. Ambient and wearable sensors have been
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of clarity regarding the application of sensors and their data in assessing Sl and the

methods to develop these assessments. To understand the current state of research

in sensor-based assessment of Sl in older adults living in the community and to make
recommendations for the field moving forward, we conducted a scoping review. The
aims of the scoping review were to (i) map the types of sensors (and their associated
data) that have been used for objective Sl assessment, and (ii) identify the methodo-
logical approaches used to develop the Sl assessment. Using an established scoping
review methodology, we identified eight relevant articles. Data from motion sensors
and actigraph were commonly applied and compared and correlated with self-report
measures in developing objective Sl assessments. Variability exists in defining SI, feature
extraction and the use of sensors and self-report assessments. Inconsistent defini-
tions and use of various self-report scales for measuring SI create barriers to studying
the concept and extracting features to build predictive models. Recommendations
include establishing a consistent definition of SI for sensor-based assessment research
and development and consider capturing its complexity through innovative domain-
specific features.

Keywords: Ambient sensors, Assessment, Older adults, Sensors, Social isolation,
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Introduction

With the advent of modern technologies and changes in how people interact with one
another, social isolation (SI) has become a pervasive societal issue. One definition of SI
in the literature is an observable lack of social contact with others [1-3]. SI is related to
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but distinct from loneliness, which is a subjective feeling and a cognitive evaluation of
the quantity and quality of relationships [4].

SIis particularly troubling for older adults and research has been increasingly focused
on Sl in those aged 55 and older [5, 6]. Experiences relevant to the aging life course such
as living alone, bereavement, relocation, retirement, and chronic health conditions have
been correlated with patterns of SI [7, 8]. Various reports [8, 9] indicate that worldwide
more than 25% of adults over the age of 65 are socially isolated. Furthermore, the ongo-
ing COVID-19 pandemic has significantly exacerbated concerns with SI in older adults
[10]. SI in older adults can be associated with depression, dementia, poor cardiovas-
cular health, overall well-being and mental health, and premature death [11, 12]. SI is
also considered a risk factor for elder abuse and may increase fear of crime and theft;
therefore, it may make older adults less likely to participate in social activities [13]. Older
immigrants, minority ethnic groups and low-income older adults are at risk of becoming
lonely and likely to have fewer social interactions [14]. Prolonged SI has harmful eco-
nomic, health, and social consequences for society [12].

Despite the negative health and social consequences of S, it is not adequately man-
aged in primary care settings [15, 16]. SI is not routinely assessed in primary care set-
tings and there is a lack of established best practices for assessment in the community
[15, 17]. One reason may be that primary care clinicians feel that their main responsibili-
ties are to address biomedical issues rather than social issues. Additionally, considering
their heavy workloads and the limited time they have in direct contact with individual
patients, they may not have a way to reliably observe and identify social isolation [17].
Assessments for SI are often conducted through self-report. There exist several vali-
dated clinical scales that may be used, such as the Lubben Social Network Scale (LSNS)
[18], Duke Social Support Index [19], and the Social Disconnectedness Scale [20]. These
scales are questionnaires that quantify how frequently individuals are in contact with
their social connections, which often include information on frequency of phone calls,
number of friends or relatives that the individual is regularly in contact with, whether
the individual lives alone, their marital status, and how often they engage in religious or
club-based activities [3, 18]. A limitation of these scales is that they involve subjective
assessment of an objective phenomenon, which introduces recall and self-report biases
that may affect assessment accuracy. These scales ask for retrospective information, and
not intended to detect or predict SI onset. Lack of motivation to self-report also creates
barriers to assessing SI. Personalities that are more or less likely to disclose SI or those
who are more likely to participate in research may skew reports, as can stigma associ-
ated with SI [21]. Men, in particular, are less likely to report SI because of the stigma
around being isolated and lonely [22]. The biases inherent in current SI assessments may
reduce the identification of isolated individuals, thereby limiting the provision of ser-
vices to mitigate SI related problems.

Considering the consequences of SI for older adults, lack of routine community-based
assessment, and limitations of current approaches, it is beneficial to develop objective
SI assessments based on ambient and wearable sensors that can be completed regularly
and sustainably in the community. Collecting these data over time for older adults who
are at risk for SI allows for proactive and prospective detection of SI, which is impor-
tant for timely and comprehensive health assessment and delivery of evidence-based
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individualized interventions. The data collected from different sensors may capture a
person’s indoor and outdoor behaviours, interactions with the environment (e.g., open-
ing or closing refrigerator), and physiological and mobility indicators. Novel features can
then be extracted from this rich multimodal dataset and fed to machine learning models
that can detect and predict the onset of or changes in SI. The need for an automated lon-
gitudinal approach is not just because patients do not self-report or that they are unreli-
able or biased, but also that clinicians are failing to help as well because they do not have
the time, resources and awareness to do it and that a longitudinal approach would be
beneficial to identify the onset of SI [15, 16].

Prior research has suggested that objective data collected through sensors can help to
make inferences regarding SI using predictive modelling [23]. Previous studies show that
time spent napping, length of stay in the living room, amount of physical exercise, and
time spent out of the home correlate with self-reported SI [1, 24, 25]. Wearable devices,
such as smartwatches and smartphones, embedded with accelerometers and Global
Positioning Systems (GPS), are often used to measure an individual’s physical, mobility,
and activity levels [26]. Sensor technology has great potential to collect objective data
that may be relevant to the identification and elucidation of SI, such as social contacts
with others and time spent doing activities in the community.

One recent non-systematic literature review [23] and another scoping review [27]
aimed to survey and synthesize research on technology applications for the detection
and monitoring of SI. Bouaziz et al. [23] presented an in-depth survey of both wearable
and non-wearable (ambient) sensors, software and algorithms that have been applied in
the monitoring of older adults’ daily activities, with many conducted in laboratory set-
tings. They specifically focused on on meal-taking and mobility from which the risk of SI
may be inferred at a later stage that was not detailed in the review. The scoping review by
Qirtas et al. [27] examined passive sensing including smartphones, wearable devices and
ambient sensors to detect loneliness and SI. This review covered a general population
that comprised younger adults (34% or 10 of 29 included studies), older adults (41% or
12 of 29 included studies) and mixed age (17% or 5 of 29 included studies) groups. While
both reviews have defined SI and loneliness as distinct from one another, neither review
has attempted to distinguish them in their selection of articles for review. Indeed Qirtas
et al. studied SI and loneliness as a unified construct. This distinction is essential to pre-
serve for theoretical and practical reasons, considering information on SI may be more
observable, and therefore more accessible using sensor-based detection approaches
compared to subjective phenomenon such as loneliness. Both reviews, encompassing a
range of ages, concluded that the study of sensor-based assessment of SI and loneliness
is in its infancy.

To our knowledge, there has not been a review examining the use of sensors in
SI assessment for older adults living in the community and that connects existing
approaches for the assessment of SI, namely self-report scales or direct observation
data, with objective sensor-based measures to validate this new assessment approach.
There is also a lack of clarity regarding the application of various sensors and their data
in assessing SI and methods used to develop these assessments, information that will be
important to ultimately create meaningful and useful SI assessments for this population.
To understand the current state of research and to make recommendations for the field
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moving forward, we conducted a scoping review. The aims of the scoping review were to
map the types of sensors (and their associated data) that have been used for objective SI
assessment, and identify the methodological approaches used to develop the SI assess-
ment. Using review results, we synthesize current understandings and knowledge gaps
to be addressed in future research to make this form of assessment a reality.

Results

Eight articles were included in the review. The articles ranged in disciplines from pub-
lic health, gerontology, information technology, and sleep science. Table 1 summarizes
information from the articles. The age range of participants in our review varied from 50
years to 91 years. There is no clear pattern of definition of SI, self-reported measure or
type of sensing modalities across these age groups.

Sensor technologies, data measured and features extracted
Table 2 details the sensors, measured data and features extracted in the assessment of SI.
Features used for assessing SI were grouped into four categories—sleep metrics, physi-
cal activity, phone communication, and physiology. Among the eight articles, five used
actigraphy and two used motion sensors. One study used a mobile application to record
the frequency and duration of phone communication behaviours. One of the articles
examined the relationship between SI and resting heart rate using electrocardiography.
Association between features and self-reported SI measures Five of the eight articles
used physical activity as the objective feature to indicate SI, though findings regarding
the relationship with SI are inconsistent. Schrempft et al. [29], Herbolsheimer et al. [32],
and Goonawardene et al. [33] concluded that there is a negative association between SI
and physical activity. In contrast, Tully et al. [30] and De Koning et al. [31] concluded
that there is no significant association between SI and physical activity. Both Tully et al.
[30] and De Koning et al. [31] suggested that their inconsistent findings might be due
to either small sample size or the fact that the participants in the sample had low risk of
SI. Three studies investigated the relationship of SI with other sensor features. McCrory
et al. [34] concluded a negative relationship between resting heart rate and social net-
work size—a concept based on social contact, which aligned with the review’s definition
of SI. The study by Benson et al. [35] found a negative association between SI and total
sleep time. The study by Martinez et al. [28] evaluated the accuracy of a predictive model
of SI, but there was no discussion about the associations between SI and other variables.
Types of statistical modelling Among the eight articles, seven studied the association
between self-reported SI data and one uses predictive modelling. These seven studies
used descriptive modelling to determine whether SI is associated with specific behav-
ioural or physiological measures [36]. The study by Martinez et al. [28] focused on
detecting an older adult’s self-reported SI level based on sensor data [37]. They used
phone communication variables and physical activity variables as predictors of an indi-
vidual’s LSNS score and reported 100% accuracy. Predictive models are valuable in iden-
tifying an individual who is experiencing SI; however, it may be difficult to understand
the complex (non-linear) interplay of features to detect SI.
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Table 2 Summary of sensor technologies, measured data and features used in assessment of social

isolation
Types of sensors Features References
Motion sensor and actigraphy  Sleep metrics: total sleep time, the Goonawardene 2017 [33] Benson 2021
sum of all epochs scores as wake dur-  [35]
ing the sleep interval, percent sleep
Physical activity: duration of stay time  De Koning et al. [31], Martinez et al. [28],
in each area at home, room-level Schrempft et al. [29], Herbolsheimer
movement, number of places where et al. [32], Goonawardene et al. [33], Tully
the older adult stayed, types of move- et al.[30]
ment (walking, quiet standing, sitting/
lying) , Time out of home
Smartphone Phone communication (via phone Martinez et al. [28]
monitor application): number of
incoming calls, number of outgoing
calls, the average duration of family
calls, number of calls from friends, the
average duration of outgoing calls to
family, average outgoing messages
to friends
Physiological Sensor Resting heart rate McCrory et al. [34]

Methodological approach to Sl assessment development

Table 3 summarizes the five self-report measures of SI included in the articles. The
review demonstrates that different articles use different nuanced definitions of SI.
Two broad categorizations of social isolation scales emerged from this analysis. First,
the scales that focus on social contact with family and friends, and second, the scales
that goes beyond social contact and take into consideration other factors, including
older adults’ participation in social, religious or other outdoor activities. The LSNS-6
scale [18] measures perceived social support of an older adult received by family and
friends, it assesses size, closeness and frequency of contact of a person’s social net-
work. De Koning et al. [31] scale focuses on how often older adults meet their friends
and relatives and speak to their neighbours face-to-face. From sensing perspective,
accelerometers, indoor motion sensors and other physiological sensors (e.g., sleep
mat) can collect important data to capture one or more of these factors. The other
three scales go beyond the social contact, to include the presence of a specific fam-
ily member in the household, size of social networks, and frequency of participat-
ing in specific social activities. Schrempft et al. [29] scale assigns points if the person
had less than monthly contact with their family and friends, and if they participate in
social activities. The Social Disconnected Scale [20] assesses the lack of connected-
ness to other individuals and social groups. However, it is more comprehensive in
comparison to Schrempft et al. [29]. It considers the number of people in a person’s
social network and frequency of contact with them, number of people living in the
same household and connection with other individuals outside of household. It also
accounts for the number of friends, and social activities outside the home. Berkman
Social Disengagement Index [38] considers the presence of a spouse, monthly visual
contact with three or more relatives or friends, yearly non-visual contact with 10 or
more relatives or friends, and attendance at religious or social activities. In this scale,
the significance of visual and non-visual contact with three and ten relatives/friends
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is not clear. The later three scales highlight the importance of activities outside of the
household. From sensing perspective, the traditional accelerometer and inside home
sensors may not be adequate and using (wearable) devices with in-built GPS can be a
better to understand their out-of-the-home social behaviour [39]. The GPS data can
also further shed light if they are mobile within home only or going outside and visit-
ing different places.

The five scales found in the review used different numbers and types of question-
naire. The LSNS-6 [18] and De Koning et al. [31] scales contain six and three questions,
whereas the number of questions in Social Disconnected Scale [20] and Berkman Social
Disengagement Index [38] are eight and six. Schrempft et al. [29] did not clearly stated
the number of questions asked in their scale. Due to varying number of questions and
social dimensions captured by these scales, they add up to different values with varying
interpretation, and it is difficult to directly compare them. In the Social Disconnected
Score [20] (used by Benson et al. [35]) and the scale used by Schrempft et al. [29], a
higher value indicated higher risk for SI, whereas in the other three scales the opposite
holds true.

Previous studies show that older adults have fewer social interactions and a small
social network in comparison to younger adults [40, 41]. However, it is not clear if the
social network size of older adults drastically changes over a short period of few weeks
or months, unless there are adverse personal or health circumstances. Outdoor social
activities, on the other hand, can be good indicator of their well-being but it may vary
due to various conditions, including weather, festivals or other social events (whether
alone or in company with family or friends). Therefore, we suggest using social isolation
scales containing both social contacts/networks and social activities and they should be
administered for a longer duration to arrive at a better assessment.

Discussion

In a sample of 2506 articles, only eight articles were determined to meet the inclusion
criteria for this review. This indicates that the topic of assessment of SI within a commu-
nity-dwelling older adult population using sensors, while potentially beneficial, is a topic
in its infancy. The reason for the small number of included studies was also likely due to
our restrictive inclusion/exclusion criteria, which limited to studies that focused on SI as
an objective determinant and included older adults living in the community and exclud-
ing those living in congregate living environments such as nursing homes. This unique
focus makes results from this review unlike other published reviews and can be helpful
to re-orient future directions for those involved in community-based older adult care.
Due to these major differences in research question, search strategy and analysis, there
are only two studies (i.e. Goonawardene et al. [33] and Martinez et al. [28]) that overlaps
between ours and Qirtas et al. [27]’s reviews. Below, we discuss the complexities in SI, its
assessment, our results, highlighting the gaps in the current state of knowledge, summa-

rize recommendations for future research, and present limitations of our review.

Defining SI
While we selected a definition of SI for the purposes of setting up inclusion criteria
for this scoping review, establishing a precise definition was a repeatedly encountered
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barrier. In the reviewed literature, there is inconsistency and overlap within the defini-
tions of SI and loneliness. SI is sometimes explained as “the objective characteristics of a
situation” and to what degree someone is alone [4]. In other research, it is taken as a state
in which one needs social contact but does not have the means to acquire it [42]. Mean-
while, some definitions of loneliness claim it as something that “can be measured objec-
tively in terms of the number of friends and social contacts” [43], while others define it
as a subjective feeling that occurs when social relationships are deficient in some way [4]
quantitatively or qualitatively [44]. Mansfield et al. [45] have provided a review of these
definitions and concluded that while these concepts of SI and loneliness are distinct con-
cepts, there are many definitions in use that make them often interchangeable, and their
phenomena have complex interactions in the human experience. This makes the process
of assessing these constructs difficult because what is being assessed or measured may
change depending on the definition, the clinical scales used, and the approach to assess-
ment. Additionally, the definition of SI often overlaps with terms such as ‘social discon-
nectedness’ [20], which can lead to divisions in language used in research.

Thus, when encountering articles in the screening process of the scoping review, a
critical eye and discussion (among team members) was given to each article that dis-
cussed concepts related to SI or loneliness. We noticed that some articles mentioned SI
in the title or abstract but did not meet our inclusion criteria of an objective measure
related directly to SI. For example, the study by Eldib et al. [46] tested the potential of
a video camera to monitor the number of visitors, which can be an objective measure
of SI. However, the study did not relate the objective measure to a self-report measure
of SI. Additionally, many articles were screened to full-text review due to their use of
the concept of ‘objective loneliness’” often being similar to SI. However, they were later
excluded due to the construct measurements being based on perception (such as “How
often do you feel that you lack companionship?”) rather than objective and observable
data. For example, the study by Robins et al. [1] investigated the association between
physical activity and SI in community-dwelling older adults; however, they only used a
self-report measure of SI and lacked an objective sensor component. One excluded SI
article made use of the UCLA Loneliness scale [47] while measuring behaviours using
sensors [48]. Comparatively, the questions within the SI questionnaires included in our
review are objective and do not rely on the perceptions of subjective experience.

Sensors used in Sl assessment

Results from the review suggest that the evidence to use various sensors (and features
extracted from them) for SI assessment are inconsistent. Other research looking at
social and physical activities has shown that these relationships are complex [31]. This
inconclusiveness in the literature may be a result of unclear definitions and relationships
between the constructs of physical activity and SI. In addition, the use of electrocardi-
ography for detecting SI might be limited, because of the wide range of factors that can
influence heart rate and introduce confounding variables. Also, an individual’s heart rate
can vary depending on sex, age, lifestyle, and other health factors. The variations in rest-
ing heart rate can pose challenges to using it as an objective measure of social isolation.
Another challenge is from the feature extraction perspective. The SI assessments may be
done at the beginning, end or some mid-points during the study. However, the sensor
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data are collected on a continuous basis. Therefore, it is not clear what should be the
window for feature extraction, e.g., a day, a week, 2 weeks, or so.

This review shows a lack of diversity in ambient and wearable sensors being used
to assess SI in older adults. Interesting forms of technology are emerging in the fields
of observing behaviours and social connections, such as RFID and microphones [49],
smart home sensors that can observe temperature, interactions with the environment
and interactions with others [48, 50, 51] and E-textiles [52]. These types of sensors have
potential for collecting relevant information for the assessment of SI and are worth
investigation.

Ultimately sensor-based assessment of SI may benefit from multi-sensor systems
that can capture different types of data, including mobility, sleep, indoor and outdoor
motion, social behaviours [39]. It will further enable increase accuracy of assessment

and predictive algorithms.

Methodological approach to Sl assessment development
The scoping review found more descriptive studies than predictive studies.

In recent times, machine learning and deep learning approaches have improved the
state-of-the-art in many applications, including human activity recognition [53, 54].
However, this review revealed only one such study for assessing SI by Martinez et al.
[28]. This clearly shows a lack of predictive algorithm integration to further the study of
objective assessment of SI. The small amount of data collected by these studies could be
a constraining factor in developing generalizable predictive models. SI is not an instant
event; instead, it develops over time and long-term studies spanning several months are
required. However, executing such studies can bring their own challenges, in terms of
privacy, ethical approvals, data collection protocols and transfer mechanism, data stor-
age and security, sensor malfunction, battery requirements, rejection of technology,
participant attrition and financial constraints [55, 56]. A major future direction is the
development of scalable digital health solutions that can stream, store, collate and ana-
lyse large multimodal data over a longer time period in a cloud-framework [39].

Strengths and limitations

We acknowledge that the definitions used within this scoping review may have limited
the scope of included articles; therefore, some may have been missed or excluded based
on our definition of SI, or language choice and lack of explicit focus on SI in the screened
articles. The use of different questionnaires to assess SI may have also made it difficult to
capture all relevant articles for this reason. Non-English language material was excluded
due to cost and time to translate material, which the authors acknowledge may have lim-

ited the inclusion of relevant articles.

Comparison with previous work

The work by Qirtas et al. [27] used general population and a unified construct to study SI
and loneliness, which is different from our focus. Their conclusions were around valida-
tion of loneliness/SI scales, developing machine learning algorithms, costs of devices,
sensors’ battery life, privacy and ethics. These are great directions; however, they are
general pointers towards any digital health assessment and intervention platform. The
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review by Bouaziz et al. [23] is more focused on identifying activities of daily living as
indicator of SI. They further provided general recommendations around using different
sensors, algorithms and data that can improve such activities to improve detection of SI.

We summarize our recommendations and conclusions below.

Recommendations

Based on the knowledge gaps identified in this review, several recommendations can
be made to guide future research into the development of sensor-based assessment of
SI. Addressing these gaps is essential for future researchers to systematically establish
knowledge of SI assessment among older adults living in the community and explore
a broad range of potential technologies for assessing SI. (1) Establish a consensus defi-
nition of SI that focuses on observable behaviours that are more directly linked to SI,
affirming that SI as a phenomenon separate from loneliness, social disconnectedness,
and perceived social isolation, and agreeing on a set of behaviours relevant to SI. An
agreed-upon definition and set of behaviours can then be used to in future studies to
develop self-report and sensor-based assessments for SI. (2) Patient-reported measures
continue to be important elements of overall assessment and care planning in health
settings. To further enhance validity and decrease the risk for recall or self-report bias
in the development of sensor-based assessments, it may be beneficial to include event
recording where people track their own behaviours in real time or where researchers
make direct observations as part of the development process. (3) Explore other types
of sensors, such as door sensors, smart watches, cameras (RGB, depth, infrared), sleep
mats, GPS and voice activated smart devices (e.g., Google Home, Amazon Alexa) as
additional ways of collecting information related to SI. (4) Develop an in-depth theo-
retical and empirical framework that maps the diversity of features that can be extracted
from sensor data that may be used to evaluate SI more directly such as activities that
people do that involve others, e.g., phone use, time spent around other people indoors or
outdoors. An important consideration is the amount of sensor data that is deemed nec-
essary to extract informative features. (5) The perception of older adults for technology
may be different from other populations. Therefore, for future developments, involve-
ment of older adults in the co-design of relevant systems will improve their usability and
adoption for better outcomes.

Conclusions

This review suggests that despite being an important problem among older adults living
in the community, SI and its assessment using technology has not received the desired
attention from the research community. Major gaps were identified in terms of the defi-
nition of self-reported and objective measures of SI. Future research can benefit from
diversifying behavioural and social features extracted from sensors to draw upon pre-
dictive models. Among the eight articles included, only two articles mentioned sen-
sors that are not motion sensors or actigraphy. In the selected articles, few feature types
were explored, such as phone communication, heart rate, blood pressure, and body
temperature. More investigation is required to extract other meaningful features from
the reviewed and other sensing modalities. Further exploration through long-duration
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studies is needed to determine whether features are significantly associated with SI,
which will eventually improve the overall accuracy of predictive models.

Methods

We selected the scoping review methodology (rather than other forms of knowledge
synthesis) because it is best suited to address exploratory research questions and enable
the mapping of key concepts, types of evidence, and gaps in research related to a defined
area or field [57]. Our review followed the five steps outlined by Arksey and O’Malley
[58] and advanced by Levac et al. [59]. The steps we completed were the following: (1)
identifying the research question, (2) identifying relevant literature, (3) study selection,
(4) data extraction, and (5) gathering and reporting findings. The sixth optional step,
consultation, was not completed due to our review’s primarily descriptive purpose.

Identifying the research question
We sought to answer the following questions: What sensor technologies are being used in
the objective assessment of SI in community-dwelling older adults? and What methodo-

logical approaches have been applied to develop SI assessments?

Inclusion/exclusion criteria

Participants’ age Articles were included if the participants were aged 55 and older, as this
cohort is considered ‘older’ regarding computing and related technology [60]. We only
included articles involving wider age groups if at least 65% of their included populations
were older adults and their results were distinguished from young or middle-aged adult
participants.

Health conditions We excluded articles with a focus on comorbidities such as falls risk,
cardiovascular disease, schizophrenia, or dementia to reduce extraneous variables and
ensure the results of the scoping review related to a general group of older adults.

Living situations We included articles where data collection was conducted with indi-
viduals who lived in independent housing such as a house, townhome, or apartment.
We excluded articles where data were collected from individuals who lived in retirement
homes, group homes, or long-term care facilities, where additional care support was
provided. While there is a potential that older adults living in congregate facilities may
be at higher risk for SI owing to poorer overall health and functional abilities, most older
adults are living in the community where there is also a potential for underreporting of
SI among these individuals [61].

Social isolation Consistent with our focus on SI (as opposed to loneliness or other
related construct), we aimed to include articles only if they focused on SI,. which for
the purposes of this review was defined as an observable lack of social contact with oth-
ers [1-3]. Given inconsistencies in use of terms and definitions in the current literature,
we applied a functional and pragmatic approach such that if a term other than SI was
used in an article, but the definition applied was consistent with the definition used in
this review, the article was included. We included articles using self-report scales that
incorporated elements of SI in their description and assessment. That is, if some of the
questions asked in the scale were relevant to SI, the article was considered for inclusion.
We excluded articles if all of the questions in the scales focused on measurements of
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subjective experiences, such as ‘feeling isolated from others’ and ‘having others around
them that they trust’ [47, 62], rather than measures of SI such as “how many of your
friends do you see or talk on the phone each week”” [38].

Sensors Articles were included if they used any type of ambient or wearable sensor
that can collect data to indicate SI, such as information about an individual’s activities,
location, interactions with their environment, and/or physiology were included. Exam-
ples include ambient sensors and ‘smart home’ devices with contact sensors or light sen-
sors. Wearable and physiological devices can include body worn garments, belts, chest
straps, and smart watches or phones that can collect GPS and radio frequency identifica-
tion; heart rate monitors, accelerometers or actigraphy, respiration monitors, EEG, video
cameras and microphones.

Additionally, articles were included if they were published in any year, involved
humans, and published in the English language. Primary sources were included from any
discipline if they were peer-reviewed journal articles or conference papers.

Identifying relevant articles

To collect a comprehensive list of primary studies, two authors conducted an initial
search of the literature using electronic databases (Medline, CINAHL, IEEE and Google
Scholar). Additionally, reference lists of relevant articles, key journals and conferences
were reviewed for topics related to SI and technology. Index terms of relevant articles
were noted. An academic health sciences librarian from the University of Toronto was
consulted to establish and execute an effective search strategy from keywords and index
terms. A search strategy document from the University of Alberta that detailed geriat-
rics-related terms was also consulted to refine the search [63]. A finalized search strategy
was translated across Medline, Scopus, CINAHL, PsychINFO, and IEEE. As there are
syntax differences among the databases, the search strategy had to be translated for each
database, which resulted in search terms that varied depending on the database. (Refer
to Additional file 1: Appendix for search terms and strategy.) The search was executed
on August 28, 2020 and re-executed on April 10, 2021, and 1 article was added to the
full-text review after screening.

Study selection

An initial search identified several articles discussing the use of sensors in SI and lone-
liness research. To keep the focus of the scoping review to relevant journal articles,
inclusion and exclusion criteria were established based on the initial search results, and
the criteria were refined throughout the study selection process. Covidence, an online
software, was used to manage study selection [64]. Two reviewers (TG and LS) applied
the inclusion and exclusion criteria to the articles identified using the search strategy.
Titles and abstracts were screened for relevance in Covidence. Full-text review was
conducted by both reviewers if the article was deemed potentially relevant or unclear.
Reviewers were required to reach agreement for all articles reviewed, and a third and
fourth reviewer (SK and RW) were consulted to resolve any discrepancies. A PRISMA
flow diagram was generated using the results from screening in Covidence (see Fig. 1 for
PRISMA chart). Of the original 2506 articles captured by the search strategy, 51 articles



Khan et al. BioMedical Engineering OnLine (2023) 22:18

.E Records identified through database search Rf‘""”."l"'hlf‘_h"‘l studies
S (Medline, Scopus, CINAHL, PsychINFO, (2019+) identified through
.“-; and IEEE) dul;ﬂ.m\c search (Medline,
8 August 28, 2020 Scopus., CINAHL.
= n = 3829 PsychINFO, and IEEE)
April 10, 2021
] n =311
, n=4140 [
Records after duplicates
Irrelevant studies
removed o o = 2488

n = 2506

—— |

Not relevant to research
question's aims and objectives

n=43

A 4

Full text articles assessed for
eligibility

27 No measure of SI
n =51

4 Review article
3 Intervention-focused
3 Proposal studies

2 No full-text available
Y 2 No objective measure/use of
) . . s technology
Articles included in the final 1 Already included
TevIow 1 Wrong patient population

n=8

\ 4

Fig. 1 PRISMA flow diagram illustrating the search strategy, including article identification, screening, and
selection which resulted in 8 articles included in the scoping review

proceeded to review in full by two reviewers (TG and LS), of which eight met the criteria

for inclusion and proceeded to data extraction.

Charting the data

Data from each relevant article were extracted and coded into an Excel spreadsheet by
two reviewers (TG and LS) and cross-examined for consistency. Information deemed
to be relevant to address our research question comprised the article’s year of publica-
tion, and the study’s geographical location, research question(s), number of participants,
participant characteristics (including population context), definition of SI, self-reported
measures of SI used, types of sensors, features extracted from sensor data and conclu-
sion of the study. Additional information of interest that was extracted were the type of
statistical modelling (descriptive or predictive), machine learning algorithm employed
(if applicable), and statistical analysis tool. Once data were extracted, they were summa-

rized for further analysis (see Tables 1, 2 and 3).

Gathering and reporting the findings

The authors reviewed and analysed the data tables to identify trends within the
included articles to synthesize what is known and the knowledge gaps to be addressed
in future research and outline possible recommendations for the field. Documenta-

tion of this review adheres to the Preferred Reporting Items for Systematic reviews and
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Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) reporting standards,
except for the protocol not being registered [65].
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