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Abstract 

Purpose:  The contouring of organs at risk (OARs) in head and neck cancer radiation 
treatment planning is a crucial, yet repetitive and time-consuming process. Recent studies 
have applied deep learning (DL) algorithms to automatically contour head and neck OARs. 
This study aims to conduct a systematic review and meta-analysis to summarize and ana-
lyze the performance of DL algorithms in contouring head and neck OARs. The objective 
is to assess the advantages and limitations of DL algorithms in contour planning of head 
and neck OARs.
Methods:  This study conducted a literature search of Pubmed, Embase and Cochrane 
Library databases, to include studies related to DL contouring head and neck OARs, 
and the dice similarity coefficient (DSC) of four categories of OARs from the results of each 
study are selected as effect sizes for meta-analysis. Furthermore, this study conducted a sub-
group analysis of OARs characterized by image modality and image type.
Results:  149 articles were retrieved, and 22 studies were included in the meta-analysis 
after excluding duplicate literature, primary screening, and re-screening. The combined 
effect sizes of DSC for brainstem, spinal cord, mandible, left eye, right eye, left optic nerve, 
right optic nerve, optic chiasm, left parotid, right parotid, left submandibular, and right 
submandibular are 0.87, 0.83, 0.92, 0.90, 0.90, 0.71, 0.74, 0.62, 0.85, 0.85, 0.82, and 0.82, respec-
tively. For subgroup analysis, the combined effect sizes for segmentation of the brainstem, 
mandible, left optic nerve, and left parotid gland using CT and MRI images are 0.86/0.92, 
0.92/0.90, 0.71/0.73, and 0.84/0.87, respectively. Pooled effect sizes using 2D and 3D images 
of the brainstem, mandible, left optic nerve, and left parotid gland for contouring are 
0.88/0.87, 0.92/0.92, 0.75/0.71 and 0.87/0.85.
Conclusions:  The use of automated contouring technology based on DL algorithms 
is an essential tool for contouring head and neck OARs, achieving high accuracy, reducing 
the workload of clinical radiation oncologists, and providing individualized, standardized, 
and refined treatment plans for implementing "precision radiotherapy". Improving DL 
performance requires the construction of high-quality data sets and enhancing algorithm 
optimization and innovation.
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Introduction
Head and neck cancer is a highly malignant cancer with significant morbidity and mor-
tality rates globally [1]. It comprises various types, such as nasopharyngeal, oropharyn-
geal, hypopharyngeal, and laryngeal cancers, all of which differ significantly in terms of 
clinical features, treatment, and prognosis [1]. The epidemiology of head and neck can-
cer differs based on ethnicity, nationality, gender, and age groups [2–4]. Tobacco and 
alcohol consumption, along with HPV infection, represent the primary risk factors for 
head and neck cancer. Specifically, HPV-16 seropositivity is associated with a nearly 
30-fold higher risk of pharyngeal cancer [5–7]. Radiotherapy is a critical component of 
comprehensive treatment for head and neck cancer. Techniques such as 3D conformal 
radiotherapy, stereotactic radiotherapy, and intensity-modulated radiotherapy are com-
monly used for treating head and neck cancer. However, radiotherapy can also result in 
adverse effects, including xerostomia [8, 9], dysphagia [10, 11] and radiation osteonecro-
sis [12]. Accurate OAR contouring in the head and neck region can significantly reduce 
the incidence of adverse effects of radiotherapy, which will directly impact tumor control 
and long-term prognosis.

Accurate contouring of head and neck OARs has become a challenge for clinicians 
with the advent of precision radiotherapy. Presently, manual contouring of OARs is bur-
dened with two challenges: reduced accuracy and increased time cost. Meanwhile, it has 
been demonstrated [13–16] that contouring of the target area varies among clinicians 
with different levels of experience, even for the same case. This could be due to the low 
pixel contrast on CT or MRI images and the clinicians’ comprehension of the target area. 
Over-segmentation of OARs will make it difficult to optimize radiotherapy dose, while 
under-segmentation will subject OARs to an excessively high radiation dose, leading to 
irreversible side-effects on the patient’s body (Table 1). The effectiveness of radiotherapy 
for cancer patients is seriously dependent on how accurately the OARs are contoured. 
The contouring of OARs is a labor-intensive task, and clinicians need to contour the 
cancerous foci and OARs layer by layer based on CT or MRI images (Figs. 1, 2), which 
will consume a lot of time [17–19]. With the development of deep learning technology, 
doctors have made great progress in contouring the target area, reducing radiological 
damage to patients, and even evaluating and improving patient prognosis [20–22].

Despite the fact that there is a relatively large body of research literature focusing on 
this subject, there is still a lack of comprehensive review and meta-analysis of this area. 
The purpose of this meta-analysis is to review, summaries and analyses the performance 

Table 1  Dose limits and complication probability of head and neck radiotherapy OARs

OARs Max dose Possibility of 
toxicity

Most serious complication

Brain stem 54 Gy < 5% Neuropathy or necrosis

Spinal cord 50 Gy 0.2% Radiological spinal cord injury

Mandible 60–65 Gy < 5% Radioactive osteonecrosis

Optic nerve/optic chiasm < 55 Gy < 3% Nerve damage

Eyes (single)  < 35 Gy – Blindness

Parotid gland (single) < 20 Gy  < 20% Parotid function chronically less than 25%

Submandibular gland < 35 Gy – Xerostomia
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of the DL technique for segmenting OARs in the head and neck region. The good image 
recognition and segmentation performance shown by the DL algorithm is promising. 
This study will focus on the following issues: the current status of DL algorithm seg-
mentation in head and neck OARs, the influence of image modality and image type on 
the segmentation performance of the DL algorithm, and a systematic review of the key 
issues affecting the DL algorithm performance in the contouring of head and neck OARs 
and future development directions.

Methods
Search strategy

This single-arm meta-analysis is conducted based on the guidelines of the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [23]. We 
searched the literature in Pubmed, Embase, and Cochrane Library up to November 14, 
2022, using the form of MeSH Terms + Entry Terms to search relevant literature. The 
search strategy is (Deep Learning OR Neural Networks) AND (Segmentation) AND 

Fig. 1  Sample CT/MRI image slices with OARs contours

Fig. 2  Radiotherapy plans for head and neck cancer and OARs
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(Head and Neck Neoplasms) AND (Organs at Risk). The detailed search strategy can be 
found in Additional file 1: Table S1.

Selection criteria and data extraction

Studies with detailed OAR segmentation data, or studies able to calculate DSCs and 
their 95% confidence intervals (CIs) from other available data, are eligible. Studies with 
the following characteristics should be excluded: 1. studies on non-human species; 2. 
non-algorithmic studies, or contouring using mature segmentation software; 3. confer-
ence abstracts, reviews, book chapters, meta-analyses, editorials, duplicate literature; 4. 
non-English language studies; 5. lack of data; 6. unavailable literature; and 7. irrelevant 
studies.

Before data extraction, this study designed a data extraction form in conjunction with 
existing studies that will focus on the following data: 1. first author and year of pub-
lication; 2. country of first author attribution; 3. single-center or multicenter study; 4. 
prospective or retrospective study; 5. algorithm name; 6. image modality; 7. image type; 
8. total number of patients; 9. test set sample size; and 10. head and neck OARs and cor-
responding DSC values and CI or standard deviations (SD).

Quality assessment and risk of bias

Accurately described detail of the development and validation of clinical prediction 
models is necessary to adequately assess the generalizability of specific studies. There-
fore, the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) for DL [24] is 
chosen as the standard for assessing the quality of the literature, see Additional file 1: 
Table S2 for materials related to the CLAIM criteria.

For risk of bias, the Prediction Model Risk of Bias Assessment Tool (PROBAST), which 
focuses on methodological evaluation, is selected [25], and PROBAST is a risk of bias 
assessment tool for predictive model studies published by the Cochrane Assist Group in 
2019. Moreover, it has been revised to be more appropriate for DL studies and its related 
fields with reference to Frizzell et  al. [26], see Additional file 1: Table S3 for materials 
related to the PROBAST criteria.

Quality assessment of the literature and risk of bias assessment is carried out by a sin-
gle person, and in case of uncertainty about the results, the decision is discussed with a 
second person.

Statistical analysis
DSC is a quantitative analysis metric for evaluating graphic similarity in the field of com-
puter vision. To calculate DSC, the computer first discrete the pixel points on the image 
and set the weight of each pixel point to 1. AT ∪ GT represents the sum of the weights of 
artificial intelligence target (AT) and ground truth (GT), AT ∩ GT represents the weight 
sum of the overlapping parts in AT and GT. The DSC takes values between [0, 1]. The 
closer the DSC is to 1, the better the fit between the AT and the GT area. In general, a 
DSC greater than 0.80 is considered to be a high similarity, a DSC greater than 0.70 is 
considered to be a moderate similarity, and a DSC less than 0.70 is considered to be a 
similarity that needs to be improved:
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The pooled effect size calculations, funnel plots and Egger’s test for publication bias in 
this study were all done using Stata17. The calculation of the pooled effect size is based 
on the mean (mean) and 95% CI. For studies that did not report 95% CI data, reference 
is made to the methods in the Cochrane handbook for systematic reviews of intervention, 
using the test set sample size (n), the DSC mean (mean), the DSC SD were used to trans-
form the data.

Higgins I2 is used to test for heterogeneity between studies, with I2 < 25% consid-
ered to have no heterogeneity, 25% ≤ I2 < 50% considered to have low heterogeneity, 
50% ≤ I2 < 75% considered to have moderate heterogeneity, and I2 ≥ 75% considered to 
have high heterogeneity. The study selected either a fixed-effects model or a random-
effects model based on the value of heterogeneity in the included literature.

Data analysis for this study were all performed using GraphPad Prism 9, and Student 
t test is used for comparison between groups. p < 0.05 (*) is considered a statistically sig-
nificant difference, and vice versa (ns).

Results
Study selection and characteristics

With reference to the search strategy, a literature search is conducted in Pubmed, 
Embase and Cochrane Library for this study. 149 articles were retrieved and 106 arti-
cles were identified after excluding duplicates. After screening and detailed review and 
evaluation, a total of 22 articles were included in the meta-analysis (Fig.  3), involving 
6,099 patients.

Among the 22 articles, 10 studies (45.45%) are from China, 5 studies (22.73%) are from 
the USA, 2 studies (9.09%) are from the Netherlands, 1 study (4.55%) is from Australia, 
1 study (4.55%) is from the UK, 1 study (4.55%) is from Korea, 1 study (4.55%) is from 
Austria, and 1 study (4.55%) is from Austria. 2 studies (9.09%) are multicenter studies 
and 20 (90.91%) are single center studies. 18 studies (81.82%) perform contouring on 
CT images, 3 studies (13.64%) perform contouring on MRI images and 1 study (4.55%) 
on CT and MRI, respectively, and two DL models are trained. 5 studies (21.74%) use 
2D images for contouring, 15 studies (65.22%) use 3D images for contouring, 1 study 
(4.55%) use 2.5D images for contouring and 2 studies (9.09%) do not specify the image 
type. 22 studies (100%) use internal validation sets to validate the algorithm performance 
and 8 studies (36.36%) use external validation sets. The detailed characteristics of the 
included literature can be found in Table 1 and the original data tables of the included 
literature can be found in Table 2.

Results of the meta‑analysis

There are many OARs in head and neck region, and DSC is selected as an effect size for 
meta-analysis of the results of four categories (12 in total) of organs at risk from each 
study. Central nervous system (CNS): brainstem, spinal cord. Bony structures: mandi-
ble. Visual organs: right and left optic nerve, right and left eye, optic chiasm. Glandu-
lar structures: right and left parotid glands, right and left submandibular glands. Pooled 

DSC =
2(AT ∩ GT )

AT ∪ GT
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effect sizes, 95% CI can be found in Table 3. Forest plots for pooled effect size calcula-
tions can be found in Additional file 1: Fig. S1 (A–L).

CNS organs

Brainstem: A total of 21 models from 20 studies presented results for the brainstem, with 
a pooled DSC effect size of 0.87 (95% CI 0.85–0.89) and a Higgins I2 = 98.1%.

Spinal cord: A total of 10 models from 10 studies presented results for the spinal cord, 
with a pooled DSC effect size of 0.83 (95% CI 0.81–0.85) and a Higgins I2 = 95.2%.

Bony structures

Mandible: A total of 19 models from 18 studies presented results for the spinal cord, 
with a pooled DSC effect size of 0.92 (95% CI 0.91–0.93) and a Higgins I2 = 98.5%.

Visual organs

Eye: A total of 9 models from 9 studies presented results for the left and right eyes, with 
pooled DSC effect sizes of 0.90 (95% CI 0.88–0.91) and Higgins I2 = 96.4% for the left eye 
and 0.90 (95% CI 0.88–0.92) and Higgins I2 = 97.7% for the right eye, respectively.

Optic nerve: A total of 17 models from 16 studies presented results for the left and 
right optic nerve, with pooled DSC effect sizes of 0.71 (95% CI 0.68–0.75), Higgins 

Fig. 3  PRISMA flowchart of eligible studies selection process
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I2 = 97.4% for the left optic nerve and 0.74 (95% CI 0.70–0.78), Higgins I2 = 97.8% for the 
right optic nerve, respectively.

Optic chiasm: A total of 13 models from 12 studies presented results for optic chiasm, 
with a pooled DSC effect size of 0.62 (95% CI 0.59–0.65) and Higgins I2 = 84.7%.

Glandular structures

Parotid glands: A total of 23 models from 22 studies presented results for the left and 
right parotid glands, with pooled DSC effect sizes of 0.85 (95% CI 0.84–0.86) and Hig-
gins I2 = 94.5% for the left parotid gland and 0.85 (95% CI 0.83–0.86) and Higgins 
I2 = 94.4% for the right parotid gland, respectively.

Submandibular glands: A total of 15 models from 15 studies presented results for the 
left and right submandibular glands with combined DSC effect sizes of 0.82 (95% CI 
0.81–0.84), Higgins I2 = 92.4% for the left submandibular gland and 0.82 (95% CI 0.80–
0.94) for the right submandibular gland with Higgins I2 = 93.5%.

Publication bias

Publication bias is evaluated qualitatively using funnel plots and quantitatively using the 
Egger test. The funnel plot for the bias analysis can be found in Additional file 1: Fig. S2 
(A–L). No publication bias is detected in the Egger test for the four categories of organs 
(p > 0.05), see Table 3 for the results.

Subgroup analysis: comparison of contours on CT and MRI images

In this study, four representative organs (brainstem, mandible, left optic nerve, left 
parotid gland) were selected among the four types of OARs for study [Additional file 1: 
Fig. S3 (A–H)]. For the DL segmentation performance of DL on CT and MRI, the pooled 
effect sizes for the four types of organs in the studies using CT images for segmentation 
were 0.86 (95% CI 0.85–0.88), 0.92 (95% CI 0.91–0.93), 0.71 (95% CI 0.67–0.75), 0.84 
(95% CI 0.83–0.86). The pooled effect sizes for the four types of organs in studies using 
MRI images for segmentation were 0.92 (95% CI 0.90–0.94), 0.90 (95% CI 0.84–0.95), 
0.73 (95% CI 0.66–0.80), and 0.87 (95% CI 0.86–0.89), respectively. Among the organs’ 
contours in the two types of image modalities, the difference in brainstem is statistically 
significant (p = 0.0139), suggesting that DL is able to better contour the brainstem on 
MRI images. The segmentation result of the mandible, left optic nerve and left parotid 
gland is somewhat different (Fig. 4A) but did not show a statistically significant differ-
ence between the two modalities (p > 0.05).

Subgroup analysis: comparison of contours on 2D and 3D modalities

This study also investigated the performance of DL in contouring the four organs men-
tioned above in different image types [Additional file 1: Fig. S4 (A–H)]. For DL segmen-
tation performance on 2D and 3D modalities, the pooled effect sizes for the four types of 
organs in the study using 2D modalities for segmentation were 0.88 (95% CI 0.87–0.90), 
0.92 (95% CI 0.87–0.96), 0.75 (95% CI 0.64–0.86), 0.87 (95% CI 0.84–0.89). The pooled 
effect sizes for the four types of organs in studies using 3D modalities for segmentation 
were: 0.87 (95% CI 0.84–0.89), 0.92 (95% CI 0.91–0.93), 0.71 (95% CI 0.68–0.74), 0.85 
(95% CI 0.84–0.86). DL contours the brainstem, left optic nerve and left parotid gland 
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better on 2D images than on 3D images (Fig. 4B). The mandible had the same results 
on both types of images. All four types of organs did not show a statistical difference 
(p > 0.05) between the two types of images, Table 4.

Fig. 4  Bar chart of OARs DSC score in head and neck cancer patients of different image modalities and 
different image types

Table 4  Pooled dice similarity coefficient and Egger test of the publication bias of DL segmentation 
model

References Pooled 
estimate

95% CI I2 Egger’s bias Egger’s 95% 
CI

Egger’s P 
value

Brain stem [17, 18, 20, 23, 
27, 30–44]

0.87 0.855 to 0.885 98.10% − 0.363099 − 6.434718 to 
5.70852

0.902

Spinal cord [17, 18, 30, 32, 
33, 35–37]

0.83 0.815 to 0.855 95.20% 1.172798 − 9.669338 to 
12.01493

0.809

Mandible [18, 23, 27, 
29–34, 36, 37, 
39–44]

0.92 0.907 to 0.930 98.50% − 4.291492 − 10.1736 to 
1.590612

0.142

Eye (Left) [17, 18, 23, 
31–33, 35, 37, 
41]

0.90 0.882 to 0.914 96.40% 0.3947261 − 7.959603 to 
8.749055

0.914

Eye (Right) [17, 18, 23, 
31–33, 35, 37, 
41]

0.90 0.881 to 0.917 97.70% − 1.326596 − 14.50229 to 
11.8491

0.819

Optic nerve 
(Left)

[18, 23, 27, 28, 
31–35, 37–43]

0.71 0.677 to 0.748 97.40% 1.666572 − 5.986573 to 
9.319716

0.649

Optic nerve 
(Right)

[18, 23, 27, 28, 
31–35, 37–43]

0.74 0.698 to 0.776 97.80% 4.376849 − 4.080193 to 
12.83389

0.287

Optic chiasm [18, 23, 27, 
32–34, 37–40, 
42, 43]

0.62 0.586 to 0.648 84.70% 0.4959904 − 2.725629 to 
3.717609

0.741

Parotid gland 
(Left)

[17, 18, 20, 23, 
27–44]

0.85 0.836 to 0.860 94.50% − 0.3678269 − 4.289085 to 
3.553431

0.847

Parotid gland 
(Right)

[17, 18, 20, 23, 
27–44]

0.85 0.835 to 0.859 94.40% 0.1090494 − 3.900165 to 
4.118264

0.955

Submandibu-
lar gland (Left)

[17, 18, 20, 23, 
27, 29, 30, 32, 
34, 36, 39, 40, 
42–44]

0.82 0.806 to 0.839 92.40% − 1.411071 − 4.497547 to 
1.675404

0.341

Subman-
dibular gland 
(Right)

[17, 18, 20, 23, 
27, 29, 30, 32, 
34, 36, 39, 40, 
42–44]

0.82 0.796 to 0.843 93.50% − 0.2339747 − 4.336639 to 
3.868689

0.904
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Quality assessment and risk of bias

The six sections of the CLAIM criteria are presented as percentages in Fig. 5A. In the 
title/abstract section, 97.7% of the studies clearly and accurately described the type 
of artificial intelligence (AI), study design protocol, etc. 2.3% of the studies do not 
clearly specify these elements. In the "Introduction" section, all studies (100%) have 
described the disciplinary background, research objectives and research hypotheses. 
In the "Methods" section, 59.7% of the studies accurately provide detailed descrip-
tions of the AI architecture, data sources, and training process, while 40.3% of the 

Fig. 5  A Summary of CLAIM assessments of included studies. B Number of included studies meeting each 
CLAIM criterion. C Risk of bias graph according to PROBAST. D Risk of bias summary according to PROBAST
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studies do not provide detailed descriptions of the data sources, pre-processing 
steps, or how to handle missing data. In the "Results" section, 78.2% of the studies are 
unclear about the inclusion/exclusion criteria for researchers, simply state the source 
of the CT/MRI images of the included patients, or lack an accurate assessment of the 
performance of the model, do not analyze cases that are incorrectly contoured. In the 
"Discussion" section, 84.1% of the studies comment on the limitations of this study, 
while 15.9% omit this element. For other information, 72.7% of the studies indicate 
information, such as the location, where the full study protocol could be accessed. 
Compliance with the CLAIM criteria for the 22 studies include in the meta-analysis 
ranged from 50% to 71.4%, with a mean of 61.0%. The number of studies meeting the 

Fig. 5  continued
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42 criteria in the CLAIM criteria can be found in Fig.  5B. Detailed results for the 
CLAIM criteria can be found in Additional file 1: Table S4.

About half (54.5%) of the studies show a high risk of bias according to the PROBAST 
assessment, Fig. 5C, D. The main source of high risk of bias is that the analysis section 
did not provide an accurate and comprehensive assessment of DL, including failure to 
assess metrics, such as specificity and sensitivity or failure to report model over-fitting, 
under-fitting and solutions. The risk of bias is unclear in less than half (45.5%) of the 
studies, mainly because the inclusion/exclusion criteria for the cases included in the 
study are not detailed. Detailed results of PROBAST can be found in Additional file 1: 
Table S5.

Discussion
DL has the ability to produce high‑precision contours of head and neck OARs 

automatically.

In this study, it is found that DL has the capacity to generate highly precise contours in 
the automatic contouring of head and neck OARs. Overall, DL can attain a high level of 
similarity (DSC > 0.8) for CNS organs, bony structures, visual organs (eyes) and glandu-
lar structures, and a moderate level of similarity (DSC > 0.7) for the optic nerve in visual 
organs, while the ability to contour the optic chiasm needs to be improved (DSC < 0.7) 
(Fig. 6).

Radiation therapy for head and neck cancer is often associated with various radio-
toxic reactions; these include optic nerve damage [27], cognitive deficits [45], and cen-
tral nervous demyelinating lesions [46]. This requires the clinicians to strike a balance 
between maximizing the extent of tumor control and minimizing toxic effects, where 
even small differences in contouring may result in a difference in dose [47]. As the radio-
therapy process progresses, the anatomy of head and neck region will change dramati-
cally [48–50]. The location and shape of the tumor and surrounding OARs will change 

Fig. 6  Contouring similarity and optimization directions for accurate image segmentation algorithms
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as a result of the exposure to the radiation. Moreover, the gradient of radiation dose 
distribution in image-guided radiotherapy changes drastically, and if no corresponding 
adjustments are made to the dose distribution according to the changes in the lesion and 
surrounding organs, damage to normal tissues will be exacerbated, while the tumor is 
not well-controlled [51].

Image modality is an important factor affecting the performance of the DL algorithm, 

and multi‑modality images can provide more accurate automatic contouring

DL’s ability to segment CNS organs, visual organs and glandular structures on MRI 
images superior to that of similar algorithms on CT images, although this does not pro-
duce a statistical difference. This suggests that MRI is better equipped to segment soft 
tissue.

It is found that DL’s ability to contour bony structures on MRI images is lessened in 
comparison with CT, which aligns with Tong et al.’s findings [40]. The bone cortex’s low 
water content results in a low signal on MRI sequences, whereas bone tissue can strongly 
influence the ray beam attenuation on CT images, leading to a high-density signal. Due 
to the imaging limitations of single-modality images, DL faces challenges in extracting 
numerous imaging histological features from CT or MRI [27]. This severely restricts the 
accuracy of contouring head and neck OARs, which in turn, might have implicational 
effects on radiotherapy planning. Ibragimov et al. [52] also found that the convolutional 
neural network (CNN)-based DL algorithm is highly capable of identifying organs with 
clear boundaries on CT images, and for organs, such as optic chiasm, which are not well-
defined, may require additional information to aid in contouring. Kieselmann et al. [53] 
are exploring the creation of sMRI image synthesized from CT by an algorithm based on 
generative adversarial networks. sMRI has the advantage of providing good complemen-
tary information on soft and bone tissues, and compared to image segmentation on CT 
alone, sMRI has a significant improvement in predicting optic chiasm, the cochlea and 
other organs [27, 54]. Multimodality images can provide additional imaging information 
for the accurate contouring of OARs.

Image type is not a key factor in algorithm performance

The creation of 3D deep learning models necessitates numerous training parameters, 
leading to considerable computational overhead and potential overfitting hazards. [55, 
56]. Due to hardware limitations, 3D DL model neural network depth is typically shal-
lower than that of 2D DL models. This results in a reduced ability of 3D DL models to 
extract features and contour individual CT/MRI images, which explains why there is 
no significant difference in algorithm performance across image types. Furthermore, 
2D DL models are fast, computationally efficient, and independent of layer thickness. 
[57, 58]. Medical images are often stored in 3D format in computers, and 3D DL mod-
els can efficiently utilize the correlation information from several contiguous images to 
provide more precise anatomical details and lesion features, therefore, overcoming the 
deficiency of information amongst body layers that is present in 2D DL models [27]. In 
general, 3D DL models produce more uniform, intricate, and lifelike contour of OARs. 
These models are capable of accurately modeling organs that have relatively stable ana-
tomical positions [43]. 3D DL models have many advantages that are currently the focus 
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of attention in the field of image segmentation. However, it is clear that 3D DL models 
do not currently demonstrate superior performance to 2D DL models.

To enhance the accuracy of segmentation for OARs with respect to image type, Fang 
et al. [35] applied a 2.5D U-Net model for OARs segmentation. For central slice informa-
tion prediction, 2.5D images also entail the use of adjacent slices as input, even though 
the convolution kernel remains in 2D. 2.5D DL models enable the extraction of sur-
rounding 3D information, while also reducing computational complexity, making them 
more efficient than traditional 3D CNNs [59]. Nuo et al. integrated shape representation 
models into 3D DL networks to predict images, along with a priori OAR shape features. 
[40]. In addition to single image types, there is ongoing research on hybrid 2D–3D CNN 
models. Various studies have implemented 2D–3D hybrid neural networks for organ 
segmentation [60–62], combining the semantic information of single slices extracted 
by 2D methods and the contextual semantic information extracted by 3D methods to 
achieve better segmentation results. Lee et  al. [63] incorporated migration learning 
into organ segmentation. All of these schemes offer potential research ideas for accu-
rately segmenting head and neck OARs. It is essential to emphasize that achieving accu-
rate segmentation requires adequate pre-processing of medical images, irrespective of 
whether the algorithm segmentation performance is enhanced by the image modality or 
type. Operations such as removing artifacts, normalizing data, and aligning images can 
reduce the likelihood of inaccurate segmentation and facilitate image analysis. [64].

Building a high‑quality training set and enhancing innovation in the optimization 

of the algorithm are developing directions to further improve the performance 

of the algorithm

High-quality training data are a prerequisite for DL algorithms to achieve accurate pre-
dictions [40, 44]. A high-quality training data set is often a simpler and more effective 
means of enhancing of DL algorithms than a low-quality yet high-volume training data 
set [18]. Although DL models are robust to the noise of image data labels, Rolnick D’s 
study showed a significant negative correlation between the amount of noise and the 
performance of automatic segmentation algorithms [65]. High-quality data sets are 
expensive to create, requiring a clinician’s medical background, a significant amount of 
time and effort, among other factors. To overcome the challenge of limited access to such 
data sets, data augmentation has emerged as a potential solution. This involves generat-
ing variations of the original image by rotating, panning, cropping, and applying other 
techniques such as grayscale perturbation, scaling, and stretching to enhance diversity in 
the training data set. [34, 53]. Edward [66] performed data augmentation using limited 
data and evaluated the segmentation effect of a custom model (3D CNN) on a small data 
set, and the algorithm yielded an average surface distance of only 0.81 mm for the brain-
stem. Zhao et al. [67] used a principal component analysis model to randomly deform 
the original CT image to produce new data, and data augmentation provided small-sam-
ple-high-quality variants of the contours for DL. Asma Amjad et al. [68] used the adap-
tive spatial resolution method to improve the problem of low default spatial resolution 
(2 × 2 × 2 mm3) for identifying small organs, and a higher resolution of (1 × 1 × 2 mm3) 
for tissues, such as the optic nerve. Results on the test set showed that the DL algorithm 
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contoured improved DSC values for all nine OARs, including the brainstem, inner ear 
and optic nerve.

The class imbalance problem is a major obstacle to computer image segmentation. It 
leads to a bias toward larger objects at the expense of smaller ones, resulting in higher 
rates of false positives and increased computational demands [41]. Currently, there are 
four main solutions for addressing the class imbalance problem: adjusting sampling 
methods, developing a new type of loss function, utilizing attention mechanisms, and 
implementing cascade models. Sampling method adjustments typically involve under-
sampling and oversampling techniques [69]. Undersampling adjusts the imbalance of 
categories by reducing the majority class samples, but may lead to information loss. On 
the other hand, oversampling methods can be used to expand imbalanced data, such 
as random oversampling, SMOTE oversampling [70], adaptive integrated oversampling 
[71], and random undersampling [72] which are popular sampling methods. The design 
of appropriate loss function is also one of the effective strategies to mitigate the impact 
of class imbalance, the advantage is that it will not destroy the original data distribu-
tion, the loss function mainly includes the loss function based on Dice, the loss function 
based on cross-entropy, or a combination of both. For example, researchers optimise the 
patch size of the segmentation architecture nnU-Net and use the class-adaptive Dice 
loss function to reduce the possibility of false positives brought by the image class imbal-
ance problem [73], and Yeung et al. [74] combined dice- and cross-entropy-based loss to 
deal with the class imbalance, which reduces the loss to the class imbalance while con-
verting voxel measurements to semantically labelled overlap measurements sensitivity 
to imbalance effects. The attention mechanism can selectively assign different weights to 
the input variables according to the importance differences, which can highlight useful 
information in image features while suppressing irrelevant information without the need 
for a large number of parameters and computational overheads. Ke Sheng et  al. [39] 
designed a network architecture based on a spatial attention learning mechanism and a 
channel attention learning mechanism, which is able to priorities the invocation of neu-
rons in regions potentially related to OARs, thus identifying meaningful features, which 
reduces the requirement of computer arithmetic and decreases the segmentation time. 
The fourth category of methods is cascade models, using cascade models can effectively 
take advantage of multiple models for image segmentation, e.g., James C. Korte et  al. 
[29] used cascade CNNs to segment organs, such as submandibular gland and parotid 
gland of head and neck tumor patients, and still performed the image segmentation task 
using the original image resolution on a low dimensional image. In conclusion, the class 
imbalance problem is a key issue in DL-based segmentation of head and neck OARs, and 
future work on optimization at the level of data sources, algorithms, and hybrid models 
will help to improve global accuracy and reduce misclassification.

In conclusion, with the rapid development of computer vision and image processing 
technology, DL has immense potential for application in various fields, including health-
care, as well as image recognition and classification. This research paper assesses the 
performance of DL contouring OARs in head and neck region. Its excellent performance 
confirms the value of DL for clinical applications. However, there are also some urgent 
problems that need to be solved. For the future development of DL, it is necessary to 
strengthen theoretical research and innovation of algorithms while simultaneously 
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building large medical image data sets. In addition, it is important to explore more intel-
ligent, automated, and precise radiotherapy techniques.

This systematic review and meta-analysis analyzed the contouring performance of DL 
in contouring head and neck OARs for radiotherapy. There is some heterogeneity in the 
literature included in the study, which is an inherent limitation of single-arm meta-anal-
ysis. In addition, the low level of publication bias ensured the stability of the analysis 
results. The field of literature quality assessment and bias analysis of AI is highly con-
troversial [75–79], the development of clinical prediction models necessitates compre-
hensive information to serve as a foundation to aid researchers in evaluating the models’ 
performance and generalizability. The absence of adequate information to reiterate the 
model will heighten the risk of bias in articles, to a certain extent. In this paper, the 
assessment of article quality and analysis of bias did not yield very satisfactory results. 
This is due to the specific details reported in each research literature, resulting in a com-
mon lack of information among low quality/high bias studies. Therefore, this paper does 
not utilize study quality or risk of bias as a criterion for literature exclusion, but as an 
informative reference to aid researchers in carefully and objectively assessing high-level 
clinical evidence, rather than blindly utilizing it for clinical decision-making.

The limitations of this paper are as follows: 1. only the DSC metric is used to meas-
ure segmentation performance. Other parameters used in the field of computer vision to 
evaluate algorithm performance include mean surface distance, Hausdorff distance, Jac-
card distance, and contouring time. The incorporation of additional, objective evaluation 
metrics would enhance the comprehensiveness of algorithm performance assessment. 
In addition, evaluating segmentation performance solely based on DSC does not fully 
indicate the effectiveness of response treatment [80], and in some studies it has been 
found that even large differences between DL contour and true contour do not necessar-
ily affect the dosimetry or clinical feasibility of OARs [81]. Dose accuracy [22], normal 
tissue complication probability values [82] and the applicability of the target area to the 
clinic [36] are all subject to critical review by clinicians. 2. Diverse image sources: algo-
rithm performance is closely tied to factors, such as imaging modality, device param-
eters, and characteristics of the patient population, each of which may directly affect the 
performance of the DL algorithm. Non-homogeneous parameter metrics may present 
a potential risk of bias.3. Assessing the interobserver contour variability of head and 
neck OARs and the impact of variability on the performance in DL algorithms has an 
important value in furthering the understanding and application of DL contours [44, 83], 
which will be one of the key elements of future research.

Conclusion
The potential of DL is enormous, and it should be optimized and innovated in the future 
to coordinate with multiple institutions to create large-scale, multi-modality, high-qual-
ity medical data sets that integrate multiple information. DL is expected to become a 
powerful tool to promote the implementation of "precision radiotherapy" and provide 
individualized, standardized and refined treatment plans for patients.
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