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Abstract 

Purpose: This study aims to accurately predict the effects of hormonal therapy 
on prostate cancer (PC) lesions by integrating multi-modality magnetic resonance 
imaging (MRI) and the clinical marker prostate-specific antigen (PSA). It addresses 
the limitations of Convolutional Neural Networks (CNNs) in capturing long-range 
spatial relations and the Vision Transformer (ViT)’s deficiency in localization information 
due to consecutive downsampling. The research question focuses on improving PC 
response prediction accuracy by combining both approaches.

Methods: We propose a 3D multi-branch CNN Transformer (CNNFormer) model, 
integrating 3D CNN and 3D ViT. Each branch of the model utilizes a 3D CNN to encode 
volumetric images into high-level feature representations, preserving detailed localiza-
tion, while the 3D ViT extracts global salient features. The framework was evaluated 
on a 39-individual patient cohort, stratified by PSA biomarker status.

Results: Our framework achieved remarkable performance in differentiating respond-
ers and non-responders to hormonal therapy, with an accuracy of 97.50%, sensitiv-
ity of 100%, and specificity of 95.83%. These results demonstrate the effectiveness 
of the CNNFormer model, despite the cohort’s small size.

Conclusion: The findings emphasize the framework’s potential in enhancing per-
sonalized PC treatment planning and monitoring. By combining the strengths of CNN 
and ViT, the proposed approach offers robust, accurate prediction of PC response 
to hormonal therapy, with implications for improving clinical decision-making.
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Introduction
Prostate Cancer (PC) is a significant global health concern, being the second most fre-
quently diagnosed cancer. In 2024, the American Society reported 299,010 new PC cases 
in the United States, leading to approximately 35,250 deaths [1]. PC is characterized by 
the uncontrolled growth of prostate gland cells, dependent on testicular hormones [2]. 
Androgen deprivation therapy (ADT), which uses castration and antiandrogens, is a key 

*Correspondence:   
aselba01@louisville.edu

1 Department of Bioengineering, 
University of Louisville, Louisville, 
KY, USA
2 Radiology Department, 
Urology and Nephrology Center, 
Mansoura, Egypt
3 Electrical, Computer, 
and Biomedical Engineering 
Department, Abu Dhabi 
University, Abu Dhabi, UAE
4 Department of Radiology, 
University of Louisville, Louisville, 
KY, USA
5 Department of Pathology 
and Laboratory Medicine, 
University of Louisville, Louisville, 
KY, USA
6 Department of Radiation 
Oncology, University of Louisville, 
Louisville, KY, USA
7 Electrical and Computer 
Engineering Department, 
Morgan State University, 
Baltimore, MD, USA

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-024-01325-w&domain=pdf


Page 2 of 15Abdelhalim et al. BioMedical Engineering OnLine          (2024) 23:131 

treatment for advanced PC [3]. Prostate-specific antigen (PSA) is a crucial biomarker for 
monitoring disease progression and assessing treatment efficacy [4]. The integration of 
machine learning (ML) and Deep Learning (DL) techniques in grading, particularly via 
the Gleason Score (GS), is standard practice for predicting PC aggressiveness [5–10]. In 
addition, the assessment of PC therapy involves statistical analysis of clinical biomarkers 
[11–13] and the application of ML/DL on radiomic features or pathological markers [14, 
15]. Collins and Cheng [11] provided an overview of PC treatments and highlighted his-
topathological changes in prostate tissue resulting from these treatments. Osiecki et al.  
[12] conducted a systematic review exploring the impact of morphological variants on 
outcomes following radical prostatectomy (RP), establishing a significant correlation. 
Identifying these high-risk morphologies during prostatectomy could improve prognos-
tic accuracy and refine management strategies. While Guerra et al. [16] developed ML 
models to predict extracapsular extension in PC patients prior to RP, leveraging clini-
cal, semantic, and radiomic features derived from T2-weighted MRI, decision curve 
analysis (DCA) and receiver operating characteristic (ROC) metrics were compared to 
guide feature selection. Using a training cohort of 139 patients and an external validation 
cohort of 55 patients, the model that integrated all feature types demonstrated the high-
est net benefit across relevant threshold probabilities. While DCA and the area under 
the curve (AUC) rankings differed, the combined model showed promise for enhanc-
ing predictive accuracy and supporting nerve-sparing surgical decision-making in clini-
cal practice. Saito et  al. [13] developed a ML-based prognostic model for PC patients 
undergoing ADT, demonstrating the ability of ML to provide accurate prognostic pre-
dictions for ADT outcomes in metastatic PC. Radiomic features have also been inves-
tigated for therapy assessment. Nakata et al. [14] introduced a VGG-16 based model to 
predict the time to castration-resistant disease in metastatic PC patients with an 80% 
accuracy rate. Chen et al. [15] evaluated a radiomics approach using biparametric Mag-
netic Resonance Imaging (bMRI) to detect significant residual PC after ADT, showing 
potential for improved detection. Furthermore, Spratt et  al. [17] designed a ResNet-
50-based model to identify patients with predominantly intermediate risk for PC who 
could benefit from short-term ADT. Zhang et al. [18] developed an ML model utilizing 
multi-modal ultrasound and PSA measurements to predict clinically significant PC with 
80% sensitivity and an Area Under the Curve (AUC) of 85.5%. In summary, the literature 
emphasizes the utilization of diverse data sources, including clinical biomarkers, multi-
modality MRI, pathological markers, and medical records, for managing PC. However, 
a significant challenge lies in effectively navigating the diagnostic complexities inherent 
in these multi-modal data sources, particularly during follow-up to evaluate hormo-
nal therapy. The integration of multiple imaging modalities, such as diffusion-weighted 
imaging (DWI) and T2-weighted MRI, is crucial for a comprehensive diagnosis, as each 
modality provides unique insights. However, existing literature lacks an efficient meth-
odology for integrating multi-modality MRI data, given their inherent heterogeneity. In 
addition, conventional ML techniques or CNN-based models often struggle to capture 
long-range dependence features essential for understanding the anatomical structure of 
medical images, underscoring the need for modeling global features. To address these 
limitations, we propose a multi-branch framework designed to effectively integrate 
multi-modality MRI data to predict PC response to hormonal therpy. This framework 
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consists of a hybrid approach that combines a 3D CNN encoder and a 3D Vision Trans-
former (ViT) encoder at each branch (i.e., a branch for each modality) to predict the 
impact of hormonal therapy on PC lesions. We name this hybrid approach CNNFormer. 
Our contributions are as follows:

• We proposed a hybrid multi-branch framework named CNNFormer, comprising a 
3D CNN encoder and a 3D ViT encoder. This framework is designed to effectively 
predict the effects of hormonal therapy on PC using multi-modality MRI.

• By integrating multi-modality MRI data, our approach addresses the challenge of 
data heterogeneity. Each branch within the framework independently learns crucial 
contextual information from each modality, which collectively refines our under-
standing of the prostate’s anatomical structure from diverse data sources.

• The 3D CNN encoder in our architecture serves two primary functions: extracting 
key local radiomic features from MRI modalities and reducing data dimensionality 
to enhance computational efficiency for the 3D ViT encoder. This encoder further 
refines these features, focusing on salient aspects within the volumetric data. Finally, 
by merging outputs from each branch and applying average pooling and flattening, 
we achieve robust classification of responders and non-responders to hormonal ther-
apy.

Scope and importance of the study

This research aims to bridge the gap between data heterogeneity and diagnostic preci-
sion by introducing a novel framework, CNNFormer, which integrates 3D multi-modal 
MRI with clinical biomarkers, specifically PSA levels, to predict treatment outcomes for 
PC patients undergoing hormonal therapy. By leveraging the strengths of 3D CNNs and 
3D ViTs, our approach overcomes the key limitations of existing models in capturing 
both local and global features in medical images.

The scope of this study goes beyond merely predicting treatment outcomes. It aspires 
to establish a reliable and robust framework that enhances clinical decision-making 
by equipping clinicians with a tool to monitor and tailor therapy based on predicted 
responses. This personalized treatment approach has the potential to significantly 
improve patient care by enabling earlier interventions and reducing the likelihood of 
ineffective treatments. By accurately identifying which patients are most likely to ben-
efit from hormonal therapy, the framework can help clinicians avoid unnecessary treat-
ments, thereby minimizing side effects and improving patients’ quality of life. Moreover, 
the integration of multiple imaging modalities, such as DWI and T2 MRI images, ena-
bles a more comprehensive and nuanced understanding of the disease. This capability 
distinguishes the proposed model from traditional methods that rely on single-modality 
data.

The proposed framework could be seamlessly integrated into existing clinical work-
flows, assisting radiologists and oncologists in their decision-making processes. As the 
model undergoes further refinement and validation with larger patient cohorts, it holds 
promise for broader application in clinical settings, potentially transforming the man-
agement and monitoring of PC. Furthermore, the flexibility of this framework opens the 
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possibility for adaptation to other diagnostic tasks, underscoring the broader applicabil-
ity and significance of this research.

Experiments and results
Data set

In this study, a cohort comprising 39 patients was utilized to evaluate the proposed sys-
tem. Patients underwent imaging with T2-MRI and DW-MRI, alongside the collection 
of clinical biomarkers such as PSA levels and GS. Three b values of DW-MRI were used 
(i.e., b0, b500, b1400). Responders and non-responders to hormonal therapy were iden-
tified based on their PSA levels before and after treatment. Among the 39 patients, 23 
were classified as non-responders, while 16 were responders. Imaging procedures were 
carried out using a 3 Tesla MRI scanner equipped with a phased-array body coil, fol-
lowing a specific multiparametric MRI (mp-MRI) protocol. Preprocessing steps were 
applied to all modalities, as described in “Preprocessing” section.

Setting

The proposed system was trained using the AdamW optimizer, set with a learning rate of 
0.001, and a cosine annealing scheduler, along with a batch size of 8. For the purpose of 
training and testing, we employed a Leave-One-Out Cross-Validation (LOOCV) strat-
egy. In addition, cross-entropy loss was utilized. The implementation was executed via 
PyTorch, leveraging a single NVIDIA Quadro P5000 GPU with a memory capacity of 16 
GB.

CNNFormer’s results

We begin our experiments by comparing various Machine Learning (ML) classifi-
ers, including K-Nearest Neighbor (KNN), Decision Tree (DT), Random Forest (RF), 
eXtreme Gradient Boosting (XGB), and Fully Connected (FC) classifiers, based on the 
adaptive average pooling features from a 3D Multi-branch CNN (MCNN). The highest 
accuracy (ACC) and specificity (SPE) were obtained using the FC classifier, as shown in 
Table 1, row labeled MCNN. The best sensitivity (SEN) was achieved by both the FC and 
XGB classifiers. Since the FC classifier outperformed the XGB classifier in all other met-
rics, we chose to use the FC classifier for the remainder of our experiments.

Moreover, as demonstrated in Table  2, the 3D multi-branch CNNFormer (MCNN-
Former) was compared against 3D MCNN and several well-known classification models, 

Table 1 A comparison of various ML classifiers was conducted using the flattened concatenated 
adaptive average pooling features corresponding to T2-MRI and DW-MRI from the 3D MCNN

As shown in the table, the highest SEN was achieved with the XGB and FC classifiers. However, since the FC classifier 
outperformed XGB across other metrics, it was selected for use in subsequent experiments

Bold to empahsis that this model or appraoch achieved the best results based on those highlighted values

Model ACC (%) SEN (%) SPE (%)

MCNN+KNN 51.28 31.25 65.22

MCNN+DT 61.54 37.50 78.26

MCNN+RF 56.41 31.25 73.91

MCNN+XGB 71.79 50.00 86.96

MCNN 79.49 50.00 100.00
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and it is evident that the 3D MCNNFormer achieved superior results across various 
metrics, including ACC and SEN. While CNNs excel in modeling local features crucial 
for understanding the impact of hormonal therapy on PC, the performance of the 3D 
MCNN lags behind the 3D MCNNFormer in terms of ACC and SEN, although it per-
forms better in terms of SPE, similar to ResNet-18 [19]. The 3D ViT, adept at capturing 
global features, plays a pivotal role in comprehending the characteristics of the prostate 
relative to its surrounding tissue. Consequently, the seamless fusion of 3D CNN and 3D 
ViT enables the integration of their respective strengths, leading to optimal outcomes.

In addition, models such as Wang et  al.’s model [20], UniFormer-S [21], PosMLP-
Video [22], and I2GCN  [23] demonstrate significant improvements over models such 
as SqueezeNet [24], EfficientNet-b0 [25], and ResNet-18 [19]. The method of Wang 
et al. achieves impressive results with an ACC of 90.25% and a high SEN of 92.74%. Uni-
Former-S further refines these metrics, reaching an ACC of 93.23% and SEN of 94.56%, 
marking a notable improvement in both metrics. PosMLP-Video and I2GCN  continue 
to enhance these metrics, with I2GCN  achieving the highest performance among these 
models, with an ACC of 95.51% and SEN of 96.64%, although it still performs slightly 
worse than our 3D MCNNFormer. In contrast, ConvNext-T [26] exhibits the poorest 
performance, with an ACC of only 51.28%, and poor SEN (50%) and SPE (52.17%). For 
additional details, please refer to Fig. 1, which illustrates the confusion matrix, the ROC 
curve, and the corresponding AUC for the 3D MCNNFormer. It is worth highlighting 
that 3D versions of SqueezeNet, EfficientNet-b0, and ResNet-18 were utilized, with 
smaller variants of competing models being adopted due to memory constraints. More-
over, for the these models, a dual-branch architecture was implemented for processing 
DW-MRI and T2-MRI data, mirroring the design strategy applied in the 3D MCNN-
Former. Also, the 3D MCNNFormer demonstrates inferior performance compared to 
ResNet-18 and MCNN in terms of SPE. However, in clinical practice, greater emphasis is 
placed on SEN, as it reflects the model’s ability to accurately identify true positive cases, 
which is of paramount importance.
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Fig. 1 Confusion matrix alongside the AUC and the receiver operating characteristic (ROC) curve of the 3D 
MCNNFormer. a Confusion matrix, detailing the classification performance, while b displays the AUC and 
ROC curve, providing an overview of the model’s discriminatory ability. In the confusion matrix, ’NR’ signifies 
non-responders, while ’R’ denotes responders
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Furthermore, we provide the number of parameters (in millions) for each model in 
Table 2, under the column labeled ’Params (M)’. As shown, the MCNNFormer requires 
51.95M parameters, which is fewer than ConvNext-T and Wang et al.’s model but greater 
than most of the other competing models. Despite some models having fewer param-
eters than the MCNNFormer, it consistently achieves the best results among all models 
compared. It is also important to note that we used the smaller version of UniFormer, 
which requires 31.02M parameters, due to memory constraints. Running the larger ver-
sion, which demands a significantly higher number of parameters, was not feasible in 
our experimental setup. In contrast, we successfully accommodated the MCNNFormer 
within the available memory constraints by incorporating a 3D CNN encoder. This 
design choice effectively reduced the input size and alleviated memory limitations.

To provide additional evidence of the model’s performance, we collected another 
DW-MRI data set consisting of 94 patients, used for diagnosing whether transplanted 
kidneys were normal (54 patients) or exhibiting acute rejection (40 patients). This data 
set includes the three b values: 0, 500, and 1000. The same preprocessing steps men-
tioned in “Preprocessing” section were applied, including concatenation of the b values. 
For the experiments corresponding to this data set, we did not utilize multi-branches, 
as only one modality, DW-MRI with three b values, was available. Besides, LOOCV 
was employed for training and testing. Table 3 presents the results on this data set, fur-
ther supporting the superiority of the 3D CNNFormer over other models, even in the 
absence of multi-branching. In addition, the number of parameters is reduced compared 
to those listed in Table 2, as the multi-branch architecture was not utilized. For a visual 
example of the kidney data set, refer to Fig. 2.

Ablation study

To evaluate the effectiveness of each component of the 3D MCNNFormer, we con-
ducted an ablation study based on SEN results, which hold significant relevance in 
clinical contexts, as outlined in Table 4. The study began by utilizing the DW-MRI 

Table 2 Comparison between the 3D MCNNFormer, 3D MCNN, and some well-known classification 
models demonstrates that the superior results in terms of ACC and SEN, highlighted in bold, are 
achieved by the 3D MCNNFormer

Here, MCNN denotes the 3D Multi-branch CNN, while MCNNFormer indicates the 3D Multi-branch CNNFormer, with each 
branch corresponding to T2-MRI and DW-MRI. T indicates the tiny version of that model while Params represent the number 
of parameters for each model, which are measured in Millions (M)

Bold to empahsis that this model or appraoch achieved the best results based on those highlighted values

Model ACC (%) SEN (%) SPE (%) Params (M)

SqueezeNet [24] 82.05 93.75 73.91 3.68

Efficient-b0 [25] 89.74 93.75 86.96 9.38

ResNet-18 [19] 76.92 43.75 100.00 21.69

ConvNext-T [26] 51.28 50.00 52.17 56.00

Wang et al. [20] 90.25 92.74 88.91 72.10

UniFormer-S [21] 93.23 94.56 92.12 31.02

PosMLP-Video [22] 95.00 95.67 92.91 28.40

I
2
GCN [23] 95.51 96.64 93.89 6.00

MCNN 79.49 50.00 100.00 0.28

MCNNFormer 97.50 100 95.83 51.95
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alone with a 3D CNN encoder, achieving 18.75% (as shown in the first row of 
Table  4). We attribute this lower performance to the 3D CNN encoder being fed 
with concatenated different b values (i.e., b0, b500, b1400) of DWI, which could 
have resulted in distraction due to the variations in these b values. Afterwards, the 
T2-MRI alone was utilized with the 3D CNN encoder, which achieved 50%. After 
extracting high-level local features from both DW-MRI and T2-MRI using the 3D 
MCNN encoder and fusing them through concatenation, we passed them through 
the classification layer (as shown in the third row of Table  4), achieving a SEN 
of 50%. However, this did not show any improvement over the T2-MRI alone. In 
the fourth row of Table  4, we once again used DW-MRI alone with the 3D CNN-
Former encoder, achieving 93.75%, a significant improvement compared to the SEN 
of the first row of Table 4. This suggests that the high-level local radiomic features 
extracted from the 3D CNN encoder are highly attended by the 3D ViT encoder, 
resulting in salient informative features that comprehensively represent both the 
local and global understanding of the prostate. Similarly, the use of T2-MRI alone 
with a 3D CNNFormer encoder resulted in a substantial improvement, with a SEN 
of 87.50%, compared to the second row of Table 4. Finally, by concatenating the out-
puts from each branch of the 3D CNNFormer and passing them through the clas-
sification layer (refer to Fig. 4), we were able to leverage the diverse characteristics 
of the prostate from different modalities, resulting in a SEN of 100%. This improve-
ment indicates that utilizing multi-modal input within the 3D MCNNFormer, along 
with concatenating the highly informative features of each modality, leads to a com-
prehensive understanding of the PC response to hormonal therapy. This approach 
mirrors common clinical practice, where multi-modality is employed for accurate 
diagnosis. However, our aim is to enhance efficiency, representing a significant 
improvement over using each modality alone. For completeness, we also include the 
number of parameters in millions in Table 4, under the column labeled ’Params (M)’. 

Table 3 Comparison of the 3D CNNFormer, 3D CNN, and several well-known classification models 
on the kidney data set reveals that the 3D CNNFormer outperforms the others, as indicated by the 
results highlighted in bold

In this context, CNN refers to the 3D CNN, while CNNFormer denotes the 3D CNNFormer, with each branch corresponding 
to T2-MRI and DW-MRI. The notation T represents the tiny version of the model, while S refers to the small version. Params 
represent the number of parameters for each model, which are measured in Millions (M)

Bold to empahsis that this model or appraoch achieved the best results based on those highlighted values

Model ACC (%) SEN (%) SPE (%) Params (M)

SqueezeNet [24] 83.12 91.34 75.67 1.84

Efficient-b0 [25] 87.45 91.23 84.56 4.55

ResNet-18 [19] 78.89 45.12 91.76 10.2

ConvNext-T [26] 54.34 48.76 53.45 27.60

Wang et al. [20] 91.12 90.45 89.23 35.64

UniFormer-S [21] 93.67 93.12 94.34 15.20

PosMLP-Video [22] 96.89 90.23 94.56 13.89

I
2
GCN [23] 96.12 94.45 96.78 4.8

CNN 80.23 51.67 95.12 0.14

CNNFormer 98.76 96.89 97.45 25.98
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As illustrated, the 3D ViT requires a large number of parameters. This underscores 
one of the motivations for employing a 3D CNN encoder: to reduce the input size 
and alleviate memory constraints. In the case of 3D CNNFormer for T2-MRI, the 
parameter count was 25.97 M, while for DW-MRI, it was 25.98 M, attributable to 
the difference in the number of channels: one for T2-MRI and three for DW-MRI. 
Conversely, both T2-MRI and DW-MRI models had identical params in the case of 
3D CNN, specifically 0.14 M, owing to the negligible difference in params, which 
is negligible when rounded. In order to visually illustrate the distinct regions that 
the 3D MCNNFormer emphasizes while classifying PC patients into responders and 
non-responders to hormonal therapy, we employ the Class Activation Map (CAM). 

b0 b500 b1000

Fig. 2 Examples of DW-MRI images from the kidney data set, with each column labeled according to the 
corresponding b value of the DW-MRI images
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Please refer to Fig.  3 for the CAM overlay on the cross sections of DW-MRI and 
T2-MRI.

Conclusions and future work
In this paper, we present a new framework designed to predict the response of PC to 
hormonal therapy. Our method leverages the unique characteristics revealed by vari-
ous imaging modalities, allowing for a thorough evaluation of PC lesions and enhancing 

Table 4 Ablation study provides a comprehensive evaluation of the SEN achieved by the 3D 
MCNNFormer model and its individual components

The study examines the influence of various inputs and architectures, including DW-MRI and T2-MRI data processed through 
either a 3D CNN encoder or the hybrid 3D CNNFormer encoder. The results reveal that the 3D CNNFormer substantially 
enhances SEN compared to the 3D CNN alone by effectively leveraging both high-level local and global features. A perfect 
SEN of 100% is achieved when combining outputs from both DW-MRI and T2-MRI branches of the 3D MCNNFormer, 
underscoring the model’s ability to integrate multi-modal inputs for improved performance. In addition, the number of 
parameters for each configuration (in millions) is reported (i.e., the column labeled ’Params (M)’), highlighting the trade-offs 
in computational complexity. These findings emphasize the importance of modality fusion and hybrid architectures in 
achieving optimal predictions of PC response to hormonal therapy

Bold to empahsis that this model or appraoch achieved the best results based on those highlighted values

DW-MRI T2-MRI 3D CNN 3D CNNFormer SEN (%) Params (M)

� � 18.75 0.14

� � 50.00 0.14

� � � 50.00 0.28

� � 93.75 25.98

� � 87.50 25.97

� � � 100.00 51.95

DW-MRI T2-MRI CAM
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Fig. 3 Areas emphasized by the 3D MCNNFormer in classifying the impact of hormonal therapy on PC using 
Class Activation Maps (CAM). a shows a cross section of DW-MRI with an overlaid CAM, where the activation 
intensity highlights the model’s focus on the prostate region while de-emphasizing less relevant anatomical 
areas. b depicts a cross section of T2-MRI with a CAM overlay, demonstrating a similar pattern of high 
activation in the prostate region, underscoring the model’s consistency in identifying clinically significant 
regions across different imaging modalities. As inferred from c, the model primarily focuses on the prostate 
region, with intensity gradually decreasing as the distance from this region increases. This behavior illustrates 
the model’s ability to target regions of interest while minimizing the influence of irrelevant areas, ensuring 
accurate and reliable feature extraction
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the assessment of outcomes from hormonal therapy. Specifically, we extract high-level 
local radiomic features using a 3D CNN encoder for each modality (i.e., T2-MRI and 
DW-MRI). These features are then passed through a 3D ViT, one for each modality, to 
augment our system’s ability to model global features. Then, we concatenate the highly 
informative features from each branch and pass them through a classification layer to 
obtain class logits, achieving SEN of 100%. As a result, our fusion strategies showcase 
the potential of the proposed framework to improve diagnostic performance, thereby 
serving as an auxiliary tool to optimize treatment planning and facilitate enhanced mon-
itoring of patient responses to hormonal therapy. To further validate the improved per-
formance of our approach compared to other models, we collected an additional data 
set, demonstrating that our model outperforms others in terms of ACC, SEN, and SPE. 
In future work, we aim to collect more data and explore other imaging modalities and 
data sets to increase the accuracy and reliability of the 3D MCNNFormer in assessing 
the outcomes of hormonal therapy in PC patients. This will enable a more comprehen-
sive evaluation of its effectiveness. In addition, we plan to investigate more state-of-the-
art models, including larger ones, and compare them with our approach. Furthermore, 
we intend to investigate the integration of radiomic features with biomedical markers 
such as GS and demographic information.

Methodology
The workflow of the proposed framework for hormonal therapy assessment is illustrated 
in Fig.  4. The input data comprises MRI scans (T2 and DWI) along with PSA levels. 
Regarding the imaging input, the framework initiates with a preprocessing step aimed at 
preparing the data for our 3D multi-branch CNNFormer. Then, the PSA levels are used 
to categorize the PC’s data into responders and non-responders to hormonal therapy. 
Each branch consists of a 3D CNNFormer that leverages a 3D CNN encoder and 3D 

Data Collection PC Response PredictionData Preprocessing

PSA
Clinical Biomarker

3D CNN

DW

3D ViT

AP and Flatten

× ×

Processed Data

T2
× ×

C

Classifier

Not Responder

× × × × × × × ×

Responder

× × × ×

× ×

×

3D CNN

T2

b500b0

b1400

b0 b500
× × × ×

3D MRI Data

Resampling to Isotropic

Data Cleaning

b1400
× ×

T2
× ×

21 3

3D ViT

Fig. 4 Proposed framework for predicting the impact of hormonal therapy on PC begins with preprocessing 
input data, including T2 and DW MRI images. These images are resampled to an isotropic format and cleaned 
to generate volumes with a consistent resolution of 1× 50× 224× 224 . For DW-MRI, the b values of 500, 
1400, and the baseline b0 are concatenated before being fed into a 3D CNN encoder, resulting in volumes 
of 3× 50× 224× 224 . PSA levels are then used to categorize PC data into responders and non-responders. 
Each branch of the model incorporates a 3D CNNFormer, which combines a 3D CNN encoder to extract local 
radiomic features and a 3D ViT encoder to capture global information from the features
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ViT encoder. For the 3D CNN encoder, a sequence of convolutional layers is employed 
to extract high-level local radiomic features from volumetric MRI scans of PC. Further-
more, to capture global information from these features, 3D ViT is employed.

Preprocessing

To accurately predict the response of PC to hormonal therapy, the input data is sub-
jected to preprocessing to ensure its seamless integration into our network. The input 
data comprises T2 and DW MRIs. Initially, these images are resampled to an isotropic 
form followed by a data cleaning step to generate volumes with a uniform resolution 
of 1× 50× 224 × 224 for each T2 and DW MRI image. For the DW-MRI images, we 
consider the b values of 500, 1400, and the baseline b0, which are concatenated prior 
to being input into the 3D CNN encoder, resulting in 3× 50× 224 × 224 . Examples of 
DW-MRI and T2-MRI can be found in Fig. 5.

CNNFormer

The inherent limitation of convolutional filters lies in their inability to capture global 
information within images, as they primarily focus on local features. While local radi-
omic features are pivotal for understanding how PC responds to hormonal therapy, 

b0 b500 b1400 T2

Fig. 5 Examples of DW-MRI and T2-MRI. The first three columns from the left represent examples of b values 
(b0, b500, and b1400), as labeled on each column of the DW-MRI. The final column illustrates examples of 
T2-MRI
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the absence of broader contextual understanding hinders the interpretation of the ana-
tomical structure of the prostate concerning its surroundings. Moreover, applying ViT 
directly to full-resolution volumetric images results in significant computational com-
plexity. To address these challenges, we propose a hybrid approach, so-called CNN-
Former, that merges the strengths of both a CNN-based and a ViT-based models. The 

Table 5 Detailed architecture of the 3D CNN encoder

‘Settings’ represent the kernel size, stride, and padding, respectively. The term ’DoubleConv3D’ denotes a sequential list of 
operations, which includes two 3D convolution layers (Conv3D) and Rectified Linear Units (ReLU), arranged in the following 
order: Conv3D, ReLU, Conv3D, and ReLU. The symbol B indicates the batch size

Layer Settings DW-MRI T2-MRI

Input – B × 3× 50× 224× 224 B × 1× 50× 224× 224

DoubleConv3D 3× 3 , 1, 1 B × 16× 50× 224× 224 B × 16× 50× 224× 224

Conv3D 3× 3 , 2, 1 B × 16× 25× 112× 112 B × 16× 25× 112× 112

DoubleConv3D 3× 3 , 1, 1 B × 32× 25× 112× 112 B × 32× 25× 112× 112

Conv3D 3× 3 , 2, 1 B × 32× 13× 56× 56 B × 32× 13× 56× 56

DoubleConv3D 3× 3 , 1, 1 B × 32× 13× 56× 56 B × 32× 13× 56× 56

DoubleConv3D

Conv3D
DoubleConv3D

DoubleConv3D

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

Conv3D

Fig. 6 Architecture of the 3D CNN model. The DoubleConv3D component consists of a 3D convolutional 
layer followed by a Rectified Linear Unit (ReLU), which is then succeeded by another 3D convolutional layer. 
Each convolutional layer utilizes a kernel size of 3× 3 , a stride of 1, and padding of 1. In addition, to reduce 
the input size by half at each step, a 3D convolutional layer with a kernel size of 3× 3 , a stride of 2, and 
padding of 1 is employed for downsampling. It is important to note that the number of channels is adjusted 
depending on whether the input is DW-MRI or T2-MRI. Specifically, DW-MRI comprises three channels 
corresponding to b0, b500, and b1400, whereas T2-MRI consists of a single channel
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developed 3D CNN encoder (see Table 5 and Fig. 6) serves two crucial functions. Firstly, 
it encodes MRI scans (specifically, T2 and DWI) into high-level local radiomic feature 
representations. This is essential because ViT tends to prioritize capturing broad visual 
features over fine local details, mainly due to its iterative reduction of image resolution. 
This characteristic of ViT, wherein image resolution is repeatedly downsampled, leads 
to a diminished ability to precisely identify and localize specific details within images. 
Secondly, it helps alleviate to some extent the significant computational complexity 
associated with ViT, which is known to be computationally intensive. In addition, the 
CNNFormer’s 3D ViT plays a vital role in directing attention towards global informa-
tion, which aids in identifying the prostate structure among surrounding regions, par-
ticularly due to the visual similarities between the prostate and adjacent tissues. To 
further explain, for each branch (see Fig.  4), an MRI scan x ∈ R

D×W×H is encoded 
using a 3D CNN encoder, where D, W, and H represent the depth, width, and height of 
the MRI scan, respectively. This results in feature maps FT2, FDW ∈ R

B×C×PD×PW×PH , 
where PD , PW  , and PH denote the depth, width, and height, respectively, of the output 
from the 3D CNN encoder. B represents the batch size, and C represents the num-
ber of channels received by 3D ViT. In the 3D ViT (represented by an orange box), the 
high-level local radiomic features are divided into N vectorized P × C patches, where 
P = PD × PW × PH , and N represents the number of patches. Following this, the 
patches are mapped to a latent D-dimensional space using a trainable linear projec-
tion (i.e., patch embedding) e = [e1, ..., eN ] ∈ RN×P×C . Learnable position embeddings 
p = [p1, ..., pN ] ∈ RN×P×C are then added to the patch embeddings to retain positional 
information of the patches, resulting in the input sequence of tokens δ = e + p . Next, a 

Patch 
Embeddings

Layer Norm

Multi-Head 
Attention

Layer Norm

MLP

×

Linear Projection

1 N0

Transformer Encoder

MLP 
Head

3D Patches

Contextualized 
Embeddings with 

size d

Transformer 
Encoder

Patch Embedding with size d

Position Embedding

Class Embedding

Fig. 7 Architecture of the 3D ViT model. Initially, the output from the 3D CNN is divided into 3D patches, 
which are subsequently flattened and transformed into patch embeddings of size d = 256 . These patch 
embeddings are augmented with positional embeddings and class embeddings before being fed into the 
transformer encoder. The encoder comprises L layers, where L = 12 , to generate contextualized embeddings
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set of K learnable class embeddings c = [c1, ..., cK ] ∈ R
N×K×C , where K corresponds to 

the number of classes indicating responder and non-responder PC, is processed along-
side δ by the 3D ViT encoder, which consists of L layers. We denote the concatenation of 
c and δ as � . Each layer comprises a multi-headed self-attention (MSA) block followed 
by a pointwise MLP block, with Layer Normalization (LN) applied before and residual 
connections added after each block:

where i ∈ 1, ..., L . The self-attention mechanism computes queries Q ∈ R
N×d , keys 

K ∈ R
N×d , and values V ∈ R

N×d via three pointwise linear layers, followed by self-
attention calculation:

The transformer encoder maps the input sequences to a contextualized encoding 
sequence containing rich, salient information, �L = [�L,1, ...,�M,N ] . Subsequently, this 
contextualized sequence is then average-pooled and reshaped for classification by a clas-
sification head comprising one LN and a fully connected classification layer (see Fig. 4 
and Fig. 7).
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