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Abstract 

Background: In recent years, artificial intelligence and machine learning algorithms 
have been used more extensively to diagnose diabetic retinopathy and other dis-
eases. Still, the effectiveness of these methods has not been thoroughly investigated. 
This study aimed to evaluate the performance and limitations of machine learning 
and deep learning algorithms in detecting diabetic retinopathy.

Methods: This study was conducted based on the PRISMA checklist. We searched 
online databases, including PubMed, Scopus, and Google Scholar, for relevant articles 
up to September 30, 2023. After the title, abstract, and full-text screening, data extrac-
tion and quality assessment were done for the included studies. Finally, a meta-analysis 
was performed.

Results: We included 76 studies with a total of 1,371,517 retinal images, of which 
51 were used for meta-analysis. Our meta-analysis showed a significant sensitivity 
and specificity with a percentage of 90.54 (95%CI [90.42, 90.66], P < 0.001) and 78.33% 
(95%CI [78.21, 78.45], P < 0.001). However, the AUC (area under curvature) did not statis-
tically differ across studies, but had a significant figure of 0.94 (95% CI [− 46.71, 48.60], 
P = 1).

Conclusions: Although machine learning and deep learning algorithms can prop-
erly diagnose diabetic retinopathy, their discriminating capacity is limited. However, 
they could simplify the diagnosing process. Further studies are required to improve 
algorithms.
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Introduction
Diabetic retinopathy (DR) has a significant role in vision problems and blindness 
among individuals in middle age and older populations worldwide [1, 2]. According 
to estimates, close to 103 million adults worldwide were diagnosed with DR in 2020. 
Experts project that this number will increase to approximately 160 million by 2045 
[3]. It is believed that nearly one-third of people who have diabetes may eventually 
experience different forms of DR [4], and 10% of those with diabetes are at risk of 
vision loss [5]. DR consists of several stages: its initial stage includes non-proliferative 
DR (mild, moderate, and severe), which can progress to diabetic macular oedema or 
pre-proliferative DR. Pre-proliferative DR itself can lead to proliferative DR. There 
may be no symptoms in the early stages, or the severity of symptoms is very mild. 
In asymptomatic patients, the cotton wool and microaneurysms could be found inci-
dentally in fundoscopy. Initial changes can be controlled with proper management. 
In contrast, the lack of appropriate treatment leads to the progression of DR to the 
final stages and symptoms, such as blurred vision, blurred vision, flutter, and partial 
or complete loss of vision [6, 7].

Vision problems resulting from DR have great potential to be considerably improved if 
detected at the initial stages and cured appropriately [8]. However, less than sixty percent 
of diabetic patients receive the recommended regular eye examinations due to the high 
cost and limited access to ophthalmological services [9]. As DR is a sneaky disease, many 
patients are not consciously aware that they have it, particularly those living in locations 
with inadequate medical resources. This makes it difficult for ophthalmologists to accu-
rately determine a patient’s condition based on fundus pictures [10]. DR’s gold standard 
screening method involves clinical assessments by human clinicians or evaluating color 
fundus photographs remotely via telehealth services [11]. One of the primary modalities 
used is optical coherence tomography (OCT). OCT can generate sectional three-dimen-
sional images of the retina’s thickness and structure by measuring the amount of light 
reflection. This technique mainly detects macular oedema in DR [12]. However, these 
methods require a significant investment of time and effort. In addition, the likelihood 
of achieving irregular and inconsistent outcomes rises due to natural human subjectivity 
[13].

Hence, highly sensitive and specific automated systems are essential for widespread 
implementation of DR screening using color fundus photographs. The advancement 
of artificial intelligence (AI), particularly machine learning (ML), has made it possible 
to develop such automated approaches. Machine learning utilizes pre-existing data to 
instruct a computer on identifying a particular pattern or making predictions about a 
specific event in a novel data set [11]. The emergence of deep learning (DL), a subset of 
machine learning (ML), has significantly revolutionized the domain of automated image 
analysis [14]. In essence, DL approaches refer to representation learning techniques that 
utilize neural networks with multiple layers. These networks can achieve better perfor-
mance by iteratively adjusting their internal parameters [11, 12]. Unlike other machine 
learning algorithms, deep learning does not necessitate image preprocessing or manipu-
lation. After being provided with raw data, the system creates its own representations 
necessary for pattern identification. It has demonstrated higher accuracy compared to 
other traditional machine learning methods [11, 13].
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Although the use of AI in the medical domain is being steadily developed [15], the 
impact and performance of AI diagnostic tools are not consistent across all research 
[16, 17], so questions remain regarding whether ML techniques have enough reliabil-
ity to be used for actual medical needs, specifically in DR screening. Due to this het-
erogeneity among the studies, the present meta-analysis is conducted to update the 
performance and limitations of ML algorithms for DR screening and its application in 
health management.

Methods
In this systematic review, we intend to scrutinize the performance and limitations of 
a machine learning algorithm for diabetic retinopathy screening and its application 
in health management. The design protocol of this review was registered in the Open 
Science Framework (OSF: osf.io/3prs8).

Search strategy

Our methodology follows the PRISMA (preferred reporting items for systematic 
reviews and meta-analysis). It is critical to state that this manuscript’s search strat-
egy, screening, and data selection were all checklist-based. Databases, including 
PubMed (Medline), Scopus, and Google Scholar, were searched up to September 30, 
2023, without any time restriction. The search strategy for each database is defined in 
Table 1. By searching the references of the found studies, we manually added studies 
with relevant titles that were not discovered during the database search. The studies 
were manually filtered to exclude non-diabetic studies. Duplicated studies were found 
automatically and manually by two independent researchers. After complete screen-
ing, studies compatible with our inclusion criteria were included.

Inclusion and exclusion criteria

In this study, all articles that explore a machine-learning or deep learning algorithm 
for diabetic retinopathy screening using color fundus photographs were included. In 
addition, we only used English papers. It is worth noting that the inclusion was not 
limited to specific types of diabetes (type 1 or 2) or age groups. However, all letters to 
editors, case reports, case series, posters, and abstracts were excluded.

Table 1 Search strategy for online databases

Database Search strategy Date

PubMed (retinopathy[Title]) AND ((artificial intelligence [Title]) OR (AI[Title]) OR 
(machine learning [Title]) OR (ML[Title]) OR (deep learning [Title]) OR 
(DL[Title]))

September 30, 2023

Scopus TITLE ((retinopathy AND ("artificial intelligence" OR "machine learn-
ing" OR "deep Learning")))

September 30, 2023

Web of science TITLE ((retinopathy AND ("artificial intelligence" OR "machine learn-
ing" OR "deep Learning")))

September 30, 2023
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Quality assessment and data extraction

The Joanna Briggs Institute’s (JBI) checklist was used in our manuscript study quality 
assessment. Two reviewers evaluated the full text of the papers to exclude improper studies. 
If there was any dispute, it was resolved by consultation. Two other researchers extracted 
data, including author, year, country, study design, total image number, sensitivity, specific-
ity, and area under the curve (AUC).

Statistical analysis

Data analysis was conducted using STATA 13.1 software, developed by StataCorp LP in 
College Station, TX, USA. Results were presented as pooled sensitivity and specificity with 
a 95% confidence interval (CI), visualized in a forest plot. Heterogeneity among included 
studies was assessed using the I2 statistic, and the random effects model was applied in the 
presence of significant heterogeneity (I2 > 50%). In addition, we calculated the AUC. Eventu-
ally, the publication assessed using a funnel plot and Egger’s regression test.

Result
Study selection and study characteristics

A total of 1861 studies were obtained by searching online databases, including PubMed, 
Scopus, Google Scholar, and manual search. Duplicated reports were removed, of whom 
576 cases were done automatically. After screening the remaining articles, 969 irrelevant 
studies were excluded. Finally, 76 studies with a total of 1,371,517 images were included 
in the systematic review (Fig.  1). Of which, 51 studies were used for meta-analysis. The 
remaining 25 studies were excluded from the meta-analysis due to insufficient data. 
These studies were published between 2013 and 2023 (Table 2). Both private and public 
data sets were used in these studies. Our findings showed that studies suggested a range 
of approaches used in diabetic retinopathy screening, from traditional manual grading to 
advanced machine learning methods like convolutional neural networks (CNNs) and deep 
learning models. Some studies used smartphone-based imaging for more accessible screen-
ing, especially in resource-limited settings. Hybrid models combining different algorithms 
were also utilized, showing potential for improving screening processes (Table 2).

Meta‑analysis

We performed a meta-analysis to assess the accuracy (including sensitivity and specific-
ity) of machine learning detection in diabetic retinopathy in 51 studies. Our result revealed 
a significant sensitivity and specificity with a percentage of 90.54% (95%CI [90.42, 90.66], 
P < 0.001) and 78.33% (95%CI [78.21, 78.45], P < 0.001) (Figs. 2 and 3). We observed a severe 
heterogeneity between studies in both cases (I2 > 99%). In addition, we observed a substan-
tial AUC with an amount of 0.94 (95% CI [− 46.71, 48.60]); however, it was not statistically 
significant (P = 1) (Fig. 4).

Publication bias

The funnel plot and Egger’s test were performed to investigate the possible publication 
bias. The funnel plot showed a symmetrical pattern, indicating no publication bias (not 
shown). In addition, Egger’s test supported this result.
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Discussion
Incorporating ML algorithms into healthcare, particularly in DR screening, represents a 
significant advancement in medical diagnostics. Diabetic retinopathy stands as a major 
cause of blindness among adults globally, necessitating early detection and prompt man-
agement to prevent irreversible vision loss. With the emergence of machine learning and 
AI, the approach to DR screening and diagnosis has undergone a transformative shift, 
capitalizing on these technologies’ immense potential to bolster accuracy, efficiency, and 
accessibility in healthcare [10, 18].

This meta-analysis consolidates existing evidence and assesses the diagnostic accuracy 
of ML algorithms in detecting DR using color fundus photographs.

Having completed a comprehensive meta-analysis, we have investigated the diagnostic 
accuracy of ML algorithms in detecting DR using color fundus photographs. Our analy-
sis, which involved data from 76 studies encompassing 1,357,517 images, has concluded. 
The results, showing a sensitivity of 90.54% (95% CI [90.42, 90.66]), specificity of 78.33% 
(95% CI [78.21, 78.45]), and an area under the receiver operating characteristic curve 
(AUC) of 0.94, underscore the high diagnostic accuracy of ML models in identifying DR 
from retinal images. These findings suggest the capability of ML algorithms to detect 
the presence of DR accurately, a critical step toward preventing vision loss in diabetic 
patients.

The high sensitivity rate indicates that ML algorithms are proficient at identifying 
those individuals with DR, minimizing the risk of missed diagnoses. Meanwhile, the 
specificity rate reflects the algorithms’ ability to correctly identify those without the 

Fig. 1 PRISMA diagram for present study



Page 6 of 15Moannaei et al. BioMedical Engineering OnLine           (2025) 24:34 

Table 2 Baseline characteristics of included studies and performance of color fundus image 
screening

Code Author (year) [Ref.] Total images Sensitivity Specificity AUC Approach for screening

2 Jain (2021) [26] 1294 100 89.55 Kowa VX-10a mydriatic 
camera & Remidio FOP 
NM-10

3 Keel (2018) [27] 96 92.3 93.7 0.95 DLA

4 Jiang (2020) [28] 3228 93.9 94.4 0.94 Grad-CAM

5 Ipp (2020) [29] 893 95.5 85 ETDRS scale

6 Ibáñez-Bruron (2021) [30] 89 100 55.4 DART 

7 Yo-Ping Huang (2020) [31] 52 96.6 95.2 0.99 VGG16, VGG19, MobileNet, 
InceptionV3, DenseNet

8 Hsu (2021) [32] 13,410 96.84 89.44 0.97 DLA

9 Yi-Ting Hsieh (2019) [33] 7524 92.2 97.5 0.95 CNN (VeriSee)

10 Heydon (2020) [34] 30,405 95.7 68 EyeArt v2.1

11 He (2019) [35] 889 90.79 98.5 0.94 Airdoc

12 Hao (2022) [36] 6146 79.2 87.1 VoxelCloud

13 Guo (2021) [37] 978 54 95 0.88 ResNet & U-Net

14 Gulshan (2019) [38] 3049 83.5 98.7 0.96 ICDR scale

15 Gulshan (2016) [39] 4997 90.3 98.1 0.99 DLA

16 Grzybowski (2021) [40] 60 93.33 94.45 0.94 Retinalyze

17 González-Briceño (2020) 
[41]

3368 89 92 Cross-industry standard 
process for data mining

18 Gargeya (2017) [42] 75,137 94 98 0.97 DLA

19 Glinton (2022) [43] 597 91 95 0.93 Python (version 3.6.9)

20 Gadekallu (2020) [44] 1151 90.4 94.3 DLA

21 Fleming (2023) [45] 179,944 89.19 77.41 0.99 DLA

22 M. Al-hazaimeh (2022) 
[46]

88,702 99.2 96.4 0.98 SVMGA

23 TamoorAziz (2023) [47] 219 94.21 97.46 0.98 DLA

24 Ghadah Alwakid (2023) 
[48]

12,522 89 99 CLAHE, ESRGAN

25 Eman AbdelMaksoud 
(2022) [49]

3662 96 69 0.99 CNN

26 Marc Baget-Bernaldiz 
(2021) [50]

1200 97.92 99.91 0.99 DLA

27 Anas Bilal (2022) [51] 98 96.9 96.9 0.97 U-NET, CNN-SVD

28 Usharani Bhimavarapu 
(2023) [52]

88,702 96.34 96.74 0.89 CNN

29 Wejdan L. Alyoubi (2021) 
[53]

13,673 89 97.3 0.95 CNN512, YOLOv3

30 Miao (2022) [54] 35,126 79.01 89.07 0.79 DLA

31 Penha (2023) [21] 686 93.6 71.7 0.86 EyerMaps

32 Lee (2021) [55] 311,604 80.47 81.28 VA HCS

33 Lam (2018) [56] 1346 95 96 DIGITS

34 Nugroho (2021) [57] 200 95 81 DLA

35 Nneji (2022) [58] 35,126 98.9 98 0.99 WFDLN

36 Zhang (2022) [22] 1089 98.23 74.45 0.95 EyeWisdom V1

37 Yang (2021) [59] 1418 79.6 79.9 0.81 XGBoost, RF, naïve Bayes, 
KNN, AdaBoost, Light GBM, 
ANN, LR

38 Zhao (2022) [60] 7943 88.9 74 0.8 RF, XGBoost, LR, SVM, KNN

39 Pinedo-Diaz (2022) [61] 420 97.66 98.33 0.98 DLA

40 Surya (2023) [62] 1085 83.33 98.86 0.83 Dr Noon

41 Zhang (2020) [63] 47,269 83.3 92.5 DLA
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DLA: Deep-learning algorithm; VA: Veterans Affairs; HCS: Puget Sound Health Care System; DIGITS: Deep Learning GPU 
Training System; WFDLN: weighted fusion deep learning network; XGBoost: extreme gradient boosting; KNN: k-nearest 
neighbour; ANN: artificial neural network; RF: Random Forest; LR: Logistic Regression; SVM: Support Vector Machine; 
DNN: deep neural network; DLBSVM: Deep Learning Based Support Vector Machine; SDL: Synergic deep learning; CNN: 
convolutional neural networks; ICDRS: International Clinical Diabetic Retinopathy Severity Scale System; RNN: Recurrent 
Neural Network; FKM: Fuzzy K-means cluster; DA: Discriminant Analysis; GNB: Gaussian Naive Bayes; LR: Logistics Regression; 
DT: Decision Tree; NNs: Neural Networks; GMM: Gaussian Mixture model; OC-Net: occurrence network; SE-Net: a severity 
network; DL-DRDC: w deep learning empowered diabetic retinopathy detection and classification

Table 2 (continued)

Code Author (year) [Ref.] Total images Sensitivity Specificity AUC Approach for screening

42 Sosale (2020) [64] 922 93 92.5 0.9 Medios AI

43 Mehboob (2022) [65] 25,600 78 44 DLA

44 Mujeeb Rahman (2022) 
[66]

560 93.65 95.13 0.97 DNN, SVM

45 Abramoff (2016) [67] 1748 96.7 87 0.98 IDx-DR X2.1

46 Palaniswamy (2023) [68] 813 94.28 99.34 0.96 DLA

47 Ting (2017) [69] 71,896 90.5 91.6 0.93 DLA

48 Jebaseeli (2019) [70] 201 80.61 99.54 DLBSVM

49 Jena (2022) [71] 100 99.2 99.4 0.99 2-branch CNN

50 Jiang (2019) [72] 30,244 85.57 90.85 0.946 DLA

51 Khan (2023) [73] 45 79.63 98.63 0.98 Inception v3 & 
DenseNet-121

52 Shankar (2020) [74] 541 98.54 99.38 SDL

53 Kuna (2023) [75] 1200 98.9 99.7 DL-DRDC

54 Ludwig (2020) [76] 92,364 89 89 0.89 CNN

55 Sosale (2020) [77] 297 98.84 86.73 0.92 ICDRS scale

56 Li (2022) [23] 1674 95 85.1 0.94 Deep learning algorithm

57 Roy (2020) [78] 1330 94 95 DLA

58 Romero-Aroca (2020) [79] 1748 96.7 97.6 DLA

59 Pei (2022) [80] 324 91 81.3 0.86 EyeWisdom

60 Rayave (2022) [81] 650 65.54 100 CNN, RNN, SVM, FKM, DA

61 Paradisa (2020) [82] 89 99.3 98 CNN, SVM, KNN, RF, 
XGBoost

62 Li (2022) [83] 950 97.96 93.88 0.99 NNs, SVM, XGBoost, DT, LR, 
GNB, KNN

63 Roychowdhury (2013) 
[84]

1200 100 53.16 0.87 GMM, SVM, KNN, AdaBoost

64 Sarao (2020) [85] 165 90.8 75.3 0.07 EyeArt

65 Li (2021) [86] 32,452 70 90 0.9 LR, XGBoost, RF, SVM

66 Wu (2022) [87] 7033 100 37.8 0.9 OC-Net, SE-Net

67 Ruamviboonsuk (2022) 
[88]

138 91.4 95.4 DLA

68 Ruamviboonsuk (2019) 
[89]

25,326 97 96 DLA

69 Saxena (2020) [90] 56,839 81.02 86.09 0.92 CNN

70 Sayres (2019) [91] 1612 79.4 96.6 DLA

71 A. Shah (2021) [92] 2680 100 81.82 0.98 IDx-DR

72 P. Shah (2020) [93] 1533 99.7 98.5 0.99 CNN

73 Rajalakshmi (2018) [94] 296 95.8 80.2 ICDR

74 Reddy (2022) [95] 89 90.2 95.2 0.88 DLA

75 Rom (2022) [96] 363 45 94 0.81 CNN

76 Rogers (2021) [97] 22,180 81.6 81.7 0.98 Pegasus

77 Ryu (2022) [98] 918 67.5 94.4 CNN
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condition, although there is room for improvement to reduce false positives. The AUC, 
a measure of the algorithm’s overall diagnostic ability, further confirms the efficacy of 
ML in DR screening, suggesting that these technologies can reliably distinguish between 
affected and unaffected individuals.

However, the implementation of ML in DR screening is not without challenges. The 
variation in specificity rates points towards the need for further refinement of algo-
rithms to enhance their discriminative capacity, minimizing the occurrence of false posi-
tives that could lead to unnecessary anxiety or interventions for patients. In addition, 
the effectiveness of ML algorithms can vary based on factors such as image quality, the 
diversity of the data sets on which the algorithms are trained, and the prevalence of DR 
in the screened population. Ensuring that ML models are trained on diverse, high-qual-
ity data sets is crucial to enhancing their generalizability and accuracy across different 
populations and settings.

Moreover, integrating ML algorithms into clinical practice necessitates a multidisci-
plinary approach involving technologists, data scientists, clinicians, patients, and poli-
cymakers. The meta-analysis of ML algorithms for DR screening represents a significant 
step forward in applying AI in health management. The high diagnostic accuracy of 

Fig. 2 Forest plot for sensitivity showed a significant amount of 90.54%
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these models holds the promise of revolutionizing DR screening, making it more acces-
sible, efficient, and effective. However, realizing this potential requires addressing the 
limitations and challenges associated with the deployment of ML in healthcare. ML can 
play a significant role in transforming healthcare delivery, and improving patient out-
comes through continuous refinement of algorithms, adherence to ethical standards, 
and collaboration across disciplines.

The results show diverse techniques utilized across the studies, reflecting the evolv-
ing landscape of approaches to screening diabetic retinopathy, where different algo-
rithms cater to specific needs in clinical settings. Traditional methods, such as manual 
grading by trained professionals, are contrasted with advanced machine learning tech-
niques, including CNNs and deep learning models, which have demonstrated remark-
able improvements in sensitivity and specificity, underscoring the potential of artificial 
intelligence to enhance diagnostic accuracy. Several studies adopted smartphone-based 
imaging systems, highlighting a shift towards more accessible screening methods, par-
ticularly significant in resource-limited settings where conventional imaging equipment 
may not be available. The integration of AI with portable devices facilitates rapid screen-
ing and timely referrals, potentially improving patient outcomes. Furthermore, the table 

Fig. 3 Forest plot for specificity showed a significant amount of 78.33%
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Fig. 4 Forest plot for area under the curve (AUC) showed the amount of 0.94; however, it was not significant
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indicates that some studies utilized hybrid models, combining various algorithms to 
leverage their strengths, which may enhance the robustness of screening processes and 
address limitations often encountered with single-algorithm applications; the effective-
ness of these hybrid models, as evidenced by their reported performance metrics, sug-
gests a promising avenue for future research and implementation.

Furthermore, Wang et  al. conducted a meta-analysis utilizing multiple algorithms 
to assess the diagnostic efficacy of DR. Their study included 21 original studies involv-
ing 129,759 eyes. The pooled sensitivity, specificity, and area under the curve (AUC) 
of the AI model for diagnosing DR were reported as 0.880 (0.875–0.884), 0.912 (0.99–
0.913), and 0.9798, respectively [10]. Similarly, Wu et  al. conducted a meta-analysis 
utilizing machine learning algorithms for DR screening, encompassing 60 color fun-
dus photograph studies involving 445,175 interpretations. Their study reported high 
ML accuracy in diagnosing various categories of DR, with a pooled AUROC ranging 
from 0.97 (95% CI 0.96–0.99) to 0.99 (95% CI 0.98–1.00) and a pooled sensitivity and 
specificity ranging from 0.93 to 0.97 and 0.90 to 0.98, respectively. They concluded 
that ML algorithms’ performance detecting DR based on color fundus photographs is 
likely comparable to human clinicians [19]. Ryu et al. developed an end-to-end deep 
learning-based classification system for DR and referable DR diagnoses using optical 
coherence tomography angiography (OCTA) images. They achieved high accuracy, 
sensitivity, and specificity for detecting the onset of DR and referable DR, further sup-
porting the efficacy of ML algorithms in DR detection [20]. In their study, Penha et al. 
utilized an AI system, which included 686 individuals. Their findings demonstrated 
high sensitivity for DR screening using only one image per eye, suggesting a simpler 
protocol than the traditional approach [21].

In addition, Zhang et al. conducted a prospective, multi-center clinical trial study 
utilizing AI software to diagnose DR. Their study reported high sensitivity for DR 
detection compared to manual grading, highlighting the potential of AI in improv-
ing DR diagnosis [22]. Li et al. surveyed using deep learning algorithms (DLA). The 
DLA graded retinal fundus images; for all 1674 gradable images the AUC, sensitivity, 
and specificity of the DLA for referable DR were 0.942, 85.1%, and 95.6%, respectively 
[23]. Besides that, Li et al. conducted a study using DLA. They achieved an AUC, sen-
sitivity, and specificity of 0.955, 92.5%, and 98.5%, respectively, for detecting referable 
DR in their independent multiethnic data sets [24]. Finally, Joseph et al. conducted a 
survey encompassing 34 studies utilizing AI algorithms for diagnosing DR based on 
real-world fundus images. Their study reported overall pooled accuracy, sensitivity, 
and specificity, further emphasizing the potential of AI in DR diagnosis [25].

One drawback of our analysis is that we had limited access to the data sets and the 
complete text of articles [18]. Furthermore, we exclusively incorporated materials 
written in English. The collected data on DR did not include the proliferative diabetic 
subtype or other categories of DR, which could affect the assessment of its diagnostic 
usefulness [10].

In addition, bias may have been incorporated by poor description of patient char-
acteristics in the included studies. By the reason of spectrum bias, there is a possibil-
ity of ML’s performance being overestimated in real-world scenarios, and this factor 
should be considered [19]
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It is reasonable for another complementary study to initiate using this algorithm in 
primary care settings; other applications and research are necessary to improve the 
this algorithm’s clinical validity [24].

In conclusion, machine learning algorithms can potentially diagnose diabetic retin-
opathy using retinal images. Although this capability was insignificant in discriminat-
ing true positives from false positives, it could be used for faster and better evaluation. 
However, further studies are required to develop improved algorithms.
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