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Abstract 

The degeneration of the intervertebral discs in the lumbar spine is the common cause 
of neurological and physical dysfunctions and chronic disability of patients, which can 
be stratified into single—(e.g., disc herniation, prolapse, or bulge) and comorbidity-
type degeneration (e.g., simultaneous presence of two or more conditions), respec-
tively. A sample of lumbar magnetic resonance imaging (MRI) images from multiple 
clinical hospitals in China was collected and used in the proposal assessment. We 
devised a weighted transfer learning framework WDRIV-Net by ensembling four 
pre-trained models including Densenet169, ResNet101, InceptionV3, and VGG19. The 
proposed approach was applied to the clinical data and achieved 96.25% accuracy, 
surpassing the benchmark ResNet101 (87.5%), DenseNet169 (82.5%), VGG19 (88.75%), 
InceptionV3 (93.75%), and other state-of-the-art (SOTA) ensemble deep learning 
models. Furthermore, improved performance was observed as well for the metric 
of the area under the curve (AUC), producing a ≥ 7% increase versus other SOTA 
ensemble learning, a ≥ 6% increase versus most-studied models, and a ≥ 2% increase 
versus the baselines. WDRIV-Net can serve as a guide in the initial and efficient type 
screening of complex degeneration of lumbar intervertebral discs (LID) and assist 
in the early-stage selection of clinically differentiated treatment options.

Keywords: Lumbar spine degeneration, Lumbar intervertebral discs, Transfer learning, 
Deep learning, Magnetic resonance imaging, Weighted ensemble learning

Introduction
Lumbar intervertebral discs (LID) are essential for spinal motion, flexibility, and sta-
bility [1]. Lumbar disc herniation (LDH), lumbar disc prolapse (LDP), and lumbar 
disc bulge (LDB) are three prevailing types of lumbar spine degeneration observed in 
clinical practice worldwide [1–5]. Degenerative changes in the LID including LDH, 
LDP, and LDB can occur as early as the first decade of life and can be associated with 
symptoms including severe/chronic lower back pain, sciatica, muscle spasms, and 
disability impacting the quality of life [1–3]. For patients simultaneously experiencing 
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multiple conditions (i.e., comorbidity), the disease may advance to a more severe 
or complicated stage, causing generally a situation where differentiated health care 
or urgent intervention/treatment is needed [6, 7]. These patients are more likely to 
bear more stress and costs if the decision-making is sub-optimal. Clinically, it is of 
importance to automatically identify the more complicated cases (e.g., comorbidity-
type) from those less complicated counterparts (e.g., single-type) at an earlier stage 
effectively.

Radiography images using X-, gamma-ray techniques, computerized tomogra-
phy scans (CT), and magnetic resonance imaging (MRI) are primarily exploited in 
detecting the disease of LID [8, 9]. However, MRI is the preferred imaging modality 
for LID-related diseases versus other imaging techniques [9] and is widely utilized 
in treatment planning [8–11]. Accurate interpretation of the principal traits of MRI 
of LID is crucial for the preprocedural assessment of potential interventions for the 
lumbar spine such as rehabilitation training, injection-based treatment, and surgery 
[12]. Presently manual inspection by medical professionals represents the most com-
monplace approach to extracting information from MRI images [8]. The visual exami-
nation carried out slide-by-slide by experts typically relies on the expertise of medical 
professionals and mostly is time-consuming and bias-prone [6, 12]. Challenges char-
acterized by ambiguity, inconsistency, or conflict of diagnosis are not uncommon, 
which may induce unintended medical consequences [6]. Therefore, the challenge of 
automating the classification of disc degeneration remains a significant concern for 
both patients and physicians [6, 12].

The diagnosis of LID degeneration is also influenced by factors such as image qual-
ity and analysis techniques, beyond the inherent bias of manual observation [10, 11, 
13]. These variables significantly impact the evaluation of LID degeneration type and 
progression, as well as subsequent treatment decisions [5, 11, 14]. Specifically, as 
shown in Fig. 1, aeolotropic dimensional resolution, inter-type similarity, and intra-
type variety of MRI of LID may yield difficulty in identifying the type or severity of 
degeneration [15–17]. Therefore, designing an automatic classification framework 
for LID degeneration is meaningful to address the issue of sub-optimal image quality, 
enhance the efficiency of physician diagnosis, optimize the operability level of LID 
clinical applications, and alleviate the financial, physical as well as psychiatric burden 
on patients [10, 11, 18, 19].

Fig. 1 Aeolotropic dimensional resolution, inter-type similarity, and intra-type variety of lumbar spine MRI 
(a–d) induce challenges in detecting the degeneration type of LID including bulge, prolapse, and herniation
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The major contributions of this research are outlined as follows:

1. The proposed framework employs a weighted ensemble of fine-tuned benchmark 
models using a deep transfer learning approach to improve performance and gener-
alizability in medical image processing.

2. The proposed approach aims to precisely identify and stratify single- and comorbid-
ity-type degeneration in the MRI images of LID at an early phase that has not been 
investigated in previous literature, addressing the problems in traditional method-
ologies such as false-positive rates, false-negative rates, data noise (e.g., aeolotropic 
dimensional resolution, inter-type similarity, and intra-type variety), accuracy, and 
area under the curve value (AUC) of a sub-optimal single classifier.

3. The proposed ensemble model employs pre-processing steps, including data aug-
mentation and denoising, to counter the challenges of resolution variations and data 
noises, which potentially bias the accuracy of stratification. The knowledge learned 
from ImageNet is effectively transferred and guides the model to the correct targets 
by yielding improved outputs.

4. The effectiveness and robustness of the proposed approach are evaluated using a 
variety of metrics including AUC, accuracy, recall, precision, F1-score, and confusion 
matrix. Further, the performance of the proposed framework is compared with and 
superior to the outcomes of the benchmarks, recent most-studied models, and other 
SOTA deep learning.

The remaining sections of the study are organized as follows: Section Literature 
review delineates literature work investigating machine learning, deep learning, and 
ensemble learning with medical image tasks and convolution-network processing. 
Section Results depicts the experimental tests. Section Discussion and conclusions 
concludes the research with research limitations and future directions. And section 
Materials and methods explains the proposed methodology.

Literature review
Machine learning and deep neural networks have proven effective in addressing the 
complexity and variability of medical image analysis [20–22]. In the last decade, 
numerous semi- or full-supervised algorithms have been devised to analyze medical 
images and assist medical diagnosis driven by the advancement of imaging quality 
and analytical techniques [18, 19, 21, 23–33]. Full supervised learning generally uses 
labeled data, whereas the semi-supervised counterpart normally regulates the output 
of deep learning.

Ensemble learning and deep learning are the predominant machine learning 
approaches that have witnessed applications in medical image-related tasks during 
recent years, achieving benchmark performance across various disease-related tasks 
[16–19, 28, 32, 34–40]. Deep learning has made substantial advancements in image 
analysis during the past decade, excelling at feature extraction [16, 17, 21, 25–27]. 
These techniques, particularly when combined with convolutional neural networks 
(CNNs), have been instrumental in assisting medical professionals with diagnosis. 



Page 4 of 21Nakamoto et al. BioMedical Engineering OnLine           (2025) 24:11 

CNNs, evolving over the past half a century, are crucial in image classification [37–
40], object detection [15, 21, 41], and segmentation [34, 42–46].

On the other hand, challenges and prospects in medical image processing have 
been widely discussed [16–19, 47–53]. For example, Tavana et al. [16] demonstrated 
the potential of deep learning in classifying the type of spinal curvature. Pandi 
et al. [47] and Niu et al. [48] highlighted the use of evolutionary deep full CNNs in 
medical image segmentation. Tanveer et  al. [20] exploited deep learning to analyze 
speech signal tasks. In addition, Niu et al. [48] explored application scenarios other 
than medical image processing using deep learning. Additionally, Zheng et  al. [53] 
discussed the use of deep learning techniques to detect image-level classification for 
breast histopathology, and XGBoost feature selection has been used to improve pro-
tein–protein interaction prediction accuracy [18, 19]. Nevertheless, debates remain 
regarding the challenge of generalizability [16–19, 47–53]. To date, to our best knowl-
edge, no research has addressed the complicated comorbidity degeneration of the 
lumbar spine in connection with automatic stratification using clinical observations. 
This underscores the need for a reliable classification algorithm. Developing a robust 
detection methodology could improve processing efficiency and reduce error rates, 
motivating our effort to design an approach for automatic stratification of LID degen-
eration using MRI images.

(a)Densenet169
(b) ResNet101 (c) InceptionV3

(d) VGG19 (e) Tavana et al. (2023)

(f) WDRIV-Net

(Proposal)

Fig. 2 Confusion matrix for a pre-trained Densenet169, b pre-trained ResNet101, c pre-trained InceptionV3, 
d pre-trained VGG19, e Tavana et al. [16, 17], and f the proposed weighted ensemble deep transfer 
learning model WDRIV-Net. The axis label of 0 represents single-type degeneration of LID, and 1 represents 
comorbidity-type degeneration of LID
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Results
The comparison of the confusion matrix output for each model, the proposal 
approach, and other SOTA ensemble learning is shown in Fig. 2. The matrix reveals 

(a) Densenet169 (b) ResNet101

(c) InceptionV3 (d) VGG19

Fig. 3 Trend observation of training loss and validation loss during training for the four baseline models. a 
Densenet169, b ResNet101, c InceptionV3, d VGG19
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ResNet101 Proposal Tavana et al.(2023) DenseNet169 InceptionV3 VGG19
Fig. 4 Evaluation of accuracy, precision, recall, F1-score, and AUC in detecting the single-type degeneration 
of LID
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true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN), 
verifying the effectiveness and accuracy of the approaches. Training and validation 
loss trends during training are illustrated in Fig. 3, while accuracy, precision, recall, F1 
scores, and AUC of all frameworks, including the proposed WDRIV-Net, are detailed 
in Figs. 4 and 5.

The confusion matrix suggested that the proposed WDRIV-Net outperformed 
individual models and other SOTA ensemble frameworks, yielding an accuracy of 
96.25% in total (77/80). This surpasses DenseNet169 (82.5%, 66/80), ResNet101 
(87.5%, 70/80), VGG19 (88.75%, 71/80), InceptionV3 (93.75%, 75/80), and Tavana 
et  al. (88.75%, 71/80) [16]. Notably, three MRI images of single-type degenera-
tion were misclassified as comorbidity-type degeneration by WDRIV-Net, while no 
comorbidity-type images were misclassified. Other models, including DenseNet169, 
ResNet101, VGG19, InceptionV3, and the SOTA model [16], exhibited higher FP and 
FN rates and lower TP and TN rates compared to WDRIV-Net.

The results in Fig. 3 outlined the trend change in training and validation loss over 
epochs during training. Although partial of the baseline models (e.g., Densenet169 
and ResNet101) observed greater fluctuations, the overall loss trends for all four mod-
els were consistent, decreasing with the increment of epochs and approaching zero 
by the end of training. The optimal validation loss varied among models: ResNet101 
observed ~ 0.14 at epoch 17, DenseNet169 ~ 0.05 at epoch 24, InceptionV3 ~ 0.04 at 
epoch 23, and VGG19 ~ 0.30 at epoch 24.

Figures 4 and 5 delineate the accuracy, precision, recall, F1-score, and AUC for clas-
sifying LID degeneration using the proposed WDRIV-Net, benchmark models, and 
other ensemble methods. The results suggested that WDRIV-Net outperformed all 
models for both single- and comorbidity-type degeneration, achieving superior accu-
racy, F1-score, AUC, precision, and recall. Accuracy and AUC followed similar trends 

0 0.2 0.4 0.6 0.8 1 1.2

Accuracy

Precision

Recall

F1-score

AUC

ResNet101 Proposal Tavana et al.(2023) DenseNet169 InceptionV3 VGG19
Fig. 5 Evaluation of accuracy, precision, recall, F1-score, and AUC in detecting the comorbidity-type 
degeneration of LID
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across models, with WDRIV-Net observing the highest values, outperforming pre-
trained InceptionV3, ResNet101, DenseNet169, VGG16, and the SOTA model [16]. 
The weighted ensemble approach improved the performance of individual models 
and surpassed all single methods and other ensemble strategies. Notably, the ensem-
ble mechanism in [16], which used an equal-weight average, performed worse than 
the non-equal-weight WDRIV-Net and some baseline models (e.g., InceptionV3).

Further, to evaluate the performance of the proposal WDRIV-Net versus other 
recent models and ensemble learning, we summarized the outcomes in Table 1 with 
references to NASNetMobile [52], MobileNetV2 [54], VGG19 [55], NasNetLarge [52], 
ResNet50 [39], ResNet152 [39], DenseNet121 [42], DenseNet201 [42], the four indi-
vidual benchmark models integrated into the proposed approach, and the ensemble 
model by [16]. These reference models represented widely studied or high-performing 

Table 1 A comparison between the proposed WDRIV-Net with other models

No Model Classifier Accuracy (%) Type Precision Recall F1 AUC (%)

1 NASNetMobile [52] Sigmoid 60.00 Single 0.60 0.60 0.60 60.0

Sigmoid 60.00 Comorbidity 0.60 0.60 0.60 60.0

2 Pre-trained ResNet152V2 Sigmoid 71.25 Single 1.00 0.42 0.60 71.25

Sigmoid 71.25 Comorbidity 0.63 1.00 0.78 71.25

3 DenseNet201 [42] Sigmoid 73.75 Single 1.00 0.47 0.64 73.75

Sigmoid 73.75 Comorbidity 0.66 1.00 0.79 73.75

4 Pre-trained VGG16 Sigmoid 73.75 Single 0.77 0.68 0.72 73.75

Sigmoid 73.75 Comorbidity 0.71 0.80 0.75 73.75

5 MobileNetV2 [54] Sigmoid 76.25 Single 0.92 0.57 0.71 76.25

Sigmoid 76.25 Comorbidity 0.69 0.95 0.80 76.25

6 ResNet50 [39] Sigmoid 81.25 Single 0.78 0.88 0.82 81.25

Sigmoid 81.25 Comorbidity 0.86 0.75 0.80 81.25

7 Pre-trained
DenseNet169

Sigmoid 82.50 Single 0.82 0.82 0.82 82.50

Sigmoid 82.50 Comorbidity 0.82 0.82 0.82 82.50

8 NasNetLarge [52] Sigmoid 82.50 Single 0.93 0.70 0.80 82.50

Sigmoid 82.50 Comorbidity 0.76 0.95 0.84 82.50

9 InceptionResNetV2 [23] Sigmoid 85.00 Single 0.83 0.88 0.85 85.00

Sigmoid 85.00 Comorbidity 0.87 0.82 0.85 85.00

10 Pre-trained
ResNet101

Sigmoid 87.5 Single 0.86 0.90 0.88 87.5

Sigmoid 87.5 Comorbidity 0.89 0.85 0.87 87.5

11 VGG19 [55] Sigmoid 88.75 Single 0.94 0.82 0.88 88.75

Sigmoid 88.75 Comorbidity 0.84 0.95 0.89 88.75

12 ResNet152 [39] Sigmoid 90.00 Single 0.97 0.82 0.89 90.00

Sigmoid 90.00 Comorbidity 0.85 0.97 0.91 90.00

13 DenseNet121 [42] Sigmoid 90.00 Single 0.97 0.82 0.89 90.00

Sigmoid 90.00 Comorbidity 0.85 0.97 0.91 90.00

14 Pre-trained
InceptionV3

Sigmoid 93.75 Single 0.97 0.90 0.94 93.75

Sigmoid 93.75 Comorbidity 0.91 0.97 0.94 93.75

15 Tavana et al. [16] Sigmoid 88.75 Single 0.97 0.80 0.88 88.75

Sigmoid 88.75 Comorbidity 0.83 0.97 0.90 88.75

16 WDRIV-Net (proposed) Sigmoid 96.25 Single 1.00 0.93 0.96 96.25

Sigmoid 96.25 Comorbidity 0.93 1.00 0.96 96.25
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frameworks in other diseases and ensemble techniques [16, 19, 28, 31, 34, 35, 37, 39, 
40, 42–45, 52, 54, 56–66].

Table 2 indicates that the proposed ensemble model observed 96.25% accuracy, sur-
passing [16] (88.75%), DenseNet121 [42] and ResNet152 [39] (90%), InceptionResNetV2 
[23] (85%), and all individual baseline models (< 94%). NASNetMobile [52] recorded 
the lowest accuracy. Similar trends were observed for precision, recall, F1-score, and 
AUC, with WDRIV-Net achieving the highest AUC. The proposed model demonstrated 
a ~ 7.5% AUC improvement over [16], a ≥ 6% increase over other top-performing mod-
els, and a ≥ 2% improvement over its benchmark models.

Discussion
In this research, we proposed WDRIV-Net, a weighted ensemble-based deep trans-
fer learning framework, to classify LID MRI sagittal-view images from clinical set-
tings, observing 96.25% accuracy for single- and comorbidity-type disc degeneration. 
WDRIV-Net outperformed other models with a ≥ 7% increase in AUC compared to 
SOTA ensemble learning, a ≥ 6% improvement over widely studied models, and a 
≥ 2% improvement over baseline models (DenseNet169, ResNet101, InceptionV3, and 
VGG19). Similar gains were observed in precision, recall, and F1-score.

The framework leveraged transfer learning on ImageNet and effectively applied it to 
a private clinical LID dataset, with pre-processing, data augmentation, and ensemble 
techniques addressing limited samples and noise. By combining the strengths of deep 
learning and weighted ensemble learning, WDRIV-Net potentially enhanced generali-
zation. LID degeneration is a prevalent lumbar spinal condition impacting individuals 
globally, leading to reduced quality of life and significant socioeconomic burdens. Early 

Table 2 Summary of the private LID MRI sagittal-view data set and parameters

(1) Private data set summary

Degeneration type Description Training sample Testing sample Total sample

Single-type (a)Herniation; (b)
prolapse; (c) bulge

551 40 591

Comorbidity-type Combination of symp-
tom (a), (b), and (c)

551 40 591

(2) Hyperparameters for the proposed weighted ensemble approach

Benchmark Image size Train epochs Optimizer Activate Learning rate

Densenet169 224 × 224 × 3 25 Adam Sigmoid 1e−4

ResNet101 224 × 224 × 3 25 Adam Sigmoid 1e−4

InceptionV3 224 × 224 × 3 25 Adam Sigmoid 1e−4

VGG19 224 × 224 × 3 25 Adam Sigmoid 1e−4

(3) Data augmentation

Parameter Value

Rotation 20

width_shift_range 0.05

height_shift_range 0.05

horizontal_flip True

Random drop 0.2
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diagnosis is crucial, as delayed intervention risks disease progression, complicating 
treatment and increasing burdens on patients and healthcare systems. MRI imaging is 
the standard diagnostic tool, distinguishing comorbidity- and single-type degeneration 
to guide timely and appropriate treatment.

LID degeneration can progress rapidly under certain conditions, and distinguish-
ing degeneration types is challenging due to factors like MRI image quality (e.g., ani-
sotropic resolution), inter-class similarity, intra-class variation, and observation bias. 
Additionally, a shortage of physicians and the time-intensive nature of medical image 
analysis complicate diagnosis, underscoring the need for automated diagnostic sys-
tems. To address data limitations, we applied data augmentation to expand the sample 
size. Ensemble transfer learning, which combines automatic feature extraction through 
CNNs, deep learning, and knowledge transfer, is a widely used framework for medical 
image analysis, aiding in decision-making systems and LID application development. 
Integrating weighted ensemble learning, data augmentation, and transfer learning ena-
bles efficient and timely evaluation of lumbar spine abnormalities.

The major contribution of this research lies in developing WDRIV-Net, a non-equal-
weight ensemble deep transfer learning framework that combines four pre-trained mod-
els (DenseNet169, ResNet101, InceptionV3, and VGG19) to classify LID degeneration 
types (single-type and comorbidity-type). WDRIV-Net achieved superior performance 
across all evaluation metrics, including accuracy, AUC, precision, recall, and F1-score, 
as shown in Table 2. It outperformed the baseline models, other widely studied mod-
els, and SOTA ensemble methods, delivering the best results in most cases. Specifically, 
WDRIV-Net achieved higher accuracy and AUC on the private test dataset compared 
to VGG19, InceptionV3, DenseNet169, ResNet101, and other SOTA ensemble methods. 
The improved performance, with lower false-positive and false-negative rates, demon-
strates its potential to complement clinical decision-making effectively. This study shows 
that WDRIV-Net can handle classification tasks with size-constrained datasets and pro-
vides insights for clinical interventions and treatments for lumbar spine intervertebral 
disc degeneration.

This work has several limitations as well. First, the dataset used for training and testing 
included only sagittal-view images, excluding axial- and coronal-view data commonly 
used by medical experts for comprehensive diagnosis. The high-accuracy results of the 
experiments implied that the bias could be negligible or maintained at a small level for 
this dataset. Second, the original dataset was relatively small for the standard practice 
of deep learning, a challenge noted in other studies [16, 17, 67]. Future research could 
explore integrating multi-view data or designing models to merge information from dif-
ferent planes. Additionally, performance comparisons between transfer-learning-based 
models and non-transfer-learning approaches, such as ROI segmentation or bounding 
box cropping, could be evaluated when more data are available [67]. Third, the model 
determines whether an MRI exam reveals single or multiple symptoms of disc bulge, 
prolapse, or herniation, yielding an overall classification across spinal levels. However, 
it does not distinguish these symptoms at individual intervertebral disc levels, nor does 
it offer detailed symptom descriptions. Although the traits of disc levels of LID where 
available were reported in the medical text records and might be exploited for diag-
nosis, the information was not annotated directly in the image data. Future research 
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could address this limitation by designing more advanced models by fusing medical text 
records or using more detailed annotated image data.

Conclusion
In this study, we propose a non-equal-weighted transfer learning algorithm by ensem-
bling four pre-trained baseline models for the automatic type classification of lumbar 
intervertebral disc bulge, prolapse, and herniation. The proposed model can be inte-
grated into the medial assessment system for the initial screening of LID degeneration 
cases with differentiated symptoms where the priority of intervention/treatment is of 
concern. This potentially results in reduced medical costs, mitigates risks from diag-
nostic ambiguity, and accelerates treatment decisions for LID degeneration. The out-
comes identified in this study will be beneficial for healthcare practitioners, physicians, 
patients, and researchers in medical image processing.

Methods
The experimental results are illustrated to test the efficiency and effectiveness of the 
proposed approach. A private MRI data set consisting of 1182 lumbar spine sagittal-
view images was collected at the Fujian Medical University Union Hospital, China, and 
Pingtan Comprehensive Experimentation Area Hospital, Pingtan, China. We deployed 
TensorFlow and Keras as the Python toolkits in the conda environment to facilitate the 
training and testing procedures. A standard desktop computer using Windows 11 with 
16 GB of RAM and an NVIDIA RTX A4000 graphical processor was used to evaluate 
the performance of models and the proposed ensemble approach.

MRI data set of lumbar spine degeneration

The private data set comprised 1182 MRIs of lumbar spine degeneration images in total 
collected at the Fujian Medical University Union Hospital, China, and Pingtan Compre-
hensive Experimentation Area Hospital, Pingtan, China, with 591 cases each of single- 
and comorbidity-type degeneration. We randomly divided the 591 cases into 551 cases 
of training data and 40 cases of testing data for both types (Table  1). The ratio of the 
training sample size to the verification sample size during training was set up to 80:20. 
The data were labeled and checked by three medical experts with more than 5 (expert 
#1), 10 (expert #2), and 20 (expert #3) years of clinical experience in medical image pro-
cessing, respectively. The data were initially observed and labeled by expert #1 to iden-
tify the type of disc bulge, prolapse, or herniation by examining and recording the traits 
of the LID. Multi-view data (e.g., sagittal-, axial-, and coronal-view data) were merged 
comprehensively to facilitate the correct manual examination in cases where single- or 
partial-view data were not able to draw the final diagnosis. Further, in the inspection of 
sagittal-view data, the expert recorded the traits of disc levels of LID where available and 
used for subsequent diagnosis. In the output of manual inspection, the expert reported 
an additional flag showing the type information, and whether two or more of these 
symptoms presented. These first-stage results were cross-checked and corrected by 
expert #2 and thereafter by the expert #3. Potential inspection error outputs from expert 
#1 were corrected by expert #2, and the error outputs from expert #2 were updated by 
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expert #3 if identified in the sequential chain process. The examination process was con-
ducted in compliance with the AAOS [68–70].

The final annotated dataset consisted of 1,182 cases with equal numbers of single- and 
comorbidity-type LID degeneration, forming the raw data for analysis. The deep learn-
ing model used representative sagittal-view data for training and testing. A retrospec-
tive review of patient cases from Fujian Medical University Union Hospital and Pingtan 
Comprehensive Experimentation Area Hospital was conducted for data collected 
between January and December 2022. MRI scans were obtained using Siemens 3 T MRI 
scanners, with cases involving multiple inspections excluded. The study was approved 
by the Ethics Committee of Fujian Medical University Union Hospital (2020YF023-01). 
Examples of the dataset are shown in Fig. 6.

Data pre‑processing and data augmentation

The original MRI data resolution ranged from 320 × 320 × 3 to 512 × 512 × 3. To stand-
ardize, the images were resized to 224 × 224 × 3 for input into DenseNet169, ResNet101, 
InceptionV3, and VGG19 [23, 24, 39, 40, 42, 55]. Images were categorized into single- or 
comorbidity-type groups. Pixel values were normalized to the range from 0 to 1, and 
resizing and shuffling generated standardized samples. The analysis was challenged by 
limited data. To partially solve this issue, we first exploited the publicly available larger 
dataset ImageNet to transfer learning the traits of the widely used data set and thereafter 
utilized a data-augmentation technique to enlarge the size of training data and amelio-
rate the disturbance from data noise [10, 11, 21]. This process generated approximately 
≥ 12,000 augmented images, helping prevent overfitting. Figure  7 illustrates the data 
pre-processing and augmentation procedures.

Fine‑tuning parameters and settings

An approach classifying the type of LID degeneration was proposed by using private 
MRI images of the lumbar spine. We utilized the data-augmentation technique by rotat-
ing (i.e., 20 degrees), width shifting (i.e., 0.05), height shifting (i.e., 0.05), and horizon-
tally flipping the lumbar spine MRI images to solve the challenge of a limited sample. 

Fig. 6 a–c Examples of lumbar spine MRI images of the single- and comorbidity-type degeneration in the 
collected private data set
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Thereafter, a weighted ensemble-voting-based classification method was applied to pre-
dict the type of LID degeneration.

The proposed weighted ensemble deep transfer learning model was trained on the bal-
anced and augmented dataset using categorical cross-entropy loss and the Adam opti-
mizer (learning rate = 1e−4). Accuracy was estimated across both sub-categories, with 
training set for 25 epochs. An early stopping mechanism monitored performance, halt-
ing training after 10 epochs of no improvement to conserve computational resources. A 
dropout rate of 20% was used to mitigate overfitting. AUC values were also measured to 
evaluate the model’s capacity to detect positive and negative cases.

Metrics for stratification

Accuracy, recall, precision, and F1‑score

The benchmark models, the proposed approach, and other ensemble learning were 
examined using the test data set when the training procedure was completed by 

Fig. 7 Data pre-processing flow and data augmentation
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exploiting the methodology of data augmentation and transfer learning. We evaluated 
the metrics including accuracy, recall, precision, F1-score, and AUC. We defined that 
true positive (TP) denotes the statistics information of comorbidity-type degeneration 
in the lumbar spine images, contrastingly true negative (TN) delineates the statistics 
of single-type degeneration. Consequently, false negative (FN) represents the statistics 
of comorbidity-type images incorrectly classified as single-type counterparts, and false 
positive (FP) demonstrates the statistics of single-type images that are incorrectly identi-
fied as comorbidity-type (Hashmi et al., 2020). The metrics of accuracy, precision, recall 
(or equivalently sensitivity), and F1 are determined by the formulas defined from Eq. (1) 
to (4):

ROC and AUC 

Receiver operating characteristic (ROC) analysis is a standard methodology used to 
evaluate the performance of a binary classification system, which is applied extensively 
in clinical medicine analysis [43]. The ROC curve is a two-dimensional plotting that 
illustrates the relationship between the true and false-positive rates of a binary classifier.

AUC, which is identical to the probability that the decision value allocated to a ran-
domly selected positive sample is greater than the value allocated to a negative sample 
(or equivalently, a randomly chosen negative case with a smaller estimated probability 
than a positive counterpart belonging to the positive type), is a univariate description of 
the ROC curve [43, 61]. The AUC curve is a performance metric sketching the extent to 
which a classifier divides types. Fundamentally, a classifier seeks the optimal formation 
of samples from a multi-dimensional feature space to a one-dimensional space during 
the training process. Hence, the range of AUC is typically larger than 0.5 and lower than 
1, with greater values representing better performance as the area enclosed is greater. 
A proposed approach to calculate the AUC for the binary classification is illustrated in 
Eq. (5) [38]:

where n0 and n1 denote, respectively, the statistics of positive and negative cases, and 
S0 =

∑

ri , where ri is the rank statistics of the ith positive case.

(1)Accuracy =
TP + TN

TP + TN + FN + FP
,

(2)Precision =
TP

TP + FP
,

(3)Recall =
TP

TP + FN
,

(4)F1 =
2× Precision× Recall

Precision+ Recall
,

(5)AUC =
S0 −

n0(n0+1)
2

n0n1
,



Page 14 of 21Nakamoto et al. BioMedical Engineering OnLine           (2025) 24:11 

Metrics for weighted proposed ensemble model

The proposed ensemble model weighs each baseline model and the mathematical for-
mulation is governed by the eq. from (6) to (7):

where Predi(i = 1, 2, 3, 4) denotes the predicted outcome of the benchmark models, and 
Wi sketches the weights for the baseline models. The summation of all weights is equal 
to one.

∏

(·) represents the algorithm of weighted ensemble deep learning, and WPred is 
the prediction outcome using the proposed weighted ensemble algorithm. In our analy-
sis, Wi = {0.2, 0.1, 0.3, 0.4} for the benchmark resnet101, DenseNet169, InceptionV3, 
and VGG19, respectively. The weights for the models were calibrated and finally decided 
by partially referring to the performance and the loss observations of each model.

Benchmark models

An optimal approach to the automatic classifying of types of lumbar spinal complex 
degeneration was presented based on MRI images of LID. To solve the limited-data 
issue, we employed data augmentation and denoising techniques and exploited the Ima-
geNet data set to pre-train four models and thereafter transferred the knowledge learned 
from ImageNet to the private MRI data set of LID based on weighted ensemble deep 
transfer learning, which enhanced the generalization of the models by integration of the 
merits of both deep learning, transfer learning, and weighted ensemble learning.

ImageNet data set

ImageNet is a data set accommodating more than 15 million high-resolution labeled 
images incorporating nearly 22,000 categories. The images in ImageNet are collected 
from the internet globally and labeled by professionals [62, 71]. Pre-trained models 
based on the ImageNet database are used to extract the features of medical images 
and have proven validity and effectiveness in predicting types, classification, segmen-
tation, and other clinical outcomes [18, 32, 34–37, 62, 71].

Weighted transfer learning

Transfer learning is a widely used machine learning method in learning applicable 
knowledge from constrained data for prediction issues [16, 49, 51, 53, 64]. It has 
gained significant attention for its ability to transfer knowledge across different data 
distributions. The effectiveness of transfer learning has been validated in a variety of 
scenarios [16, 49, 51, 53, 63, 64], with four main models: instance-, feature-, param-
eter-, and relation-based [64].

A recent advancement, weighted ensemble deep transfer learning, combines deep 
learning, feature transfer learning, and weighted ensemble learning of individual 

(6)WPred =
∏

(

4
∑

i=1

WiPredi

)

,

(7)
4

∑

i=1

Wi = 1,
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models [16, 63]. This approach enhances machine learning and transfer learning, 
offering better generalization, accuracy, flexibility, and robustness [16, 18, 48]. In our 
experiments, we observed that the non-equal-weight ensemble method outperformed 
the equal-weight approach.

Data augmentation

Recent breakthroughs in image processing have been driven by deep learning tech-
niques, including classification [37, 39], object recognition [15, 21, 41], and segmenta-
tion [45, 46]. However, deep learning faces challenges such as small sample sizes and 
data quality. To address these, data augmentation generates synthetic data with alterna-
tive features while preserving the major traits of the original data, improving the per-
formance of classifications [65, 66]. Additionally, combining data augmentation with 
transfer learning enhances model performance [59]. In this study, we employed both 
techniques to overcome these challenges.

VGG19 model

VGG stands for Visual Geometry Group, which is a deep-learning architecture with 
CNNs structures [55, 71]. VGG19, a variant of the VGG model, consists of 19 layers 
including 16 layers of CNNs, 3 fully connected layers (i.e., FC), and a softmax/sigmoid 
layer for prediction. VGG is a benchmark that outranks other deep neural baseline mod-
els in multiple vision tasks [55, 71, 72]. Studies exploring the effect of the CNNs depth 
on the accuracy in the sizable image-detection setting have identified that increasing 
depth to ≥ 19 weight layers with minuscule convolution filters can considerably enhance 
the performance of localization and classification, respectively. And the outcomes gener-
alize well to other settings as well [15, 55].

The representative input to VGG typically consists of 224 × 224 RGB images with a 
receptive size of 3 × 3 by default [71]. A representative VGG19 model can comprise five 
blocks using CNNs and pooling layers to extract features, followed by FC layers and a 
softmax or sigmoid output layer for multi- or binary classification [55, 71]. Figure 8 out-
lines the schema of a benchmark VGG19 model used in the proposed ensemble analysis 
[55].

Resnet101 model

Resnet represents the residual network that reduces the cost of training [39, 40]. The 
“101” denotes the structure of weight layers. Resnet rephrases the networks as residual 

Fig. 8 Schema of a benchmark VGG19 model, and the compositional architecture used in the proposal
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framework relative to the source input signal [39, 40, 73–75]. The Resnet framework 
exploits the identity shortcuts to capture essential residual information. Past studies 
have unveiled that the referenced residual networks excel in optimization with admis-
sible accuracy [39, 40]. Experiments on ImageNet data set with a depth of over one hun-
dred layers have yielded desirable outcomes with reduced complexity [39, 40, 74].

A typical ResNet model includes five layers of CNNs, each consisting of convolution, 
batch normalization, and activation processes. Figure 9 illustrates the ResNet101 model 
framework used in the proposed ensemble approach, where element-wise computation 
between the residual R(x) and input x is conducted to better preserve features [39, 73, 
74].

DenseNet169 model

DenseNet (Densely Connected Convolutional Networks) connects each layer to all pre-
ceding layers, using their feature maps as inputs for subsequent layers [42, 76, 77]. This 
architecture reduces issues like vanishing and exploding gradients, improves feature 
propagation, and reuses features while minimizing parameter size. DenseNet has shown 
significant performance improvements over SOTA networks with fewer computational 
resources. Typically, it features more layer connections compared to traditional CNNs. 
Figure 10 illustrates the DenseNet169 model architecture used in this study [42, 77].

InceptionV3 model

The Inception architecture optimizes local structures in a network using available 
components. InceptionV3 improves on InceptionV1 and V2 by addressing issues like 
label smoothing regularization and normalization, reducing overfitting. In our experi-
ments, we used InceptionV3 with 1 × 1, 3 × 3, and 5 × 5 convolutions. We also tested 

Fig. 9 Schema of a benchmark Resnet101 model, and the architecture used in the proposal analysis

Fig. 10 Schema of a benchmark DenseNet169 model, and the compositional architecture used in the 
proposal appraisal
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Fig. 11 Schema of a benchmark InceptionV3 model with 1 × 1, 3 × 3, and 5 × 5 convolutions, and the 
compositional architecture used in the analysis

Fig. 12 The schema of the proposed ensemble deep transfer learning
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InceptionResNetV2 with residual structures, but the ensemble framework with Incep-
tionV3 outperformed InceptionResNetV2 in our setup (results not shown for brevity). 
Figure 11 illustrates the InceptionV3 model and its architecture used in our approach 
[23, 24].

The proposed weighted ensemble deep transfer learning framework

Ensemble deep transfer learning is a recent development that combines transfer learning 
and weighted ensemble learning techniques to generate a robust architecture yielding 
the consequential improvement of performance, as well as better generalization capaci-
ties over individual benchmark models [16].

The proposed WDRIV-Net framework uses non-equal-weight soft-ensemble voting to 
predict outcomes based on the probabilities from each baseline model. This approach 
combines the predictions of four pre-trained benchmark models (Densenet169, 
ResNet101, InceptionV3, VGG19) trained on the ImageNet dataset, improving overall 
performance and reliability while preventing gradient vanishing or exploding issues. The 
weighted soft-voting classifier stratifies predictions based on each model’s probability, 
and an ensemble aggregator applies calibrated weights for final estimation. Figure  12 
illustrates the WDRIV-Net framework and algorithm flow.
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