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Abstract 

Background:  Malocclusion, characterized by dental misalignment and improper 
occlusal relationships, significantly impacts oral health and daily functioning, 
with a global prevalence of 56%. Lateral cephalogram is a crucial diagnostic tool 
in orthodontic treatment, providing insights into various structural characteristics.

Methods:  This study introduces a pre-training approach using multi-center lateral 
cephalograms for self-supervised learning, aimed at improving model generaliza-
tion across diverse clinical data domains. Additionally, a multi-attribute classifica-
tion network is proposed, leveraging attribute correlations to optimize parameters 
and enhance classification performance.

Results:  Comprehensive evaluation on both public and clinical datasets showcases 
the superiority of the proposed framework, achieving an impressive average accuracy 
of 90.02%. The developed Self-supervised Pre-training and Multi-Attribute (SPMA) 
network achieves a best match ratio (MR) score of 71.38% and a low Hamming loss 
(HL) of 0.0425%, demonstrating its efficacy in orthodontic diagnosis from lateral 
cephalograms.

Conclusions:  This work contributes significantly to advancing automated diagnostic 
tools in orthodontics, addressing the critical need for accurate and efficient malocclu-
sion diagnosis. The outcomes not only improve the efficiency and accuracy of diagno-
sis, but also have the potential to reduce healthcare costs associated with orthodontic 
treatments.

Keywords:  Malocclusion, Self-supervised learning, Multi-attribute classification, Lateral 
cephalograms, Medical image analysis

Background
Malocclusion, also known as dental misalignment, refers to the improper positioning 
of teeth or incorrect occlusal relationship between the upper and lower dental arches 
[1]. As reported by the World Dental Federation, malocclusion can significantly impact 
patients’ daily lives, increases the risk of developing dental caries and periodontal dis-
eases. In severe cases, it can impair essential oral functions like speech, chewing, and 
swallowing, potentially causing psychological health issues [2]. It is the third most 
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common oral health issue following dental caries and periodontal disease, with a global 
prevalence of 56%, which underscores the critical need for prevention and treatment 
of malocclusion to improve quality of life and alleviate economic burdens [3–5]. Many 
studies demonstrate that early diagnosis and intervention can significantly reduce the 
severity of future malocclusions, thereby lowering the complexity of later orthodontic 
treatment [6, 7].

Lateral cephalograms are widely used imaging tools for diagnosing malocclusions, 
treatment planning, and efficacy evaluation [8]. It provides a two-dimensional view of 
the skull’s side profile, including the teeth, jaw, soft tissues, cervical vertebrae and air-
way, offering detailed insights into the craniofacial structure in a single image [9, 10]. 
Through the analysis of lateral cephalograms, doctors can assess the degree of skeletal 
and dental malocclusions in patients, enabling them to formulate appropriate treat-
ment plans [11]. The diagnosis of skeletal malocclusions determines whether ortho-
dontic treatment, camouflage treatment, or orthognathic surgery is necessary, while 
dental malocclusion diagnosis is closely related to specific treatment plans [12–14]. 
However, the conventional analysis process of lateral cephalograms is time-consuming, 
labor-intensive, and can be quite inefficient, especially facing the scenery of population 
screening. The diagnostic reliability of lateral cephalograms depends on the experience 
of dentists [15]. With the growing demand for orthodontic treatment, there is a notable 
shortage of qualified orthodontists, and the quality of diagnosis and treatment varies sig-
nificantly across different regions [16]. This disparity greatly limits the effectiveness of 
lateral cephalograms as a diagnostic tool [17].

With the rapid advancement of artificial intelligence (AI), there is a growing inter-
est in automated orthodontic diagnosis compared to manual annotation by clinicians 
[18, 19]. Several methods based on AI have been introduced to streamline the diagnosis 
process and improve efficiency in orthodontic assessments using lateral cephalograms, 
primarily categorized into two types: the landmark-based lateral cephalograms analy-
sis [20] and the direct classification on lateral cephalograms [21, 22]. Automated land-
mark-based lateral cephalogram analysis methods hold significant utility in orthodontic 
diagnostics, offering efficient computational measurements against standard values for 
diagnostic classifications. However, these methods are susceptible to various sources 
of error, which can propagate through a series of calculations, making the assessment 
more complex and less straightforward. This error propagation can be difficult to evalu-
ate, further complicating the reliability of the diagnostic outcomes [23]. Furthermore, in 
clinical measurements, using different measurement criteria may lead to contradictory 
diagnostic results, potentially limiting the clinical applicability of landmark-based meth-
ods [24, 25].

While the direct classification method for lateral cephalograms aims to increase 
diagnostic reliability by minimizing intermediate steps. Kim et  al found that the 
direct classification model based on deep convolutional neural network was superior 
to automatic landmark-based method in sagittal skeletal classification [26]. Yu et al. 
proposed a convolution neural network with transfer learning and data augmentation 
techniques for single skeletal classification, with an accuracy of 90.50% [21]. Nan et al. 
adopted the Densenet-121 [27] network to obtain the automatic classification of the 
sagittal skeletal pattern in children, with the sensitivity, specificity, and accuracy of 
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83.99, 92.44, and 90.33%, respectively [28]. Yim et al. employed a DenseNet-169 [27] 
network as the classifier, and adopted the gradient-weighted class activation map-
ping to visualize the extracted features for automated orthodontic diagnosis, with the 
mean accuracy of 90.34% [29]. Li et al compared the performance on the classification 
of sagittal skeletal patterns using four different type of convolution neural network 
including Visual Geometry Group (VGG) [30], GoogLeNet [31], Residual networks 
(ResNet) [32], and DenseNet161 [27], with a best accuracy of 89.58% [33]. The above 
studies only included 1–3 classifications, which is difficult to meet the clinical needs. 
Chang et  al. extended the diagnostic classifications to eight categories by using the 
DenseNet-121 network [27]. The accuracy of five diagnostic classifications were 
80–90%,and the accuracy of three classifications were 70–80%, which needs to be fur-
ther improved [34].

Despite these advancements, existing direct classification methods often encounter 
performance biases due to imbalanced sample distributions among different attributes 
or classes in lateral cephalograms, which is a common issue in clinical settings. More-
over, most existing methods primarily concentrate on single-attribute classification, 
addressing specific orthodontic diagnostic requirements. However, the craniofacial 
structures generally exhibit a compensatory relationship, and there are potential correla-
tions between different attributes or classes for orthodontic diagnosis. Also, compared 
to multi-attribute classification tasks, training multiple single-attribute models results 
in extended training times and slow iteration updates, which limits their suitability for 
comprehensive orthodontic diagnosis in clinical settings. To address these challenges, 
this study proposes a novel deep learning framework, named SPMA network, for auto-
mated orthodontic diagnosis via self-supervised pre-training and multi-attribute clas-
sification using lateral cephalograms. A model weight initialization method based on 
masked image modeling is proposed. By pre-training the model on unlabeled data from 
multiple centers, it captures robust feature representations with cross-domain data dis-
tributions. A multi-attribute joint optimization network is designed, incorporating clini-
cal prior knowledge to optimize multiple attribute classification tasks simultaneously, 
leveraging complementary information between different attributes to enhance perfor-
mance. In clinical practice, orthodontists utilize lateral cephalograms to assess both skel-
etal and dental characteristics of patients, aiding in diagnosis and treatment planning. 
The proposed method incorporates eight specific indicators, which comprehensively 
describe these features and provide qualitative support for clinicians. The contributions 
of this work are summarized as follows: 

1.	 A pre-training method based on multi-center lateral cephalograms was proposed, 
employing masked image modeling for self-supervised learning from diverse image 
domains, aiming to enhance model generalization when facing clinical data domain 
shifts.

2.	 A multi-attribute classification network was proposed that optimizes parameters 
effectively by incorporating prior correlations between attributes, utilizing comple-
mentary information to improve performance in multi-attribute classification.

3.	 Comprehensive evaluation on public and local clinical datasets demonstrated the 
superiority of this study over existing state-of-the-art (SOTA) methods, achieving a 
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mean accuracy of 0.9002 and providing a potential tool for automated orthodontic 
diagnosis.

Results
Evaluation metrics

For a comprehensive evaluation of the proposed SPMA framework, we employed vari-
ous evaluation metrics, including the exact match ratio (MR), accuracy (Acc), and Ham-
ming loss (HL) for the multi-attribute classification task. These metrics can be expressed 
using the following formulas:

MR: This is a strict metric that considers a sample prediction correct only if all attrib-
utes are predicted correctly. Assuming we have n samples, where yi is the true label for 
the ith sample and ŷi is the predicted label for the ith sample, MR can be expressed as:

Acc: This is a commonly used classification metric, representing the proportion of cor-
rectly predicted samples among the total samples. Assuming we have n samples and m 
attributes, where yij is the true label for the jth attribute of the ith sample and ŷij is the 
predicted label for the jth attribute of the ith sample, Acc can be expressed as:

HL: This is a metric for multi-label classification, representing the proportion of incor-
rectly predicted labels among all labels. Assuming we have n samples and m attributes, 
where yij is the true label for the jth attribute of the ith sample and ŷij is the predicted 
label for the jth attribute of the ith sample, HL can be expressed as:

where I(·) is the indicator function, which takes the value of 1 when the condition inside 
the parentheses is satisfied, and 0 otherwise.

Experimental results

In this study, we conducted a series of experiments to validate the effectiveness of each 
component of our proposed multi-attribute classification network, the SPMA net-
work. The SPMA network consists of a Vision Transformer (ViT) based encoder and 
a multi-head task network, specifically designed for automated orthodontic diagnosis. 
The training process of our model is divided into two stages to avoid redundancy. In 
the first stage, we use a self-supervised learning approach called masked image mode-
ling for image reconstruction tasks. This process allows us to obtain pre-trained weights 
for the encoder. This stage lasts for 400 epochs, with a base learning rate set at 1.5e−4 
and a warmup learning rate set at 1e−6. We employ a cosine scheduler for learning rate 
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adjustment and use AdamW as the optimizer. The batch size is set to 64, and the image 
size is scaled to 224 × 224.

In the second stage, we use the encoder trained in the first stage as the feature encoder 
and train the entire SPMA network. This training lasts for 30 epochs, with a base learn-
ing rate of 0.001. We use a step learning rate adjustment strategy, where the learning rate 
is reduced by a factor of 10 every 10 epochs. The Stochastic Gradient Descent optimizer 
is used for training, with a batch size of 128. The images are scaled to 224 × 224. This 
two-stage training process ensures the robustness and effectiveness of our proposed 
SPMA network. All training process were conducted using two NVIDIA GeForce RTX 
4090 GPUs((NVIDIA Corporation: Santa Clara, CA, USA).

The training loss of the self-supervised learning strategy and the visualization of the 
extracted features using the FeatUp module [35] are demonstrated in Fig. 1.

The results of the proposed SPMA network on multiple evaluation metrics, including 
MR, mean Acc, and HL, are displayed in Table 1. To the best of our knowledge, we are 
the first to apply multi-attribute classification in the task of automated orthodontic diag-
nosis using lateral cephalograms.

Ablation study

We performed ablation studies to understand the contribution of each part of our 
method. Specifically, we compared the performance of the encoder network obtained 
through self-supervised learning with that of an encoder network trained from scratch. 
We also conducted ablation studies on the multi-attribute classification task network 
and single-attribute classification task to determine the contribution of the multi-attrib-
ute joint optimization. The baseline network is consisted of a same encoder network 
training from scratch and single-attribute classification task network for each attribute. 

Fig. 1  The training loss (a) and the visualization of the extracted features (b)

Table 1  Multiple evaluation metrics by the SPMA network

Model MR (%) Acc (%) HL (%)

SPMA 71.38 90.02 4.25
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The experimental results are presented in Table 2, where “+SSL”denotes the inclusion 
of the self-supervised learning strategy, and “+MAC”signifies the integration of the 
multi-attribute joint optimization module. And the eight attributes are maxillary anter-
oposterior position (AP-Max), mandibular anteroposterior position (AP-Mand), sagittal 
skeletal facial pattern (SKFP), vertical skeletal facial pattern (VSFP), inclination of upper 
incisors (Incl-U1), inclination of lower incisors (Incl-L1), anteroposterior position of 
upper incisors (AP-U1), and anteroposterior position of lower incisors (AP-L1).

Comparative study

Furthermore, we compared our proposed SPMA network with existing advanced auto-
mated orthodontic diagnosis methods using lateral cephalograms, including modified 
DenseNet [21], DenseNet-169 [29], and DenseNet 121 [34], to validate the effectiveness 
and advantages of our model, particularly in the context of a mixed multi-center dataset. 
The results of these experiments, presented in Table 3, demonstrate the superior perfor-
mance of the SPMA network across various metrics. In addition, the misclassification 
rates were calculated and are provided in Supplementary Table 1, further supporting the 
evaluation of our model’s performance. To visualize the activated regions during mis-
classifications, heatmaps are included in Supplementary Fig.  1. The attribute marked 
with “–” indicates that the data were not reported in the corresponding study.

For a clearer representation of the model’s performance, the receiver operating char-
acteristic (ROC) curves of the SPMA network and other SOTA methods on two metrics 
(SKFP and VSFP) are shown in Fig. 2. The Chi-squared test result of the ROC curve on 
SKFP is 129.17, with a p-value of < 0.00001 , and the Chi-squared test result on VSFP is 
130.71, with a p-value of < 0.00001 . These results suggest a significant deviation from 
the null hypothesis, indicating that the SPMA model’s predictions are unlikely to have 

Table 2  Accuracy score of each attribute obtained by the baseline and the proposed SPMA 
network (contributions of different part of our method were demonstrated)

Model AP-Max 
(%)

AP-Mand 
(%)

SKFP (%) VSFP (%) Incl-U1 (%) Incl-L1 (%) AP-U1 (%) AP-L1 (%)

Baseline 87.36 87.93 83.10 87.07 82.81 85.09 81.39 85.09

SSL 89.91 89.49 86.79 89.49 87.07 88.92 89.35 90.06

MAC 87.78 90.34 87.36 89.49 86.65 88.07 84.66 89.20

SPMA 89.35 90.62 90.62 91.34 88.35 89.91 89.06 90.91

Table 3  Accuracy score obtained by the SPMA network and the modified DenseNet, DenseNet-169 
and DenseNet 121 methods

Model AP-Max 
(%)

AP-Mand 
(%)

SKFP (%) VSFP (%) Incl-U1 
(%)

Incl-L1 
(%)

AP-U1 
(%)

AP-L1 (%)

Modified 
DenseNet [21]

– – 90.50 89.51 – – – –

DenseNet-169 
[29]

– – 89.44 89.10 – – – –

DenseNet 121 
[34]

78.00 87.00 89.00 86.00 82.00 78.00 73.00 85.00

SPMA (ours) 89.35 90.62 90.62 91.34 88.35 89.91 89.06 90.91
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occurred by chance. This statistical significance affirms the reliability of the SPMA 
model’s performance in classifying the data correctly. It is important to note that the 
Chi-squared tests were conducted specifically on the SPMA model’s predictions com-
pared to the ground truth (true labels), not directly comparing it to other models. The 
comparisons with other models, including the evaluation of eight parameters, are pro-
vided through quantitative performance metrics as shown in Table 3, and visual com-
parisons through the ROC curves are shown in Fig. 2. Based on the performance results 
presented above, the SPMA model demonstrates superior performance compared to the 
other models. However, it is important to clarify that, due to the absence of performance 
metrics at varying thresholds in the models from other studies, a precise statistical com-
parison was not available.

Discussion
The study introduces a novel deep learning framework, the SPMA network, specifically 
designed for automated orthodontic diagnosis using lateral cephalograms. This frame-
work addresses several challenges in orthodontic diagnosis, such as domain shifts in 
clinical data and the need for effective multi-attribute classification.

One significant contribution of this work is the proposed pre-training method based 
on multi-center lateral cephalograms. This method leverages masked image modeling 
for self-supervised learning from diverse image domains. By pre-training on unlabeled 
data from multiple centers, the model captures robust feature representations that 
generalize well across different data distributions. This approach enhances the model’s 
ability to handle domain shifts in clinical data, a common challenge in real-world ortho-
dontic diagnosis scenarios.

Furthermore, the study introduces a multi-attribute classification network that opti-
mizes parameters effectively by incorporating prior correlations between attributes. 
Clinically, while the 8 classification criteria used to describe craniofacial features are 
relatively independent, there are inherent relationships among them. Based on this, we 
introduced a multi-attribute classification network. This network architecture utilizes 
complementary information between different attributes, enhancing the overall per-
formance of multi-attribute classification tasks. By jointly optimizing multiple attribute 

Fig. 2  ROC cures of the comparison among the proposed SPMA network and the other SOTA methods 
based on two selected metrics (SKFP and VSFP)
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classification tasks, the proposed network improves diagnostic accuracy and provides a 
more comprehensive understanding of orthodontic conditions.

The comprehensive evaluation conducted on both public and local clinical datasets 
demonstrates the superiority of the SPMA network over existing SOTA methods. The 
achieved mean accuracy of 0.9002 highlights the effectiveness of the proposed frame-
work in automated orthodontic diagnosis. Since each classification has its own clinical 
significance, the aim of the study is to improve the performance of each individual classi-
fication. As shown in Table 3, compared to single-task training, the performance of each 
classification improved within this model. The lower performance in single-task training 
may be attributed to data imbalance. To achieve balanced improvement across all clas-
sifications, multi-attribute classification training for the 8 types is essential. Additionally, 
an error analysis was performed, revealing that most misclassifications occurred in bor-
derline cases where the diagnostic features were less distinct. After conducting further 
analysis on these misclassified cases, we found that the probability values between the 
misclassified categories were quite close. This suggests that our model could potentially 
identify samples prone to confusion by incorporating a calculation of the probability dif-
ference between categories. By flagging these cases for human review, we can reduce the 
impact of diagnostic inaccuracies and improve overall diagnostic accuracy. These results 
suggest that the SPMA network has the potential to serve as a valuable tool for ortho-
dontists, assisting them in making accurate and efficient diagnostic decisions.

Clinically, the eight indicators predicted by the proposed method comprehensively 
describe key craniofacial characteristics. AP-Max, AP-Mand, and SKFP reflect the sagit-
tal development of the maxilla and mandible, as well as the relationship between them. 
SKFP classifications of Class II and Class III indicate the presence of skeletal deformi-
ties, necessitating more complex treatment approaches such as orthopedic correction, 
camouflage treatment, or orthognathic surgery compared to Class I cases. AP-Max and 
AP-Mand specifically illustrate the developmental status of the maxilla and mandible. 
The protrusion or retrusion of these structures dictates the required extraction sites and 
orthognathic procedures. VSFP indicates the vertical development of the jaws; severe 
hypodivergent or hyperdivergent cases may require orthognathic surgery. This diagnosis 
also influences the decision-making process for extraction plans; hyperdivergent cases 
generally support extraction, while hypodivergent cases require more careful consid-
eration. Incl-U1, Incl-L1, AP-U1, and AP-L1 describe the inclination and protrusion of 
the upper and lower incisors, which directly affect the decision to pursue extraction-
based treatment. Besides, the integration of automated orthodontic diagnosis through 
self-supervised pre-training and multi-attribute classification using lateral cephalograms 
presents substantial economic and operational benefits for public health. By reducing 
operation time and encapsulating the expertise of seasoned orthodontists, this approach 
enhances diagnostic efficiency and accuracy while minimizing errors, particularly 
among less experienced practitioners. Although due to its black-box nature, the under-
lying diagnostic logic lacks transparency, which may lead to potential misjudgments, 
especially in patients with ambiguous classification boundaries.The multi-attribute 
analysis delivers a comprehensive evaluation, swiftly processing large volumes of influ-
ential data, which is invaluable for screening, case management, and generating rich 
data sources for orthodontic research. These data can support epidemiological studies 
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and investigations into disease mechanisms, ultimately advancing the orthodontic field. 
Additionally, the application of multi-attribute classification provides new insights into 
bridging the gap between technological advancements and clinical practice. Clinically, 
it has been observed that there are inherent relationships between skeletal and dental 
characteristics. By leveraging AI, particularly the multi-attribute classification approach, 
we aim to incorporate these clinical experiences and patterns to enhance classification 
performance. The results have indeed confirmed the effectiveness of this method. Col-
lectively, these improvements lead to more efficient and cost-effective orthodontic care, 
with broader implications for public health systems.

Overall, the SPMA network offers a promising approach to automated orthodontic 
diagnosis, combining self-supervised pre-training with multi-attribute classification to 
achieve superior performance. Future research directions may include further validation 
on larger and more diverse datasets, exploration of additional clinical attributes, and 
integration of real-time diagnostic support tools based on the developed framework.

Conclusion
In conclusion, this study presents a novel deep learning framework, the SPMA network, 
tailored for automated orthodontic diagnosis using lateral cephalograms with a best 
MR score of 71.38%, an accuracy score of 90.02%, and a HL loss of 0.0425%. Through 
innovative strategies including masked image modeling for self-supervised pre-training 
and multi-attribute joint optimization, the SPMA network addresses key challenges in 
orthodontic diagnosis, including domain shifts in clinical data and effective integration 
of clinical prior knowledge. Overall, the SPMA network represents a promising innova-
tion in orthodontics, providing an automated solution for diagnosis. It has the potential 
to significantly benefit both orthodontic practitioners and patients.

Methods
Dataset construction

This study constructed a new dataset comprising 3310 lateral cephalograms along with 
their multi-attribute classification labels. The images were retrospectively selected 
from lateral cephalograms obtained at Beijing Stomatological Hospital between Janu-
ary 2015 and December 2021. The images were acquired using a Kodak 8000C dental 
X-ray machine (Carestream Health, Canada) with the following parameters: voltage 80 
kV, current 10 mA, and X-ray exposure time of 0.5 s. Inclusion criteria for the dataset 
were age greater than 14 years, while exclusion criteria included motion artifacts, facial 
trauma, and missing incisors. The participants’ ages ranged from 14 to 55 years, with a 
mean age of 24.5± 8.3 years. Notably, the presence of third molars was not documented. 
The lateral cephalograms were stored in Tag Image File Format with an image resolu-
tion of 1360×1840 pixels. The dataset covered features from different skeletal and dental 
types. Classification labels were assigned based on 8 commonly used diagnostic criteria, 
including AP-Max, AP-Mand, SKFP, VSFP, Incl-U1, Incl-L1, AP-U1, and AP-L1. Clini-
cally, these 8 criteria are usually further subdivided into 3 subcategories to represent 
their specific subtypes. In this study, we aim to classify these subtypes across all 8 crite-
ria simultaneously, thus improving efficiency and enhancing complementary informa-
tion between the indicators to ultimately improve the model’s learning performance. 
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These classifications were derived from a comprehensive analysis of 8 cephalometric 
measurement items, summarized using the Steiner analysis [36] and the Tweed analysis 
[37]. The specific measurements included SNA, SNB, ANB, SN-GoGn, U1-SN, IMPA, 
U1-NA, and L1-NB. Additionally, 324 lateral cephalograms from the publicly available 
2015 Institute of Electrical and Electronics Engineers (IEEE) International Symposium 
on Biomedical Imaging challenge dataset were selected based on the study’s inclusion 
criteria to construct a multi-center dataset. Two orthodontists with 8 and 5 years of 
experience manually measured the craniofacial features of the two datasets, and consen-
sus labels were obtained. To ensure that the orthodontists’ assessments were not biased, 
both were blinded to each other’s measurements and to any prior patient information, 
allowing for independent evaluations. These two datasets together form a mixed multi-
center dataset used for the performance evaluation of the methods in this study. Figure 3 
displays example images from the two datasets, illustrating their distinctions. The data-
sets are divided into training, validation, and testing sets at a ratio of 7:2:1. The detailed 
information about the data distribution is presented in Table 4. This combined dataset 
provides a comprehensive and diverse set of data, enhancing the robustness and general-
izability of the study’s findings.

Data augmentation

In consideration of the significant role of geometric information in orthodontic diagno-
sis within lateral cephalograms, four image augmentation techniques were applied to lat-
eral cephalograms to expand the data scale without altering the geometric information 
in the images. As shown in Fig. 4, these data augmentation techniques include random 
rotation by 10 degrees (Fig.  4a), color jittering with a brightness shift of 0.2, contrast 
shift of 0.2, saturation shift of 0.2, and hue shift of 0.1 (Fig. 4b), random affine transfor-
mation with a translation of 0.1 in both x and y directions (Fig. 4c), Gaussian blur with 

Fig. 3  Example images from the two datasets. a Hospital data; b ISBI data
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a kernel size of 3 (Fig. 4d). By employing these transformations, we aimed to reduce the 
potential bias and performance issues caused by imbalanced data distribution.

The pipeline of the SPMA framework

The proposed SPMA network comprises a ViT-based encoder and a multi-head task 
network for automated orthodontic diagnosis. The encoder initializes its weights based 
on a self-supervised learning task of image reconstruction. The multi-head task network 
achieves classification of various attributes in orthodontic diagnosis through joint opti-
mization using multiple fully connected layers tailored for different attributes. The pipe-
line of the SPMA network is illustrated in Fig. 5.

Self‑supervised pretraining using masked image modeling

To obtain a category-independent cross-domain feature representation, we propose a 
self-supervised learning-based image reconstruction method which aims to learn fea-
ture representations from unlabeled image data. The proposed self-supervised pre-train-
ing process is shown in Fig. 6.

Initially, we applied a random mask with a mask ratio of 0.75 to the input image, gen-
erating a partially masked image which is subsequently divided into several patches.

Table 4  The data distribution of the hybrid multi-center lateral cephalograms dataset

Category Type 1 Type 2 Type 3

Subcategory Numbers Subcategory Numbers Subcategory Numbers

AP-Max Retrognathic maxilla 652 Normal maxilla 2272 Prognathic maxilla 710

AP-Mand Retrognathic man-
dible

788 Normal mandible 2193 Prognathic mandible 653

SKFP Class I 1128 Class II 1404 Class III 1102

VSFP Hypodivergent 917 Normodivergent 1811 Hyperdivergent 906

Incl-U1 Lingual inclination 628 Normal inclination 1605 Labial inclination 1401

Incl-L1 Lingual inclination 825 Normal inclination 1654 Labial inclination 1155

AP-U1 Retrusion 586 Normal 2030 Protrusion 1018

AP-L1 Retrusion 1176 Normal 1603 Protrusion 855

Fig. 4  Examples of data augmentation. a Random rotation; b color jittering; c random affine; d Gaussian blur
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This masking and patching strategy is employed to encourage the model to focus on 
various parts of the image and to learn robust, spatially diverse features, which is crucial 
for capturing the underlying structure and relationships within the image. By dividing 
the image into patches, the model can analyze and reconstruct different regions inde-
pendently, leading to a more comprehensive and generalized feature representation.

To be more specific, let I denote the input image. We use the PatchEmbed module 
to divide I into N image blocks, each of size P × P . We then embed each image block 
into a D-dimensional vector, where D represents the embedding dimension (embed_
dim). This can be expressed as:

Next, we add positional embeddings (pos_embed) to the embedded image blocks, result-
ing in:

Here, R represents the set of real numbers, and × denotes the Cartesian product. The 
PatchEmbed function maps the input image I to a matrix X with dimensions N × D , 
where N is the number of image blocks and D is the embedding dimension. Incorpo-
rating positional embeddings enriches the embedded features with spatial information, 
thereby enhancing the model’s representation capabilities.

These patches and their positional embeddings are then input into the vision 
transformer encoder, which is composed of multi-head attention and feedforward 

(4)X = PatchEmbed(I) ∈ R
N×D.

(5)X = X + pos_embed ∈ R
N×D.

Fig. 5  The pipeline of the proposed SPMA framework. The transformer encoder took the input image 
patches as input and generated features for the downstream classification tasks

Fig. 6  The illustration of the self-supervised pre-training process. Each image was masked randomly and 
passed to the ViT encoder to generate the encoded features for image reconstruction
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neural networks, with add and norm operations applied sequentially. The encoded 
features are compactly represented and then passed through the ViT-based decoder. 
Specifically, we pass X through a series of Transformer blocks. Each Transformer 
block comprises a multi-head attention mechanism and a feedforward network, for 
each Blocki , the process can be represented as:

Finally, we apply a normalization layer and a linear classifier to X, resulting in the final 
output Y:

where Blocki represents the ith Transformer block, and depth signifies the total number 
of Transformer blocks in the series. The head function denotes the linear classifier, and 
norm refers to the normalization layer applied to X. This process concludes the trans-
formation of X through the Transformer architecture, producing the output Y with 
enhanced features suitable for the image reconstruction task.

The output Y of the encoder was passed through the ViT decoder. The decoder, 
similar to the encoder, consists of multi-head attention and feedforward net-
works, yet includes a drop path module to enhance the stability and performance 
of the training process. Finally, the reconstructed image is obtained after processing 
through the ViT decoder. The reconstruction image exhibits enhanced details and 
reduced artifacts compared to the original masked image.

Multi‑attribute classification network

After thorough training of the self-supervised learning model, the weights of its 
encoder part are saved in this study. Based on this encoder, features are extracted to 
construct a multi-attribute classification network. In this network, the input features 
Y, derived from the pre-trained encoder weights via self-supervised learning, serve 
as shared features. These shared features are processed by a network comprising 
multiple groups of fully connected layers, with each group corresponding to a spe-
cific attribute. The output for each attribute is generated as a classification output.

We denote the fully connected layer corresponding to the ith attribute as fi . The 
classification output for the ith attribute, denoted as Ci , is then given by:

where Y represents the input features, and fi represents the fully connected layer corre-
sponding to the ith attribute. The classification output Ci is the output corresponding to 
the ith attribute.

The proposed multi-attribute classification network processes the encoded fea-
tures, facilitating the simultaneous generation of classification outputs for multiple 
attributes. This versatility enhances the network’s adaptability across various scenar-
ios, thereby bolstering its applicability in diverse contexts.

(6)X = Blocki(X).

(7)Y = head(norm(X)),

(8)Ci = fi(Y ),
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Loss functions

In this study, considering the issue of imbalanced category distributions within var-
ious attributes, we adopted Focal Loss as the loss function for intra-attribute class 
classification [38]. Focal Loss is designed to address class imbalance problems, and its 
formal expression is as follows:

Given that there are C categories, where y represents the true category and p is the 
model’s predicted probability distribution, the Focal Loss is defined as follows:

where pt is the predicted probability for the true category y, where pt = p when y = 1 
and pt = 1− p when y = 0 . αt is a balance factor used to adjust the weights of each cat-
egory, and γ is a tuning factor used to reduce the weight of simple samples and increase 
the weight of difficult samples.

In this study, there are a total of 8 attribute classification tasks. The Focal Loss for 
each attribute i is denoted as FLi , and each attribute has a weight wi . Therefore, the 
overall loss L of the network can be represented as the weighted average of the Focal 
Loss for each attribute, given by:

where m represents the total number of attributes. The weight vector wi is defined based 
on the importance of different attributes as determined by dentists. This formulation 
calculates the weighted average of the Focal Losses for each attribute, considering their 
respective weights in the overall loss of the network.
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