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Abstract 

Background and objectives: Markerless vision‑based human pose estimation (HPE) 
is a promising avenue towards scalable data collection in rehabilitation. Deploying 
this technology will require self‑contained systems able to process data efficiently 
and accurately. The aims of this work are to (1) Determine how depth data affects 
lightweight monocular red–green–blue (RGB) HPE performance (accuracy and speed), 
to inform sensor selection and (2) Validate HPE models using data from individuals 
with physical impairments.

Methods: Two HPE models were investigated: Dite‑HRNet and MobileHumanPose 
(capable of 2D and 3D HPE, respectively). The models were modified to include depth 
data as an input using three different fusion techniques: an early fusion method, a sim‑
ple intermediate fusion method (using concatenation), and a complex intermediate 
fusion method (using specific fusion blocks, additional convolutional layers, and con‑
catenation). All fusion techniques used RGB‑D data, in contrast to the original mod‑
els which only used RGB data. The models were trained, validated and tested using 
the CMU Panoptic and Human3.6 M data sets as well as a custom data set. The custom 
data set includes RGB‑D and optical motion capture data of 15 uninjured and 12 post‑
stroke individuals, while they performed movements involving their upper limbs. HPE 
model performances were monitored through accuracy and computational efficiency. 
Evaluation metrics include Mean per Joint Position Error (MPJPE), Floating Point Opera‑
tions (FLOPs) and frame rates (frames per second).

Results: The early fusion architecture consistently delivered the lowest MPJPE 
in both 2D and 3D HPE cases while achieving similar FLOPs and frame rates to its RGB 
counterpart. These results were consistent regardless of the data used for training 
and testing the HPE models. Comparisons between the uninjured and stroke groups 
did not reveal a significant effect (all p values > 0.36) of motor impairment on the accu‑
racy of any model.

Conclusions: Including depth data using an early fusion architecture improves 
the accuracy–efficiency trade‑off of the HPE model. HPE accuracy is not affected 
by the presence of physical impairments. These results suggest that using depth 
data with RGB data is beneficial to HPE, and that models trained with data collected 
from uninjured individuals can generalize to persons with physical impairments.
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Introduction
The development of new rehabilitation approaches requires appropriate measurement 
techniques to assess outcomes and personalize treatment. For example, in the rapidly 
evolving field of investigational neuromodulation therapies, quantifying movement per-
formance is essential [1]. Motion tracking techniques are the most appropriate tool to 
quantify movement and obtain kinematic information.

Marker-based optical Motion Capture (MoCap) systems are the current motion track-
ing gold-standard due to their high accuracy [2, 3]. This type of system uses infrared 
multi-camera setups and physical markers, which require expensive dedicated instru-
mentation and is typically time-consuming to set up [4–6]. Data collection is constrained 
to the laboratory environment where the equipment is located, which limits the amount 
and variability of data collected [3, 7, 8]. On the other hand, informing and evaluating 
rehabilitation practices may require data to be collected in varied environments, such as 
hospitals, community clinics, and patient homes. To enable scalable data collection in 
rehabilitation, there is a need for low-cost and easy-to-use, yet accurate, accessible and 
consistent motion tracking techniques.

This need can be addressed using deep learning-based motion capture from video 
data, known as human pose estimation (HPE). HPE models have greatly benefited from 
advances in deep learning, such as convolutional neural networks (CNNs), which are 
very useful for extracting representative features from images [7, 9]. The development 
of techniques has been so thorough that the current 2D and 3D HPE state-of-the-art 
mostly consists of deep learning-based approaches [10]. Many studies have explored the 
use of HPE for rehabilitation-based applications [6, 11–13].

Tracking joint positions using HPE can enable kinematic analysis, which provides 
important information about how a movement is executed and its quality [14]. Since 
movements are typically performed in the 3D plane, 3D HPE models are better suited 
for cases, where a kinematic analysis will be performed, such as clinical scenarios. Kin-
ematic analysis provides a finer level of detail than standard motor impairment scores, 
such as the Fugl–Meyer Assessment [15] or Action Research Arm Test [16], and has 
the potential to allow clinicians to distinguish between true recovery and compensatory 
movements [14, 17]. Using kinematic historical data could also help track a patient’s pro-
gress in greater detail [14].

HPE models address the issues highlighted with MoCap systems [6, 9]. These vision-
based systems cost significantly less to implement, because they require fewer and less 
specialized equipment. [18]. Their costs are limited to the sensor (camera) and compu-
tational resources necessary for running the HPE model. Vision-based systems can pre-
dict joint locations using image data, eliminating the need for markers, meaning that 
they have lower levels of invasiveness and do not interfere with movements [19, 20]. 
Unconstrained by a data collection location, HPE models have the ability to easily collect 
large amounts of data [18, 20]. Data collection and processing is also easier and does not 
require highly qualified personnel [8].
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Around the 2010s, HPE using depth video (red–green–blue-depth, or RGB-D) data 
and machine learning techniques showed very promising results in terms of poten-
tial accuracy and usability [21–23]. As the sophistication and performance of deep 
learning approaches improved, the HPE field moved away from RGB-D and towards 
color-based (RGB) approaches, namely, monocular approaches [10, 24]. Although not 
as prevalent anymore, deep learning-based RGB-D HPE models are still present in 
the literature. Current methods take advantage of top-performing RGB models, using 
them to obtain 2D coordinates, and undergo a lifting step to predict the third coordi-
nates for each keypoint. The depth value is taken from the sensor data and assigned to 
its corresponding joint. In other words, depth is not incorporated in the initial pose 
estimation step, which is only as good as the 2D pose estimator (and only based on 
the RGB data) [4, 25, 26].

An important issue faced by 3D RGB HPE models is depth ambiguities, which refers to 
the fact that multiple different 3D poses may be projected to same points in 2D [10, 27]. 
Multi-camera markerless MoCap systems can resolve this issue, but, like marker-based 
MoCap, remain constrained to fixed environments due to the instrumentation required 
[28]. Alternatively, using depth data from a single camera could help resolve the issue of 
depth ambiguity, since it provides direct information about the joint’s distance from the 
camera [4, 28, 29]. Depth data are noisier than RGB, particularly as the distance from the 
camera increases [29]. Nonetheless, using this type of data could result in a higher pre-
diction accuracy compared to monocular RGB methods [24]. RGB-D cameras have an 
advantage over multi-camera systems, because they require less setup and do not need 
camera synchronizations [30]. RGB and depth information are mutually reinforcing, yet 
there are not many current models that fully take advantage of these complementary 
sources [29–31].

Another potential limitation of published HPE models in the context of rehabilitation 
is that they are trained and usually validated using large public data sets, which typi-
cally contain data collected from uninjured persons without any disabilities [7, 28]. For 
2D HPE, the most popular data sets are COCO [32] and MPII [33]. For 3D HPE, the 
most widely used are the Human3.6 M [34] and Human-EvaII [35] data sets. Individuals 
undergoing rehabilitation usually exhibit varying signs or levels of physical impairments 
that affect how they perform movements [14]. HPE methods have been used to detect 
neurological conditions or classify if movements are executed correctly [36–42]. Accu-
racies are reported for persons with injuries in these studies, but errors are not com-
pared to those of uninjured individuals performing the same movements in the same 
space. Therefore, the impact of motor impairment on HPE model accuracy remains 
poorly characterized. HPE methods must be validated for their feasibility and accuracy 
to measure the kinematics of persons with disabilities within the constraints of scalable 
deployment in healthcare environments.

This work is motivated by the goal to develop a self-contained system that can collect 
RGB-D data and perform 3D HPE. This device should be low-cost so that it can be eas-
ily deployed in different environments. For this reason, we focus on the use of a single 
camera. It is meant to be used for clinical rehabilitation, meaning that it should be both 
computationally efficient and accurate. To this end, the present study makes two con-
tributions: (1) we evaluate how incorporating depth data into a lightweight monocular 
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RGB HPE model affects its performance in terms of accuracy and efficiency, in order 
to guide sensor selection for a scalable solution. (2) We compare HPE model accura-
cies using data from individuals with and without motor impairments to assess whether 
accuracy is affected by the presence of disabilities.

Results
To investigate the impact of depth, we implemented a controlled comparison in which 
the same models were trained on the same data sets, with and without depth informa-
tion incorporated. Next, to investigate the impact of motor impairment, we computed 
HPE accuracy against a marker-based MoCap ground truth, in two groups of partici-
pants: one uninjured and the other having experienced a stroke.

How does depth impact lightweight monocular HPE models?

Two public data sets were selected for this work: CMU Panoptic (CMU) [43] and 
Human3.6 M (H3.6 M) [34]. These data sets were selected because they are public, large, 
and provide RGB-D data as well as 3D annotations for joint locations. All ground truth 
used in this work followed the standard COCO 17-joint skeleton [32] for both the CMU 
and H3.6  M data. A custom data set (Stroke and Uninjured Depth, or SUD) was also 
used for training and validating the models. This data set provides RGB-D frames and 
corresponding 3D ground truth (GT) for six joints on the arms. It includes data from 
uninjured persons as well as individuals post-stroke. The SUD training data consists of 
two heathy individuals, its validation data was collected from one heathy individual, and 
its testing data consists of 12 uninjured participants and 12 individuals post-stroke. The 
Methods section describes in more detail the SUD data set.

Figure 1 describes the order in which the models were trained and tested, with regards 
to the three different data sets. Steps 2 and 3 can be considered fine-tuning for the spe-
cific data sets used. Fine-tuning was used rather than training the models from scratch 
for each data set because of the lower amount of usable data for the Human3.6 M and 
SUD data sets (~ 250,000 and ~ 25,000 frames, respectively, compared to ~ 2.4 million for 
CMU).

Dite-HRNet (Dite) [44] and MobileHumanPose (MHP) [45] were used in this work, 
which perform 2D and 3D HPE, respectively. These models were selected because they 
use RGB monocular input, are lightweight and open-sourced, and demonstrated the best 
trade-offs between accuracy and computational efficiency at the time that the literature 

Fig. 1 Summary of model training and testing
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review was conducted. The Dite and MHP models were modified to include depth data 
as an input, using three different methods, referred as CH, Cat and Fuse. The CH model 
has an extra input channel in the first layer of its neural network, whereas the Cat and 
Fuse methods initially process the RGB and the depth data separately. The Fuse method 
is more complex than the Cat architecture and incorporates several fusion blocks and 
additional convolutional layers. The Methods section describes in more detail the three 
new RGB-D architectures.

Model performance was evaluated in terms of accuracy and computational efficiency. 
Mean Per Joint Position Error (MPJPE) was recorded for accuracy. MPJPE is reported 
in pixels for 2D HPE models  (MPJPEpix) and in millimeters, calculated based on world 
coordinates, for 3D HPE models  (MPJPEmm). Floating Point Operations (FLOPs) and 
frame rates (frames per seconds, or fps) was recorded for efficiency.

The effect of depth on accuracy

Table  1 summarizes the accuracies obtained for each Dite and MHP model versions. 
CMU and H3.6 M results are reported based on MPJPE for all 17 joints, whereas the 
SUD results are reported for the 6 upper limb joints (right and left shoulders, elbows and 
wrists) only. For reference, the CMU images have a resolution of 1920 by 1080, H3.6 M 
images are 1000 by 1000 and SUD images are 1280 by 720 pixels.

Cells in Table 1 without a superscript highlight the errors obtained when directly test-
ing the models on data collected in the same environment that was provided during 
training (steps 1a, 2a and 3a in Fig. 1). The CH method consistently predicted poses with 
lower error than its RGB counterparts for both the Dite and MHP cases, except for one 
case (Dite when trained and tested on H3.6 M data). Examples of the Dite and MHP CH 
HPE outputs are shown in Figs. 2 and 3 respectively, on CMU, H3.6 M and SUD data.

Cells in Table 1 indicated with an asterisk highlight the results obtained when testing 
the model with data collected in an environment that the model has not encountered 
before. This evaluation was intended to evaluate the model’s generalization abilities, in 

Table 1 Dite and MHP prediction errors (MPJPE) on testing data

*  indicates results on environments that the model has not encountered before. + indicates results obtained when testing 
on data collected in an environment that was previously used for training (prior to fine‑tuning)

Trained with CMU (from 
scratch)

Trained with H3.6 M 
(weights loaded from CMU 
training)

Trained with SUD (weights 
loaded from H3.6 M training)

Tested on CMU H3.6M CMU H3.6M SUD

2D HPE using Dite‑HRNet  (MPJPEpix)

 RGB 25.70 114.33* 313.07+ 3.90 11.86 ± 5.33

 CH 18.86 94.55* 285.92+ 4.31 11.00 ± 2.80

 Cat 22.88 162.70* 256.26+ 5.34 15.27 ± 6.47

 Fuse 27.73 146.04* 294.54+ 18.56 16.48 ± 7.96

3D HPE using MobileHumanPose  (MPJPEmm)

 RGB 12.62 463.95* 130.92+ 79.67 72.52 ± 28.16

 CH 12.38 504.32* 149.13+ 72.36 62.79 ± 15.75

 Cat 12.27 323.71* 108.28+ 114.06 68.00 ± 14.30

 Fuse 13.70 415.17* 131.71+ 156.39 148.52 ± 18.73



Page 6 of 23Boudreault‑Morales et al. BioMedical Engineering OnLine           (2025) 24:12 

terms of backgrounds. All models are characterized by substantial MPJPE values, indi-
cating that none do well at predicting poses on images with new backgrounds.

Cells in Table 1 indicated with a plus sign highlight the results obtained when testing 
the model with data collected in an environment that was previously used for training 
(prior to fine-tuning). Once again, all models are characterized by very high MPJPE val-
ues, meaning that the fine-tuning process negatively affects the model’s ability to per-
form HPE on images with backgrounds previously encountered during training (from 
which weights are loaded).

The effect of depth on computational efficiency

Table 2 summarizes the efficiency of each Dite and MHP model, based on frame rates 
and FLOPs.

Fig. 2 Dite CH model performance (from left to right) on CMU, H3.6 M, SUD (stroke) and SUD (uninjured)

Fig. 3 MHP CH model performance (from left to right) on CMU, H3.6 M, SUD (stroke) and SUD (uninjured)

Table 2 Dite and MHP computational efficiency

FLOPs Frame Rate (fps)

CMU H3.6M

2D HPE using Dite‑HRNet

 RGB 0.90 G 42.8 ± 0.0 58.5 ± 0.5

 CH 0.91 G 44.2 ± 2.7 58.0 ± 0.6

 Cat 1.79 G 28.3 ± 0.4 33.4 ± 0.2

 Fuse 6.17 G 25.3 ± 0.7 31.0 ± 0.1

3D HPE using MobileHumanPose

 RGB 0.97 G 132.3 ± 4.3 180.8 ± 7.4

 CH 0.98 G 123.2 ± 4.8 166.2 ± 7.2

 Cat 1.61 G 115.5 ± 3.5 154.2 ± 5.2

 Fuse 2.88 G 112.9 ± 2.1 146.2 ± 7.5
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In terms of FLOPs, there is a clear trend in both the Dite and MHP cases, where the 
RGB versions have the least FLOPs, closely followed by the CH models. The Cat mod-
els come next, followed by the Fuse versions, which are characterized by a considerable 
jump in FLOPs.

For frame rates, the results vary slightly based on whether the model performs 2D or 
3D HPE. In the 2D case (Dite), the CH method results in frame rates that are nearly 
equal, if not slightly higher, to its RGB counterpart. The Cat and Fuse models, which 
exhibit similar frame rates to each other, are at around 20 fps slower than their RGB and 
CH versions. As for the 3D (MHP) case, the frame rates decrease as the model’s com-
plexity increases (as indicated by FLOPs). The MHP CH models are the second fastest 
out of the four versions explored, after the original RGB models.

How do physical impairments impact lightweight monocular HPE models?

The custom SUD data set was used for this analysis. Recruited participants belonged to 
one of the following two groups: uninjured, or with physical impairments to their upper 
limbs due to a stroke. Participant demographics of the testing data are summarized in 
Table 3.

RGB-D and optical MoCap data were simultaneously collected while participants per-
formed movements involving their upper limbs only. The MoCap data were used to set 
the joint location GT, whereas the RGB-D data were fed into the models described in the 
previous section. Only the upper body was tracked during this study, corresponding to 
the left and right shoulders, elbows and wrists.

The results reported in this section are specific to the models highlighted in step 3 
from Fig. 1. MPJPE values were compared between the uninjured and the stroke group. 
MPJPE box and whisker plots are shown in Figs. 4 and 5 for the Dite and MHP models, 
respectively. All p values are well above the 0.05 threshold, indicating that there is not a 
statistically significant difference between the MPJPE of the injured and uninjured par-
ticipant groups.

Table 3 Participant demographic and data information (SUD testing data)

* The reported FMA‑UE (Fugl–Meyer Assessment – Upper Extremity) score is a variation of the full test since only sections II, 
III and IV of the assessment were performed during the study. The total score is out of 30

Uninjured group Stroke group

Total number of participants 12 12

Age [years] 28.3 ± 12.8 58.3 ± 10.67

Sex 6 males, 6 females 9 males, 3 females

BMI 25.5 ± 5.4 25.6 ± 5.3

Weight [kg] 77.9 ± 17.6 76.7 ± 19.6

Height [m] 1.75 ± 0.09 1.73 ± 0.13

Type of stroke – 8 ischemic, 4 hemorrhagic

Time since injury [years] – 3.8 ± 3.4

MAL‑14 score – 36.4 ± 16.4

FMA‑UE sections II–IV score* – 18.6 ± 6.1

Number of frames 8429 ± 942 10,344 ± 2293
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Discussion
The main goal of this study was to inform the development of self-contained systems 
that can collect RGB-D data and perform 3D HPE in scenarios relevant to rehabilita-
tion practice, ranging from hospitals to homes. Such systems should be simple, portable, 
easy-to-use and low-cost. With the current development and increasing availability of 
depth cameras, the question arises of how advantageous it is to incorporate depth data 
into RGB HPE models. The first contribution of this work is to determine how depth 
data affects a lightweight monocular RGB HPE model in terms of prediction accuracy 
and computational efficiency.

The CH method consistently provided the most accurate predictions without substan-
tially impacting efficiency in both the Dite-HRNet and MobileHumanPose cases. Depth 
data was found to be beneficial for HPE accuracy only when incorporated as an early 
fusion technique. This is the first work that directly compares a 2D RGB model with 
RGB-D versions, trained using large public HPE data sets. This is also the first work that 
directly observes the effect of depth data by incorporating them into a 3D RGB HPE 
model.

Before a HPE model can be incorporated into clinical processes, it must be validated 
using data collected from individuals with physical impairments. The second contribu-
tion of this work is to determine whether the presence of physical impairments affects 
a HPE model’s prediction accuracy. This is the first work that investigates the effect of 
physical impairments on a HPE model by directly comparing prediction accuracies 
between an uninjured and an injured group.

None of the models tested showed a significant difference in joint location pre-
diction accuracies between the uninjured and injured participant groups. This 

Fig. 4 Dite‑HRNet model performances on SUD data

Fig. 5 MobileHumanPose model performances on SUD data
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suggests that models trained with public data sets can generalize to persons with physi-
cal impairments.

The impact of depth data on HPE performance

Can the model perform HPE in a known environment?

The following discussion refers to the results obtained when the models were directly 
tested on data collected in the same environment that was provided during training. The 
advantage of incorporating depth data in terms of HPE accuracy was only consistently 
apparent when the early fusion (CH) architecture was used.

Looking at the Dite models, when trained (from scratch) and tested with the CMU 
data, the CH and Cat models had a  MPJPEpix of under 25 pixels, making them both more 
accurate than the original RGB version. The early fusion method (CH) had the lowest 
 MPJPEpix, being the only model version with an error under 20 pixels. The models were 
then trained and tested with the H3.6  M data. Testing revealed that the RGB model 
became the most accurate, followed very closely by the CH model. Both versions had 
 MPJPEpix values around 4 pixels. Finally, the models were trained with the SUD data. 
Testing with SUD data revealed that the CH model, once again, had the lowest  MPJPEpix, 
standing at an average of 11 pixels. Its standard deviation was also lower than the RGB’s. 
The Fuse model routinely performed the worst, regardless of the training/testing data.

For the 2D HPE case, the advantage provided by depth data is reduced as more train-
ing data are provided. This was demonstrated as the  MPJPEpix gap between the RGB and 
CH model decreased as more training data were used. The CH model was almost 7 pix-
els more accurate than the RGB when only CMU data were used to train the models. 
This difference was reduced to less than 1 pixel by the time the SUD data was used for 
training and testing.

In the case of the MHP models, when trained (from scratch) and tested with the CMU 
data, all four versions had an  MPJPEmm lower than 14 mm. The Cat model had the low-
est mean error, followed by the CH, RGB and Fuse models. The RGB, CH and Cat ver-
sions had very similar levels of  MPJPEmm, with only a 0.11-mm difference between the 
CH and the Cat mean errors. The models were then trained and tested with the H3.6 M 
data. The CH model was the most accurate, with an  MPJPEmm of just under 72.5 mm 
(over 7  mm lower than the next best-performing model). The Cat and Fuse methods 
had notably worse accuracies than the RGB version of MobileHumanPose. Finally, the 
models were trained with SUD data. The CH model consistently outperformed the other 
model versions, followed by the Cat and RGB architectures.

In contrast to the Dite models, the depth data’s advantage is increased as more training 
data is provided for the 3D cases. This was demonstrated as the  MPJPEmm gap between 
the RGB and CH model was raised from approximately 0.35 mm (on the CMU data) to 
7.31 mm (on the H3.6 M data) to almost 10 mm (on the SUD data). This was anticipated, 
as depth data were expected to have a stronger positive impact on 3D HPE rather than 
2D HPE, given the nature of the task.

In terms of comparing model performances with what was reported in their publi-
cations, Dite accuracies cannot be directly compared, because the original model was 
trained with 2D HPE data sets and used mean average precision as an evaluation metric. 
As for MHP, the obtained errors, although close (namely, for the RGB and CH versions), 
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are less than 2 cm higher than what was reported in the model’s paper. This difference 
was expected, since the original model used additional 2D HPE data for training. Quali-
tative performance in both cases confirms functionality of all models.

Can the model generalize to different environments?

Models were tested for their ability to generalize to new environments in step 1b (Fig. 1). 
None of the Dite and MHP versions of the models were able to adequately perform HPE 
on images with a new background (not encountered during training). Performances 
were characterized by substantial errors. The MPJPE performances for these cases are 
not compared in terms of relative performances because of low levels of prediction qual-
ity. Nevertheless, this does not affect our conclusion that depth data improves prediction 
accuracy when tested on data collected in a familiar environment.

This poor performance is hypothesized to be caused by the low levels of background 
variability during training. Both the CMU and H3.6 M data sets were collected in con-
trolled environments with relatively plain backgrounds that were common to all frames. 
Referring to Figs. 2 and 3, the CMU data was collected in an environment with white 
walls, a concrete-colored floor and no hard corners, whereas the H3.6  M data’s back-
ground is characterized by warmer beige walls, a dark red carpet, and a corner at which 
a camera stand is visible.

The two most popular 2D HPE data sets used for training and testing newly proposed 
2D HPE models are the COCO [32] and the MPII [33] data sets. COCO contains images 
collected from Flickr and is very rich in terms of contextual information [32]. MPII [33] 
is composed of images taken from various YouTube videos. Due to the rich contextual 
information present in the COCO and MPII data sets, it is not surprising that models 
trained with their data do not experience environmental generalization issues. HPE test-
ing results on either data set are indicative of a model’s environmental generalization 
capabilities, as the images used for testing have different backgrounds that those used for 
training. In addition, 2D HPE models are commonly evaluated in papers on specific, pri-
vately collected data. For instance, OpenPose [46], which reports results on both COCO 
and MPII, has no problem performing well on new images with different backgrounds, 
as demonstrated by its popularity for a wide range of uses in the literature [47, 48].

On the other hand, the performance of 3D HPE is limited by the current lack of large 
and public in-the-wild-data sets [28, 49]. Methods have more difficulties generalizing to 
images collected in-the-wild, because most public 3D HPE data sets use optical MoCap 
systems to set the joint location GT, meaning that images are collected in a controlled 
and relatively simple environment [27].

Data augmentation techniques were incorporated into our Dite and MHP models as 
an attempt to improve generalization abilities, but this was not enough to provide differ-
ent contextual information as found in images with different backgrounds. The environ-
mental generalization issues experienced by the models in this work could be addressed 
using more diverse training data in terms of backgrounds. Unfortunately, a large non-
synthetic in-the-wild 3D RGB-D HPE data set does not exist yet.

The models were able to learn about new environments when that information was 
incorporated into the training set (training with H3.6 M data after pre-training on the 
CMU data). The advantage of doing so was evident when comparing testing accuracy 



Page 11 of 23Boudreault‑Morales et al. BioMedical Engineering OnLine           (2025) 24:12  

on H3.6 M before and after the fine-tuning. Using H3.6 M as additional training data 
greatly improved the accuracy on the data set’s test set. For the Dite cases, the  MPJPEpix 
decreased from approximately 100 to 5 (excluding the Fuse method). As for MHP, the 
 MPJPEmm went from over 460 to under 80 for the RGB and CH versions of the model.

The fine-tuning process had a drawback: prediction accuracy on the CMU test data 
was considerably reduced after training with the H3.6  M data, even if the weights 
obtained during training with CMU data were used (step 2b in Fig.  1). This behavior 
can be explained using the phenomenon of catastrophic forgetting. Catastrophic forget-
ting occurs in neural networks when a model forgets previously learned optimal weights 
that worked well for a specific task (or data set) and learns a new set of optimal weights 
specific to a new task [50–52]. A variety of methods have been proposed to address cata-
strophic forgetting and could be explored for RGB-D HPE in the future [51, 53–55].

How is the model’s computational efficiency affected?

The architecture resulting in the least FLOPs was the RGB (original) for both the Dite 
and MHP models, with the CH (early fusion) versions being close seconds. The interme-
diate fusion methods (Cat and Fuse) had the highest number of FLOPs. These results are 
consistent with the literature: early fusion techniques are simpler than intermediate ones 
and require fewer calculations.

Overall, adding depth as an input channel (CH) did not considerably affect the model’s 
speed (frame rates). The CH method either resulted in similar frame rates to their RGB 
counterparts or the second highest. Cat and Fuse led to more pronounced reductions 
in frame rate. The difference in inference speeds between the CMU and H3.6 M data is 
hypothesized to be caused by different image resolutions. The CMU data (1920 × 1080) 
has a higher resolution and is almost double the size of the H3.6 M (1000 × 1000) data, 
which could contribute to slightly higher pre-processing times.

All models, regardless of the data, had testing frame rates higher than 24 fps, which is 
close to the speed at which frames are collected in a standard camera (30 fps), suggesting 
inference time capabilities close to real-time as long as testing is performed on a GPU-
equipped machine. The MHP models specifically reached frame rates higher than 100 
fps, indicating very promising potential for real-time HPE applications, and the possibil-
ity of achieving acceptable frame rates on hardware with lower capabilities.

Final recommendations—should depth data be incorporated into HPE?

Considering the effects of depth discussed in the previous sections, we determined that 
the CH method, regardless of whether it is incorporated into 2D or 3D HPE, results in 
the best trade-off between accuracy and computational efficiency. This method yielded 
the most accurate predicted poses (by having the lowest MPJPE) with a negligible 
increase in FLOPs and minimal impact on frame rates compared to the RGB version of 
the models.

The impact of physical impairments on HPE accuracy

We hypothesized that there would be no significant difference in accuracy between 
the two groups recruited during this study. Although impaired participants may move 
differently than uninjured individuals, participants with a stroke were not expected to 
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generate poses that were drastically different from the ones executed by persons without 
injuries. Their movements were characterized by slower speeds and compensatory strat-
egies when needed.

Even though they were trained with data from persons without injuries (from the 
CMU, H3.6 M and SUD data), all the Dite and MHP models were able to generalize to 
persons with physical impairments, with no statistically significant differences found in 
HPE accuracies. This suggests that HPE models trained and validated using large public 
data sets collected from uninjured individuals are expected to have comparable accu-
racies in a rehabilitation context. These models should be ready for use in clinical sce-
narios to the extent that the accuracies that they achieve are suitable for a given medical 
application.

Limitations and future work

Data availability was the biggest limitation for this study. There is a restricted number 
of public 3D HPE data sets that provide both RGB and depth data, which was necessary 
for us to implement a direct comparison of RGB and RGB-D models. Of the few that are 
available, none consist of images collected in-the-wild, unlike 2D RGB HPE data sets. 
Using a more varied data set (with different backgrounds and environments) may result 
in better RGB-D generalization abilities or bridge the accuracy gap between the RGB 
and RGB-D models. The increasing availability of RGB-D sensors make in-the-wild data 
collection more accessible. Exploring the effect of depth on models trained with richer 
data sets would be interesting for future work.

It is important to reiterate that the purpose of this work was not to surpass the accura-
cies of the current state of the art for lightweight monocular RGB HPE models. Rather, 
our goal was to determine how adding depth as an input affects a model’s performance 
in terms of accuracy and computational efficiency. The models presented in this work 
do not surpass the state-of-the-art accuracies or speeds. Although performances can-
not be directly compared due to slightly different protocols used for training, SRNet 
[56] achieved an  MPJPEmm of 36.6 mm on the H3.6 M data set. Another model, [57], 
reported an  MPJPEmm of 52.7 mm on the same data set. The models presented in this 
work are at least 20 mm less accurate than the current monocular RGB HPE state-of-
the-art on H3.6 M. Model selection in this study was guided by a balance of accuracy, 
computational efficiency, and availability for modification to implement the depth fusion 
strategies. Given the rapid pace of the development in deep learning-based HPE, future 
work should focus on exploring the effect of depth on newer methods. The work pre-
sented here suggests that, although the HPE models investigated may not yet achieve 
accuracies sufficient for clinical use, RGB-D models trained on public HPE data sets 
(collected from healthy and uninjured individuals) have potential for applications in 
clinical environments.

While joint location estimates are an essential key step and the focus of the present 
work, applying kinematic analysis to answer clinical questions is likely to require addi-
tional inverse kinematic steps involving biomechanical models to estimate precise joint 
angles [58]. It should also be noted that SUD ground truth based on markers corre-
sponds to slightly different joint positions that those in the CMU and H3.6 M data sets 
(e.g., center of the shoulder joint). While this difference may have contributed slightly to 
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error values, it is expected to be partially mitigated by the re-training performed on SUD 
data.

Investigating RGB-D HPE performance on low-resource settings, such as microcon-
trollers or microprocessors, will be warranted, since real-time capabilities of the models 
under these conditions is of interest for use in varied clinical or home settings.

The conclusions from this work regarding motor impairment are based only on indi-
viduals with stroke performing upper limb movements and on two HPE models (Dite 
and MHP) explored. The results were promising and seem to indicate that HPE accuracy 
is not affected by the presence of physical impairments. Future work should focus on 
testing different HPE models and recruiting a varied group of participants with different 
types of injuries, not only limited to the upper extremities, as well as different demo-
graphics and individuals with amputations or malformations.

Multi-person scenarios should also be investigated, since rehabilitation sessions typi-
cally involve a clinician guiding a patient.

Many rehabilitation movements involve interacting with objects, which can occlude a 
person’s body. The data collected during the study includes self-occlusion, but only one 
interaction with an object (a water bottle) was recorded. In the future, more data cap-
turing interactions with objects should be collected. Some participants from the injured 
groups used walking aids, such as canes, but this was not captured in the collected data. 
Assistive devices can cause occlusions that are normally not encountered in uninjured 
individuals. It would be worthwhile to investigate how different aids affect a HPE mod-
el’s accuracy, and whether using a RGB-D model is more robust for these cases.

Conclusion
The results of this work demonstrated that adding depth as an input to HPE models led 
to improvements in accuracy compared to RGB models with a minimal cost to compu-
tational efficiency, when implemented using a simple early fusion technique. The model 
accuracies were consistent regardless of whether data from injured or uninjured indi-
viduals was used for testing. Integrating deep learning HPE models into rehabilitation 
processes could reshape procedures in a way that would benefit patients individually and 
systemically. On a patient level, it can lead to more precise ongoing motor assessment 
and support personalized interventions. On a systemic level, HPE can provide for the 
first time a scalable approach to capturing data about recovery trajectories in rehabilita-
tion, playing a key role in improving the evidence base for rehabilitation interventions.

Methods
The impact of depth data on HPE performance

The following steps were followed to implement a controlled comparison of RGB versus 
RGB-D models: (1) Select a 3D RGB-D HPE data set. (2) Select a 2D and a 3D light-
weight monocular RGB HPE model. (3) Modify the HPE models to include depth as an 
input. (4) Train the RGB models and their RGB-D versions, using the same protocol on 
the same data set. (5) Compare the models’ performance (accuracy and computational 
efficiency).
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Data set selection

The CMU Panoptic (CMU) [43] and Human3.6 M (H3.6 M) [34] data sets were selected 
for this work. A private, custom data set (SUD) was also used for training and validating 
the models.

No standard training/validation/testing data split protocol was found for the CMU 
Panoptic data set, so a unique protocol was defined. The 3D PointCloud Data set Ver-
sion 1 was downloaded from the KinopticStudio Github page [59]. Only the trials with 
RGB-D data and single-person scenarios were kept. Data was split as an attempt to fol-
low an 80/10/10 split, as summarized in Table 4 [60].

A variation of the H3.6 M protocol 1 was used for the data split. The original protocol 
assigns subjects 1, 5, 6, 7, and 8 to the training and subject 9 and 11 for validation [61]. 
Since testing data is not available for download, subject 9 was used for validation and 
subject 11 for testing.

The SUD data is composed of videos from 15 different uninjured individuals, and 12 
post-stroke patients. Data from the first three uninjured participants was used to train 
and validate the models (participants 1 and 2 for training, and participant 3 for valida-
tion). Data from the remaining 12 uninjured participants and the 12 stroke participants 
was used for testing.

Pre‑processing

Human bounding box locations for each image were generated using YoloV7 [62] and 
incorporated into the GT files. All GT skeleton annotations were modified to respect the 
standard COCO 17-joint format [32]. Raw depth data was cleaned using a dilation filter. 
The OpenCV registerDepth function [63] was used to register the depth to the RGB data. 
Depth registering refers to the data transformation process of aligning depth images to 
RGB images, both in terms of resolution and field of view. Resulting RGB-D files were 
saved as 4-channel images. Provided timestamps were used to match each GT skeleton 
annotation to its closest RGB-D frame.

The panutils.projectPoints function [64] was used to convert the 3D GT to its 2D 
location for each view (project 3D points to 2D locations in the corresponding cam-
era frames). This function uses 3D GT coordinates and camera parameters as an input: 
intrinsic, which consists of the camera’s optical center and its focal length, and extrinsic, 
which is a representation of where the camera is located in the 3D world. The H3.6 M 

Table 4 CMU Panoptic (Kinoptic) data split

Training set Validation set Testing set  Total

Trial names 161029_flute1 170915_office1 170307_dance5

161029_piano2, 3, 4 171026_pose2 171204_pose6

170407_office2 171204_pose3

171026_cello3

171026_pose1, 3

171204_pose1, 2, 4, 5

# Frames 1 804 140 287 400 326 980 2 411 860

% of Total 74.6% 11.9% 13.5% 100%



Page 15 of 23Boudreault‑Morales et al. BioMedical Engineering OnLine           (2025) 24:12  

depth camera parameters were not provided in the original data set. Extrinsic param-
eters were approximated by copying camera 2’s parameters, which were approximated to 
be the same, since the depth sensor was placed right above it. The depth camera’s intrin-
sic parameters were taken from [65]. Only the data from camera 2 was used, because it 
was the only one that had corresponding depth data.

HPE model selection

Temporal HPE models were not considered because of the lightweight requirement. 
Multi-view models were also discarded as options, because the type of setup required is 
not compatible with the study focus on a low-cost, portable device for data collection in 
different environments. Multi-view setups are considerably more expensive and require 
more complex models [28]. Most lightweight models are monocular due to their lower 
complexities and low-costs [6]. Thus, the search was limited to monocular RGB models. 
With these constraints in mind, the Dite-HRNet [44] and MobileHumanPose [45] mod-
els were selected for this work. MobileHumanPose was modified to use a sampling ratio 
of 1 and to predict COCO keypoint locations instead of its original 17.

Dite-HRNet performs 2D HPE, and outputs a list of joint locations in image coordi-
nates (in pixels) for each frame. MobileHumanPose perform 3D HPE, and converts its 
outputs to joint locations in world coordinates (in millimeters).

HPE model architecture modification

Early fusion techniques are appropriate for situations, where the different data types 
share the same resolution and sampling rate [66]. Intermediate techniques fuse data at 
the feature level and are the most popular type in the literature [67]. Because of this, an 
early fusion (CH) and two intermediate fusion (Cat and Fuse) techniques were investi-
gated in this work. Late fusion techniques were not explored, because they do not align 
with the lightweight model requirement.

In both the Dite and MHP models, the RGB data are fed into a backbone (with three 
input channels), which extracts useful features. These features are fed into a classifier, 
which determines the location of the joints. A simplification of this architecture is 
shown in Fig. 6. The CH method added an input channel to the model’s backbone to 
accommodate for a four-channel input (RGB-D) instead of the regular three channels 
(Fig.  7). The Cat method uses identical but separate backbones for the color (RGB) 

Fig. 6 RGB architecture
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and depth (D) data and concatenates extracted features before feeding it into the clas-
sifier (Fig. 8). The Fuse method also uses separate backbones for the color and depth 
data, and incorporates fusion blocks, introduced in [68] (Fig.  9). The fusion blocks 
concatenate the RGB data, depth data and their dot product before feeding them 
through convolution and ReLU layers.

Fig. 7 RGB‑D CH architecture

Fig. 8 RGB‑D Cat architecture

Fig. 9 RGB‑D Fuse architecture
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The CH method, being an early fusion technique, was selected, since it is the simplest 
fusion method. It is expected to perform well for this case, since the RGB and depth 
data shares the same resolution and sampling rate. Intermediate fusion has the poten-
tial of learning more complex relationships between the RGB and the depth data, but at 
the risk of being more computationally intensive. Intermediate fusion techniques were 
investigated due to their popularity in the literature. The Cat method is the simplest 
intermediate fusion technique that can be applied, whereas the fusion method is more 
sophisticated. The Fuse method was specifically selected because it was developed and 
presented as an RGB-D fusion architecture.

Model training

Hyperparameter tuning was not used for any of the models to enable a direct compari-
son between the RGB models and their RGB-D equivalents. Original parameter values 
from the model Github pages were used (see Table 5).

Model performance evaluation

Models were compared on testing data based on MPJPE for accuracy and inference 
speed for efficiency, as well as their FLOPs. MPJPE was calculated using Eq. 1 [28], which 
is the Euclidean distance between the predicted joint location and its ground truth. In 
Eq. 1, f represents the frame number, S is its corresponding skeleton, NS is the total num-
ber of joints in the skeleton, P(f )f ,S (i) is the predicted location of joint i and P(f )gt,S(i) is its 
corresponding GT location [28]. Dite FLOPs were calculated using built-in MMPose 
functions [69]. MHP FLOPs were calculated using a mix of code provided with the 
model and the calflops library [70]. This library had to be used, because the originally 
provided code did not support some of the layers in the models.

The best epoch for each model was identified based on its performance on the vali-
dation data and used to test the model. All models were tested on the same computer 

(1)EMPJPE

(

f , S
)

=
1

NS

NS
∑

i=1

||P
(f )
f ,S (i)− P

(f )
gt,S(i)||2

Table 5 Model training parameters

* The original Dite‑HRNet model was trained with 270 epochs, which was not feasible in this study. Pilot training revealed 
that, when training Dite‑HRNet with the full CMU data set, the model was done most of its learning within the first epoch. 
Therefore, a standard 10 epochs of training was set for this model

Dite-HRNet MobileHumanPose

Epochs 10* 25

Learning rate 1e‑3 1e‑3 (decreased by a factor of 10 after the 
17th and 25th epoch)

Batch size 16 64

Input shape 384 × 288 256 × 256

Tensor normalization Mean: (0.485, 0.456, 0.406, 0.500)
Standard deviation: (0.229, 0.224, 
0.225, 0.366)

Mean: (0.485, 0.456, 0.406, 0.500)
Standard deviation: (0.229, 0.224, 0.225, 0.366)

Number of workers 2 40

Number of GPUs 4 4
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with 1 GPU (NVIDIA GeForce GTX1080 Ti), so frame rates can be directly compared. 
Reported frame rates were obtained after testing 28,002 images of each data set (CMU 
and H3.6 M).

The impact of physical impairments on HPE accuracy

The following steps were followed to evaluate the impact of motor impairment on HPE 
accuracy: (1) collect RGB-D as well as marker-based MoCap data from uninjured partic-
ipants and participants who had experienced a stroke. (2) Feed the RGB-D data into the 
2D and 3D pose estimation models. Evaluate pose estimation accuracy using the MoCap 
ground truth. (3) Compare accuracies between the injured and uninjured groups.

SUD data collection

The study recruited individuals pertaining to one of the following groups: uninjured, free 
of any known medical condition impacting their muscular system (15 participants) or 
with upper limb impairment(s) due to a stroke (12 participants). Participants from the 
stroke group had to have scores between 14 and 56 (average score between 1 and 4 on 
a 6-point scale) on the self-reported Motor Activity Log 14 (MAL-14) [71]. Participants 
were simultaneously recorded with MoCap system and an RGB-D camera, while they 
performed movements involving their arms. The MoCap data were used as joint loca-
tion GT and the depth video as input for the HPE models.

Data were collected as the participants executed the following movements: FMA-UE 
sections II, III and IV (hand from contralateral knee to ipsilateral ear, hand to lumbar 
spine, shoulder flexion, pronation–supination with elbow at 90°, shoulder abduction, 
shoulder flexion and pronation–supination with elbow at 0°) [72], shrug shoulders, 
wave, open a water bottle, drink from it and close it, touch wrists, elbows and shoulders, 
stretch their arms out, make circular arm motions and punch the air. Participants were 
asked to perform movements beyond those included in the FMA-UE, based on their 
interpretation of the verbal instructions. All movements were performed for each side 
(right and left) individually.

The MoCap data was collected at 90  Hz using a Vicon [73] system, consisting of 8 
cameras surrounding the participants. The system setup allowed for the recording of a 
rectangular area of 4.9 by 3.6 m, with the participant seated at its center. 23 reflective 
markers were placed onto each participant’s upper limbs. Table 6 lists the marker names 
and their corresponding anatomical locations. Figure  10 shows the markers on a par-
ticipant. The marker configuration was based on other upper limb MoCap studies, such 
as those in [74] and [75]. The MoCap data was labelled and gaps were filled using Vicon 
built-in pipelines. The marker trajectories were filtered with the built-in Woltring filter 
before exporting the data.

Participants were asked to touch their nose before executing each movement. The 
MoCap data was manually synced to the collected RGB-D data by identifying the frame 
at which the participant touched their nose, and the last frame at which the movement 
was completed. This manual synchronization method was used due to its simplicity, and 
its quality was thoroughly checked through visual inspections.

Depth video data were collected using a stereo RGB-D camera (OAK-D S2, Luxonis, 
Denver, CO, USA). The camera was placed 2.2 m away from the participant, directly in 
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front of them. This location was kept constant for every participant. The camera’s extrin-
sic parameters were obtained using the OpenCV chessboard calibration procedure [76]. 
Color and disparity videos were collected at 30 fps at a resolution of 720p. Disparity 
was recorded (the OAK camera is not able to directly record depth), and then used to 
compute depth values. Depth sensors that use stereo vision technology, as the camera 
used in this study, use disparity to calculate depth values using Eq. 2 below, where B is 
the baseline distance between the two stereo cameras and f is the focal length [77]. The 
RGB-D files were created the same way as the CMU and H3.6 M data:

The GT for the six arm keypoints was set based on Table 7. MPJPE values were calcu-
lated only for these keypoints. Other body landmarks were not included in the MPJPE, 

(2)Depth =
B · f

Disparity

Table 6 Marker names and anatomical locations [74]

Marker Name Anatomical Location

FB Frontal bone of the head, above the eye

NOSE Tip of the nose

NECK Middle of the posterior triangle of the neck

IJ Deepest point of incisura jugularis

SHO Most dorsal point on the acromioclavicular joint

BRA Most proximal point of the brachialis

ELBA Antecubital fossa

ELBL Most caudal point on lateral epicondyle

ELBM Most caudal point on medial epicondyle

FORE Midpoint of the posterior forearm

WRA Most caudal–lateral point on the radial styloid

WRB Most caudal–medial point on the ulnar styloid

DORFIN Distal end of the 3rd metacarpal phalanx

Fig. 10 Marker placement on participants
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because only the arms were tracked during this study. Figure 11 shows an example of the 
data used to train the models (from the two uninjured participants).

Statistical analysis

The Mann–Whitney U test was used determine if there was a statistically significant dif-
ference in HPE accuracies between the recruited uninjured and stroke groups. A non-
parametric test was used due to the lack of normal distribution in some samples, after 
testing for normality using the Shapiro–Wilk test.
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Table 7 Defining the GT joint locations

GT location (right and left sides) Location based on markers

Wrist Mid‑point between WRA and WRB
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Shoulder Shoulder (SHO) marker location

Fig. 11 Training data example from the two uninjured participants. The GT skeleton is drawn in red, and the 
bounding box in green

https://github.com/ANSLab-UHN/rgbd-pe
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