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Abstract 

Purpose: The aim of this study is to convert low-dose PET (L-PET) images to full-dose 
PET (F-PET) images based on our Diffused Multi-scale Generative Adversarial Network 
(DMGAN) to offer a potential balance between reducing radiation exposure and main-
taining diagnostic performance.

Methods: The proposed method includes two modules: the diffusion generator 
and the u-net discriminator. The goal of the first module is to get different informa-
tion from different levels, enhancing the generalization ability of the generator 
to the image and improving the stability of the training. Generated images are input-
ted into the u-net discriminator, extracting details from both overall and specific 
perspectives to enhance the quality of the generated F-PET images. We conducted 
evaluations encompassing both qualitative assessments and quantitative measures. In 
terms of quantitative comparisons, we employed two metrics, structure similarity index 
measure (SSIM) and peak signal-to-noise ratio (PSNR) to evaluate the performance 
of diverse methods.

Results: Our proposed method achieved the highest PSNR and SSIM scores 
among the compared methods, which improved PSNR by at least 6.2% compared 
to the other methods. Compared to other methods, the synthesized full-dose PET 
image generated by our method exhibits a more accurate voxel-wise metabolic inten-
sity distribution, resulting in a clearer depiction of the epilepsy focus.

Conclusions: The proposed method demonstrates improved restoration of original 
details from low-dose PET images compared to other models trained on the same 
datasets. This method offers a potential balance between minimizing radiation expo-
sure and preserving diagnostic performance.

Keywords: Positron emission tomography, Deep learning, Image reconstruction, Low-
dose PET

Introduction
As one of the most widely used medical imaging technologies, PET plays a key role 
in navigated surgery, medical assessment and clinical examination [1], which detects 
biochemical and physiological changes unlike other imaging technologies, such as 
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magnetic resonance imaging and computed tomography [2]. Because biochemi-
cal and physiological alterations frequently precede anatomical changes, PET is also 
extensively employed for preventive treatment and early disease identification. PET 
can assess molecular changes within the human body in vivo evaluations. In spite of 
the considerable advantages offered by PET, an increasing concern among individu-
als pertains to the potential health hazards linked to exposure to radiation during the 
scanning procedure. For example, the injected activity is often restricted by concerns 
about the radiation dose to patients in clinical practice, because more radiation dose 
has the potential to raise the cancer risk and harm the body to some extent [3, 4]. 
Hence, the utilization of low-dose PET (L-PET) images, enabling image acquisition 
with minimal radiation exposure, has garnered significant interest among research-
ers [5, 6]. However, the L-PET images exhibit elevated noise levels, diminished image 
contrast, and heightened artifacts in contrast with full-dose PET (F-PET) images [5], 
this renders them challenging for physicians to perform a precise diagnosis. There-
fore, it has strong practical significance to obtain high-quality images from low-dose 
images to minimize image exposure while preserving image quality.

Numerous methods have been suggested to improve the quality of PET images 
[7–9]. One approach for achieving high-quality PET images involves integrating 
prior information into the image reconstruction process [10]. This method allows 
for the direct incorporation of imaging physics information. However, it faces chal-
lenges related to intensive computation, and access to the physics projection model is 
essential. Numerous studies have explored voxel-wise estimation methods post-image 
reconstruction. These methods include the random forest-based regression approach 
[11], the mapping-based sparse representation method [2], the semi-supervised tri-
pled dictionary learning method [12], and the multi-level canonical correlation anal-
ysis framework [13]. While these existing methods have demonstrated promising 
results, they tend to produce overly smoothed images.

In recent years, deep learning methods have been widely investigated in the field 
of medical imaging [14]. Generative Adversarial Networks and Convolutional Neural 
Networks have been proven to make a success of denoising low-dose CT images [15, 
16]. As deep learning is widely used in various fields, it has made a big difference in 
L-PET images tasks [17]. Xiang et al. proposed a sophisticated convolutional neural 
network model with auto-context learning that predicts high-dose PET images using 
only 1/4 dose of the full-dose PET images and their corresponding MR T1-images 
[18, 18]. Wang et  al. developed a comprehensive framework using 3D conditional 
Generative Adversarial Networks (GANs) to generate superior-quality PET images 
from corresponding L-PET images [19]. Kaplan and Zhu presented a model incorpo-
rating particular image characteristics into the loss function to denoise 1/10 dose of 
the full-dose PET image slices and estimate their full-dose counterparts [20]. Chen 
et  al. proposed synthesizing PET images of superior quality and precision utilizing 
either PET-only data or a combination of PET and MR information [21, 21]. Ouy-
ang et  al. proposed that a Generative Adversarial Network can achieve similar per-
formance levels even in the absence of MR information [22]. More recent work by Yu 
et al. introduced a streamlined framework for L-PET images reconstruction, capable 
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of rapidly producing F-PET images and leveraging the spatial details of the generated 
F-PET slices to improve the overall quality of the final 3D F-PET images [23].

However, there are still have several limitations, such as how we can enhance the com-
prehension of semantic information from different views in L-PET reconstruction, and 
so on. To tackle these concerns, we introduced a novel framework for L-PET recon-
struction, including the diffusion generator and the u-net discriminator. We validated it 
by our experiment and the results showed that our approach demonstrates superiority 
compared to other reconstruction methods for L-PET images.

Results
Experimental setting

The experimental dataset comprised 45 pediatric subjects diagnosed with epilepsy, each 
of whom underwent a single full-dose brain PET scan, from which low-dose PET images 
were reconstructed through 5% undersampling of the corresponding list-mode full-dose 
PET data. By processing the three-dimensional brain images in the PET dataset, we can 
obtain 256*256 2D brain image slices. This step is performed to facilitate the use of these 
slices in our network model training. By extracting 2D slices from the 3D images, we 
can focus on key spatial features and reduce the complexity of the data, making it more 
computationally feasible for training deep learning models. The dataset was divided 
randomly into training, validation, and testing sets, with 80% for training, 10% for vali-
dation, and 10% for testing, to ensure diversity and representativeness. To verify the per-
formance of proposed method, we compared it with cGAN [26], CycleGAN [27], and 
transGAN [23]. And in order to eliminate the impact of different initialization param-
eters on experiments, we set the same random seeds for all experimental methods. We 
used Pytorch library on a NVIDIA RTX 4090 GPU. The batch size was 1 and the epoch 
was set to be 300. Finally, we evaluated them through qualitative evaluation and quanti-
tative measures. For quantitative comparisons, we chose two metrics to evaluate perfor-
mance of various methods: SSIM and PSNR.

Quantitative evaluation

As shown in Table 1, the proposed method achieves the highest PSNR and SSIM scores 
compared to the other methods. The bold values in Table 1 indicate the best results for 
each metric.  These results indicate that the images generated by our approach more 
closely resemble the corresponding original F-PET images in terms of these quantitative 
metrics. Specifically, our method achieves an improvement in PSNR of at least 6.2% over 
the compared methods.

Table 1 Quantitative compared results of DMGAN and other methods for L-PET reconstruction

Method L-PET cGAN CycleGAN transGAN DMGAN

PSNR 23.02 27.28 ± 0.42 27.08 ± 0.34 31.90 ± 0.16 33.89 ± 0.14
SSIM 0.731 0.831 ± 0.007 0.829 ± 0.008 0.897 ± 0.002 0.911 ± 0.002
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Qualitative evaluation

In Fig.  1, some random samples are selected to compare. We can observe that our 
proposed method has more accurate structural details than other approaches. How-
ever, these observations are based on visual comparisons, so further clinical validation 
is needed to confirm these findings. While SSIM and PSNR are standard measures to 
quantify image quality in computer vision, in nuclear medicine, a physician’s observer 
score is often more relevant and necessary. Deep learning methods can sometimes 
introduce structural changes that do not significantly affect these quantitative meas-
ures but may still be important for clinical diagnosis. Therefore, a more in-depth evalu-
ation of the images, such as expert assessments, is valuable. To address this concern, 
we included evaluations from an experienced nuclear medicine physician. The opinion 
scores aim to evaluate clinical feasibility, specifically concerning metabolic details of the 
brain in generated F-PET images. Test set images, with labels removed, are presented to 
the physician for assessment in a randomized order. Each PET image is rated for image 
quality on a five-point scale by the physician. As depicted in Fig. 2, the opinion scores 
for DMGAN are higher than those of the other compared methods, indicating its poten-
tial advantages in L-PET image reconstruction based on expert assessments. A more 
detailed comparison is presented in Fig. 3. Generated F-PET images and original F-PET 
images are computed in pseudo-color difference maps, revealing that the proposed 
method exhibited the smallest voxel-scale difference compared to the other methods. 
Given the clinical importance of precise low-dose reconstruction of epilepsy focus in 

Fig. 1 Qualitative comparisons of different methods in L-PET images



Page 5 of 16Yu et al. BioMedical Engineering OnLine           (2025) 24:16  

Fig. 2 Physician performed clinical evaluations of synthetic full-dose images generated by our proposed 
method and the comparative models

Fig. 3 Comparison of the pseudo-color variance maps among the generated images and the original F-PET 
images from existing methods and our proposal. The colors transition from blue to red, indicating absolute 
differences ranging from small to huge
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pediatric patients, we present the epilepsy focus L-PET image, the synthesized epilepsy 
focus F-PET images, and the ground truth epilepsy focus F-PET image in Fig.  4. The 
results indicate that the F-PET image synthesized by DMGAN suggests a more accurate 
voxel-wise metabolic intensity distribution, leading to a clearer depiction of the epilepsy 
focus compared to other methods.

Ablation study

To certificate the effectiveness of every module, we designed the ablation study by 
removing key modules from the final method on PET dataset in Table 2. In this part, 
we proved that our proposed method consists of two modules, which both make a con-
tribution to the final result. As we can see, compared to the final method, the reduction 
of Diffusion Generator and u-net discriminator both decrease the metric value, respec-
tively, declines over four hundredths. These results provide evidence for the effective-
ness of each module in the proposed method. Figure 5 shows the comparative results 
from this ablation study.

Fig. 4 Displaying the epilepsy focus L-PET images, the synthesized epilepsy focus F-PET images generated by 
various methods, and the ground truth epilepsy focus F-PET images. The color gradient ranges from blue to 
red, representing metabolic values of FDG-PET images from low to high

Table 2 Performance of every module in our proposed method DMGAN

Module PSNR SSIM

transGAN 31.90 ± 0.16 0.897 ± 0.002

transGAN with Diffusion generator 32.48 ± 0.14 0.901 ± 0.002

transGAN with u-net discriminator 32.40 ± 0.34 0.902 ± 0.003

transGAN with Diffusion generator and u-net discriminator 
(DMGAN)

33.89 ± 0.14 0.911 ± 0.002
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Discussion
PET is a widely utilized medical imaging technology for diagnosing various diseases. 
While full-dose imaging ensures high-quality images, concerns about radiation expo-
sure persist. Balancing the need to reduce radiation exposure with maintaining diagnos-
tic accuracy is crucial. This challenge is effectively addressed by reconstructing L-PET 
images to match the quality of F-PET images counterparts. In this study, we suggested 
DMGAN for efficient full-dose reconstruction of L-PET images. DMGAN comprises 
two modules: the diffusion generator and the u-net discriminator. Sequential L-PET 
slices are processed by the diffusion generator, generating higher quality F-PET images. 
The u-net discriminator learns to distinguish from global and local views between the 
real data, generated data and generated diffused data. Experimental results demon-
strated that our proposed DMGAN performs excellently according to commonly used 
assessment criteria. The performance of the model is summarized as follows: com-
pared with L-PET images, it achieves 38.6% improvement in terms of PSNR and 24.6% 
improvement in terms of SSIM, demonstrating its ability to generate F-PET images from 
L-PET images. To further highlight its advantages over existing models, we compared it 
with other methods. For example, compared with cGAN, CycleGAN and transGAN, it 
achieves about 24.2%, 25.1% and 6.2% improvement, respectively, in terms of PSNR and 
9.6%, 9.9% and 1.6% improvement, respectively, in terms of SSIM. Our results showed 
that the proposed model can convert L-PET images to F-PET images, potentially balanc-
ing the reduction of radiation exposure with the preservation of diagnostic performance.

Fig. 5 Comparative results of ablation experiments
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In previous research, the training process involves fusing conditional information 
into the generator and discriminator for cGAN [26]. For example, the input to both 
the generator and discriminator encompasses the conditional information derived 
from PET images, guiding the generation process and ensuring that the generated 
data exhibit heightened realism and controllability under the given PET images. 
Overall, cGAN serves as an extension to Generative Adversarial Networks, intro-
ducing PET image data information to enable the generation model to produce data 
tailored to the distribution of F-PET images. CycleGAN was originally designed for 
image translation tasks with the primary goal of learning mappings between two 
different domains without the need for paired training data [27]. Its most common 
application involves translating images between two domains, such as we can use it 
mapping L-PET to F-PET. In comparison to earlier GAN architectures, CycleGAN 
introduced the concept of cycle consistency loss as introduced before to address the 
training challenges faced by traditional GANs when dealing with unpaired data. The 
cycle consistency loss ensures that the two-directional image transformations per-
formed by the generator are reversible, meaning that the transformed images can be 
accurately reverted back to their original form. This helps prevent the generator from 
producing unnatural outputs. The overall objective of training the model is to mini-
mize the discrepancies between the PET images generated by the network and the 
corresponding F-PET images. TransGAN is a variant of GANs built upon the Trans-
former architecture, originally designed for image generation tasks [23]. Leveraging 
the self-attention mechanism inherent to Transformers, TransGAN aims to capture 
global information and dependencies within PET images. The model utilizes the 
multi-head attention mechanism to simultaneously focus on different regions of PET 
images. Both the generator and discriminator of TransGAN are constructed based on 
the Transformer architecture. In the context of L-PET reconstruct tasks, TransGAN 
exhibits greater flexibility and potential for global modeling, allowing it to effectively 
handle PET images.

We have deduced and explained proposed method principle. Getting different 
information from different views in the same images aims to improve the ability of 
the generator. A u-net discriminator is introduced to extract features from various 
views. By using u-net discriminator, we enable each layer to make an assessment so 
that different layers capture distinct semantic information, providing judgments on 
the image from a multi-scale perspective. Both of them are the main components of 
the structure and they enhance the quality of synthetic PET images with modified 
loss function. The comprehensive experiments, incorporating qualitative assessments 
and quantitative metrics, have substantiated that the proposed DMGAN is capable of 
synthesizing realistic PET images. It can restore original details from L-PET images, 
showing superior performance compared to other models trained on the same data-
sets. The synthesized F-PET image generated by DMGAN provides a sharper and 
clearer depiction of the epilepsy focus. We also conducted ablation experiments to 
further demonstrate the contribution of each module to the final result.

There are some limitations in our study that need to be acknowledged. First, 
although we added additional efficient modules to improve performance, this may 
increase the requirements for hardware resources at runtime, which may limit the 
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applicability of our method in resource-constrained environments. For example, 
resource limitations in actual clinical environments lead to slower running speeds. 
Second, the current method is specifically designed for PET images, and this study 
has optimized the PET image reconstruction method accordingly. Although it shows 
promising results, it may limit its versatility to other imaging modalities. Future 
research can focus on improving efficiency while meeting high accuracy, and expand-
ing the framework to integrate and analyze multimodal medical images (such as CT 
or MRI) to further verify and enhance the robustness of this method.

Conclusion
The study introduced an innovative framework based on generative adversarial networks 
for reconstructing low-dose PET images. In addition, we proposed a diffusion generator 
which can generate higher quality reconstructed images, which can be more approached 
to full-dose PET images. The final experimental results showed that our method per-
forms better in both quantitative and in qualitative evaluation compared with other 
reconstruction methods of low-dose PET images. This study has the potential to miti-
gate patients’ radiation exposure while maintaining clinical diagnostic efficacy.

Materials and methods
Development of GAN

A Generative Adversarial Network is widely recognized as a zero-sum game involv-
ing two network structures: a generator, which may consist of an autoencoder or its 
improved variations, and a discriminator, typically an autoencoder or a Convolutional 
Neural Network (CNN)-based discriminator. Since 2017, GAN-based models were cho-
sen in the realm of medical image synthesis swiftly [24]. The proliferation of GAN-based 
models can be attributed to their adaptable components and the increasing availability 
of Graphics Processing Unit (GPU) resources. In this paper, some GAN-based models 
are included in Table 1 to analyze and reproduce for the purpose of comparison. Many 
contemporary GAN-based models rely on the image-to-image translation technique 
introduced by Isola et al. [25]. This method integrated the conditional GAN loss, as pro-
posed by Mirza and Osindero [26], with an L1 regularizer loss. Consequently, the net-
work acquires the transformation from input to target image and comprehends the loss 
function, enabling the generation of images closely resembling the ground truth. The 
conditional GAN loss is mathematically formulated as follows:

where z ∼ p(z) is random noise, x is input and y is target. The L1 regularization loss can 
be described as followed:

Therefore, considering Eqs. (1), (2), final objective function can be written as:

(1)LCGAN(D,G) = −Ex,y[(D(x, y)− 1)2] − Ex,z[D(x,G(x, z))2],

(2)LL1(G) = Ex,y∼P(x,y),z∼P(z)[||y− G(x, z)||1].

(3)G∗,D∗ = arg min
G

max
D

LCGAN (G,D)+ �LL1(G),
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where the � is a hype-parameter to equalize losses.
The CycleGAN is employed for high-resolution image-to-image translation utilizing 

both paired and unpaired data [27]. It consists of two generators and two discriminators. 
GAB transfers image A to image B and GBA makes the opposite transformation of GAB . At 
the same time, DA and DB decide the domain of the image. The adversarial loss function 
for GAB and DB pair is expressed as:

The adversarial loss for GBA and DA is represented as LGAN (GBA,DA) similarly. The 
cyclic-consistency loss in CycleGAN is:

Considering the above of both, the overall loss of this model can be expressed as:

Therefore, the objective function of the CycleGAN is:

Architecture of DMGAN

We presented a new framework based on generative adversarial network called Dif-
fused Multi-scale Generative Adversarial Network, including two modules: the diffu-
sion generator and the u-net discriminator, as shown in Fig. 6. Specific structure will 
be introduced later. For PET images in clinical situation, our objective is to gener-
ate images that closely resemble the original F-PET images from L-PET images. The 
advantages of our proposed method are generating an output sample, which uses a 

(4)LGAN(GAB,DB) = Eb∼PB(b)[logDB(b)] + Ea∼PA(a)[1− log(DB(GAB(a)))].

(5)
Lcyc(GAB,GBA) = Ea∼PA(a)[a− GBA(GAB(a))||1] + Eb∼PB(b)[b− GAB(GBA(b))||1].

(6)L(GAB,GBA,DA,DB) = LGAN (GAB,DB)+ LGAN (GBA,DA)+ Lcyc(GAB,GBA).

(7)G∗
AB,G

∗
BA = arg min

GAB ,GBA

max
DA,DB

L(GAB,GBA,DA,DB).

Fig. 6 An overview of the proposed DMGAN for L-PET images reconstruction
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recognized distribution of actual images and make full use of its variability. Firstly, 
original low-dose PET image slices are fed into the diffusion generator to synthesize 
the full-dose images, which also contains a sequence of corresponding target slices. 
In the diffusion generator, noised L-PET images are generated by introducing noise 
into the input L-PET images. And then, the diffusion generator generates F-PET 
images and noised F-PET images. The purpose of this step is to enhance the generali-
zation ability of the generator to the image and improve the stability of the training. 
Generated images are inputted into the u-net discriminator, extracting details from 
both overall and specific perspectives to enhance the quality of the generated F-PET 
images.

The diffusion generator

Different from the previous generative adversarial networks like a u-net generator 
[28] or a ResNet Generator [29, 30], which were widely used in previous studies. A 
new generator based on the generator in transGAN [23] has been designed as shown 
in Fig. 7. The best advantage of this model is to get different information from differ-
ent levels, improving the ability of the generator to get information from the origi-
nal images. In other words, the diffusion generator provides another angle to learn 
original image distribution relative to the other common generators. While training 
DMGAN, the adversarial loss function is expressed as follows:

where x is representative of L-PET images, G(x) is representative of F-PET images gen-
erated by the generator and y is corresponding F-PET images. We use Charbonnier loss 
[31] to penalize the Euclidean disparity not only between generated F-PET images and 
original F-PET images:

(8)LGAN (D,G) = −Ex,y[(D(x, y)− 1)2] − Ex[D(x,G(x))2],

Fig. 7 The structure of the proposed diffusion generator for generated images
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but also generated noised F-PET images and original F-PET images:

Inspired by [32–37], and considering the perceptual difference between generated 
F-PET images, generated noised F-PET images and original F-PET images, we adopt a 
VGG16-Net that is trained on the ImageNet [38] to extract feature representations of 
G(x) and y . The perceptual loss is:

where V denotes the feature maps extracted by VGG16-Net. Based on the equations 
above, the total loss of diffusion generator is expressed as:

The hyper-parameters α and β are both 100.

The u-net discriminator

U-nets [39] have showcased state of art performance in numerous intricate image seg-
mentation assignments. In these models, the encoder downsamples the input to capture 
the global information. And then the decoder performs upsampling. Skip connections 
transfer data between the encoder and decoder. Inspired by the recent GAN studies [40], 
we introduce a u-net discriminator in our model to get original images information from 
global and local views, which can cooperate the diffusion generator better. Unlike the 
original u-net network, the u-net discriminator consists of the original downsampling 
network and a new upsampling network, which are connected by the skip-connection 
and bottleneck. In contrast with the original networks, the u-net discriminator performs 
on a per-pixel basis. The loss for the encoder is:

And the loss for the decoder as the mean of the all pixels can be expressed as:

In Eq. (14), [Ddec(x)]i,j and [Ddec(G(z))]i,j are represented discriminator decision at 
pixel (i, j). The per-pixel outputs of Ddec are obtained by integrating specific details from 
lower-level features, facilitated by skip connections originating from intermediate lay-
ers of the encoder network, with global information derived from high-level features 
through the process of upsampling from the bottleneck.

Considering Eqs. (13) and (14), the generator objective is:

(9)L(G) = Ex,y[

√

||y− G(x)||2 + ε2],

(10)L(Gnoised) = Ex,y[

√

||y− Gnoised(x)||2 + ε2].

(11)Lperc(G,V ) = Ex,y[

√

||V (y)− V (G(x))||2 + ε2],

(12)Ldmgan(G,V ,D) = LGAN (D,G)+ α(L(G)+ L(Gnoised))+ βLperc(G,V ).

(13)LDenc = −Ex[logDenc(x)] − Ez[log(1− Denc(G(z)))].

(14)LDdec
= −Ex[

∑

i,j

log[Ddec(x)]i,j] − Ez[
∑

i,j

log(1− [Ddec(G(z))]i,j)].



Page 13 of 16Yu et al. BioMedical Engineering OnLine           (2025) 24:16  

encouraging the generator to concentrate on synthesizing images by capturing both 
global structures and local details effectively, aiming to deceive the discriminator more 
potent.

Inspired by [25], the loss of basic discriminator is:

In our proposed method, the u-net diffusion discriminator is return two values, rep-
resenting the decoder and the encoder’s output. The middle loss is used to describe the 
loss of the u-net discriminator encoder, which is expressed as:

where Dencfake and Dencreal are the scalar outputs of the encoder. Therefore, the overall 
loss of diffusion discriminator is:

where ν is a hyper-parameter set to be 1.

Datasets

The experimental dataset utilized in this study comprises 45 pediatric subjects diag-
nosed with epilepsy, encompassing both low-dose brain PET scans and corresponding 
full-dose brain PET scans, which are collected in 2020. The FDG-PET images of all sub-
jects’ brains are obtained using the whole-body hybrid PET/MR system (SIGNA PET/
MR, GE Healthcare). In the context of clinical practice, we did not exclude images exhib-
iting comparatively lower quality. L-PET images are generated by reconstructing list-
mode F-PET data, which undergoes a 5% undersampling process. The full-dose PET scan 
had an acquisition time of 20 min, with an administered radiotracer activity of 3.7 MBq/
kg. The low-dose PET images were reconstructed using the first minute of the list-
mode data. Using 5% dose can significantly reduce radiation risks, making the research 
results more valuable in actual clinical practice. And the 5% dose selection provides an 
extremely challenging testing environment to verify the ability of our reconstruction 
algorithm to generate high-quality images under extremely low-dose conditions. This 
rigorous testing helps demonstrate the robustness and effectiveness of the algorithm. 
Prior to reconstruction, both L-PET and F-PET images are subjected to preprocessing 
using Statistical Parametric Mapping for realignment and normalization. Following this 
preprocessing, the voxel size of these PET images is standardized to 1 × 1 × 1  mm3. This 
voxel size is chosen to provide higher spatial resolution. This is particularly important 
for detecting and analyzing fine structures, especially during the reconstruction of low-
dose PET images. High-resolution images help improve image quality and the presen-
tation of details. Through the processing of three-dimensional brain images within the 
PET dataset, we derived 256*256 2D brain image slices, which served as the basis for our 
experimental analyses.

(15)LGu−net = −Ez[logDenc(G(z))+
∑

i,j

log[Ddec(G(z))]i,j],

(16)Ladv = Ex,y[logDdec(x, y)] + Ex[log(1− Ddec(G(x), x))].

(17)Lmiddle = − log(1− Dencfake)− log(Dencreal),

(18)Ld = (Ladv + Lmiddle) ∗ 0.5ν,
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Data analysis

In this study, to illustrate the effectiveness of the DMGAN for L-PET images reconstruc-
tion, we calculated the metrics of the model on the dataset, including SSIM and PSNR. 
SSIM is used to measure the similarity between the reconstructed image and the refer-
ence image. We used images of the entire brain region to calculate SSIM. This is because 
the structural characteristics of the entire brain region are important for evaluating 
image quality. The calculation of the SSIM value is based on the local window of each 
voxel, and the similarity of the image is evaluated by comparing the brightness, con-
trast and structural information. PSNR is used to measure the noise level between the 
reconstructed image and the reference image. We also used the image of the entire brain 
region to calculate PSNR. This is because the evaluation of the noise level needs to con-
sider the global characteristics of the entire image. Meanwhile, the reconstruction ability 
of each model to reconstruct L-PET images was analyzed in the same way. The analysis 
and comparison of pseudo-color difference images were carried out through OpenCV 
package to further intuitively show the difference in the results of each method. To miti-
gate the influence of diverse initialization parameters on experimental outcomes, we set 
the same random seeds for all experimental methods. We utilized the PyTorch library to 
conduct this experiment.
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