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Abstract 

Background: Facial expression muscles serve a fundamental role in the orofacial 
system, significantly influencing the overall health and well-being of an individual. They 
are essential for performing basic functions such as speech, chewing, and swallow-
ing. The purpose of this study was to determine whether surface electromyography 
could be used to evaluate the health, function, or dysfunction of three facial muscles 
by measuring their electrical activity in healthy people. Additionally, to ascertain 
whether pattern recognition and artificial intelligence may be used for tasks that differ 
from one another.

Results: The study included 24 participants and examined three muscles (m. Orbicula-
ris Oris, m. Zygomaticus Major, and m. Mentalis) during five different facial expressions. 
Prior to thorough statistical analysis, features were extracted from the acquired electro-
myographs. Finally, classification was done with the use of logistic regression, random 
forest classifier and linear discriminant analysis. A statistically significant difference 
in muscle activity amplitudes was demonstrated between muscles, enabling the track-
ing of individual muscle activity for diagnostic and therapeutic purposes. Additionally 
other time domain and frequency domain features were analyzed, showing statistical 
significance in differentiation between muscles as well. Examples of pattern recogni-
tion showed promising avenues for further research and development.

Conclusion: Surface electromyography is a useful method for assessing the func-
tion of facial expression muscles, significantly contributing to the diagnosis and treat-
ment of oral motor function disorders. Results of this study show potential for further 
research and development in this field of research.

Keywords: Facial expression muscles, Electromyography, Oral motor function, 
Orofacial system, Pattern recognition

Background
Facial expression muscles play a crucial role in the orofacial system, significantly contrib-
uting to oral motor function, overall health, and well-being [1]. These muscles are not 
only responsible for expressing emotions and facial expressions, but also facilitate essen-
tial functions such as speech, chewing, and swallowing [2]. Understanding the develop-
ment, function, and potential disorders associated with facial expression muscles is vital 
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for assessing their importance in both health and disease. This group encompasses the 
Orbicularis Oculi, Zygomaticus Major and minor, Orbicularis Oris, Buccinator, among 
others, which synergistically operate to generate expressions that include smiling, 
frowning, and blinking [3].

Oral motor function encompasses all movements of oral structures, including the lips, 
tongue, cheeks, and jaw [4]. Facial expression muscles are central to these movements, 
ensuring proper articulation, chewing, and swallowing. Effective oral motor function 
is essential for clear speech, efficient digestion, and safe swallowing. Speech largely 
depends on the coordinated actions of the facial expression muscles. For instance, the 
Orbicularis Oris is essential for producing bilabial sounds (e.g., /p/, /b/, /m/), while the 
buccinator and other cheek muscles help shape the oral cavity for producing various 
vowels and consonants [5]. Chewing, or mastication, involves a complex interaction of 
facial expression muscles with the muscles of mastication (e.g., masseter, temporalis). 
Swallowing, or deglutition, is another key function facilitated by the Facial expression 
muscles. The Orbicularis Oris and other facial muscles help create the initial vacuum 
needed to draw food and liquids into the mouth, while the coordinated action of the 
tongue and cheek muscles propels the bolus toward the pharynx [6–10].

The Orbicularis Oris, Zygomaticus Major, and Mentalis muscles exhibit distinct char-
acteristics that enable them to fulfill specific roles in facial expressions and oral motor 
functions. These muscles are integral to the complexity of human communication and 
expression.

The Orbicularis Oris muscle encircles the mouth, facilitating lip movements essential 
for speech and facial expressions. Its unique fiber arrangement allows for precise control 
over lip closure and manipulation, crucial for both vocalization and non-verbal commu-
nication [11]. Aside from Orbicularis Oris, the Zygomaticus Major muscle plays an intri-
cate role in facial expressions, as it is primarily responsible for elevating the corners of 
the mouth. This muscle is key in smiling and expressing joy. It contains a higher propor-
tion of fast-twitch fibers, enabling rapid contractions necessary for quick facial expres-
sions [12]. Finally, the Mentalis muscle contributes to expressions of doubt and disdain, 
through raising and protruding the lower lip. Its anatomical composition, more precisely 
a deep muscle belly, contributes to more nuanced movements. It is important to note 
that when injected with botulinum toxin, complications can arise with this muscle, lead-
ing to limited lower facial expressions [13, 14].

While these muscles are specialized for distinct functions, their interconnectivity 
means that alterations in one can impact the others, highlighting the complexity of facial 
musculature and expression.

The health and functionality of facial expression muscles have a profound impact on 
overall health [3]. Damage to these muscles can lead to a range of problems, from com-
munication difficulties and social isolation to nutritional deficiencies and respiratory 
complications. Effective communication is fundamental to mental and emotional well-
being. Facial expression muscles enable the expression of emotions, facilitating social 
interactions and relationships. Nutritional health is directly linked to the efficiency of 
facial expression muscles in mastication and swallowing. Respiratory health can also be 
affected by facial expression muscles, especially in conditions that impair their function 
[15].
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Surface electromyography (sEMG) applies electronic devices to measure muscle 
energy and analyze and display the data from these measurements. This field relies on 
the understanding of anatomy, physiology, and the instruments used in the process. 
It is a multidisciplinary field that utilizes electronics, physiology, psychology, physical 
therapy, and more. Surface electromyography has various applications, from diagnostics, 
treatment planning, rehabilitation, outcome monitoring, and research. It is applied in all 
branches of both medicine and dentistry [16, 17].

The use of electromyography (EMG) in muscle function assessment has evolved signif-
icantly since its early applications in the 1600s, with clinical use beginning in the 1960s. 
Over time, advancements in technology have allowed for improved electrode placement 
strategies and data processing techniques, enhancing the precision of muscle activity 
analysis, particularly in the orofacial region.

Facial expression muscles are crucial for oral motor function, playing key roles in 
speech articulation, mastication, and swallowing. Their coordinated activity supports 
both emotional expression and essential physiological functions, making their assess-
ment vital in diagnosing dysfunctions that impact communication, nutrition, and quality 
of life.

It is necessary to consider the unique anatomy of facial musculature, including various 
aspects. The fact that there is high variability in the morphology and position of indi-
vidual muscles, as well as the soft tissue surrounding them, makes it difficult to stand-
ardize electrode placement. Electrodes used for facial sEMG must allow firm and secure 
attachment to the skin due to the physiology of the muscles, fascia, and skin covering 
them, as well as possible deformities in their structure [18].

Innervated by the facial nerve, these muscles are vital for core activities including 
emotional displays, social communication, chewing, and the act of swallowing [19]. 
Although the clinical ramifications of facial expression muscles are thoroughly docu-
mented, the signal processing and engineering obstacles associated with their precise 
evaluation remain intricate.

Given the intricate nature of facial muscle anatomy, the analysis of these muscles via 
sEMG frequently necessitates the creation of customized electrode arrays and meticu-
lous strategies for electrode placement. Furthermore, signal processing algorithms must 
accommodate the variability in muscle activation patterns and the pronounced degree of 
asymmetry frequently observed in pathological conditions, such as Bell’s palsy or facial 
paralysis resulting from a stroke. Advancements in signal filtering, feature extraction, 
and real-time data analysis are imperative for augmenting the diagnostic and therapeutic 
applications of sEMG in the context of facial muscles [20].

The amalgamation of advanced computational techniques, inclusive of machine learn-
ing and deep learning paradigms, possesses the potential to transform the interpreta-
tive processes of sEMG signals. These models may facilitate the identification of subtle 
alterations in muscle activity, which are indicative of early-stage muscular dysfunction 
or rehabilitation progress. The establishment of robust sEMG systems tailored for facial 
muscle analysis could substantially enhance the diagnosis, treatment, and rehabilitation 
of individuals afflicted with orofacial disorders [21].

Our hypothesis is that the electrical activity of these three muscles will differ sig-
nificantly across various tasks due to their unique anatomical roles and functional 



Page 4 of 23Adamov et al. BioMedical Engineering OnLine           (2025) 24:17 

contributions to facial expressions and oral movements. Furthermore, we hypothesize 
that these differences can be quantitatively identified using surface electromyography 
(sEMG) and associated feature extraction methods.

Given the significant role of facial expression muscles in oral motor function, this 
study aims to assess the feasibility of utilizing sEMG for their functional analysis, with 
the goal of improving diagnostic and therapeutic approaches.

This manuscript will examine the contemporary landscape of sEMG technology as 
it pertains to facial expression muscles, the signal processing challenges encountered 
within this sphere, and the engineering innovations that are fostering more precise and 
reliable assessments. Also, we will assess the upcoming applications of sEMG in medical, 
dental, and rehabilitation spheres, and advance potential research directions intended to 
enhance sEMG technology for orofacial evaluations.

Results
Feature extraction and initial amplitude analysis

We analyzed the results obtained from 24 participants and compared the amplitude val-
ues for the three muscles during specific movements. Afterwards, previously defined 
features were extracted and statistically compared.

Amplitude values, measured in μV, illustrate the electrical activity of the muscles dur-
ing various facial movements across all participants. For the zygomaticus major muscle, 
the average amplitude values for swallowing, lip pursing, lip pressing, “PA”, and tongue 
protrusion movements show varying levels of muscle activity, with notable highlights in 
specific characteristics, indicating greater muscle engagement. Similarly, the Orbicularis 
Oris muscle demonstrates different amplitude patterns, with average values highlight-
ing significant activity during specific movements such as swallowing and lip pursing, 
while standard deviations reflect variability in responses among participants. Finally, the 
mentalis muscle exhibits varied average amplitude values across characteristics, with 
notable prominence in lip pressing and tongue protrusion movements, reflecting mus-
cle engagement in these states. Standard deviations for all muscles and characteristics 
provide insights into the consistency of muscle activation levels among different partici-
pants, highlighting variability in muscle responses throughout the study. The differences 
in the amplitude can be seen in the EMG envelope, in Fig. 1.

Statistical analysis

The ANOVA test results revealed an F-statistic of 6.036 and a p-value of 0.015. The 
ANOVA test indicates statistically significant differences in the mean amplitude values 
between the muscles, as the p-value is <0.05.

The Tukey’s HSD test results show a significant difference between the Mentalis mus-
cle (m. Mentalis) and the Zygomaticus Major muscle (m. Zygomaticus Major), with a 
p-value of 0.015. No significant differences were found between the Mentalis muscle (m. 
Mentalis) and the Orbicularis Oris muscle (m. Orbicularis Oris), with a p-value of 0.095, 
and between the Orbicularis Oris muscle (m. Orbicularis Oris) and the Zygomaticus 
Major muscle (m. Zygomaticus Major), with a p-value of 0.662. Thus, it is concluded that 
the Mentalis muscle (m. Mentalis) and the Zygomaticus Major muscle (m. Zygomaticus 
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Major) have significantly different mean amplitude values, while the other comparisons 
do not show significant differences.

Following amplitude analysis, multivariable statistical analysis was done, aside from 
descriptive statistical methods. During this step we analyzed all features, their interac-
tions with one another, as well as compared how each feature is different between mus-
cles and tasks.

The heatmap, in Fig. 2, displays correlation between musculus Mentalis, Orbicularis 
Oris, and Zygomaticus Major based on their activation patterns during different func-
tions. A strong positive correlation (values close to 1) suggests that the muscles tend 

Fig. 1 Amplitude of muscles during various movements

Fig. 2 Correlation matrix of muscles based on all tasks together
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to activate in a similar manner during the same functions, implying coordinated mus-
cle activity. This can be seen with musculus Orbicularis Oris and Zygomaticus Major, 
with correlation coefficient of 0.85. Somewhat lower correlation coefficient can be seen 
between musculus Mentalis and Zygomaticus Major. The high correlation between 
Orbicularis Oris and Zygomaticus Major stems from the fact that these muscles are 
likely working together during the execution of given tasks. Conversely, a lower or nega-
tive correlation suggests that the muscles may be functioning more independently, with 
less coordinated activity during those functions. It is important to note that muscle 
cross-talk is possible as these muscles are close to one another, as well as they are active 
during same and similar tasks. With the surface EMG it is important to keep electrode 
placement constant, as they have a lower precision than needle-based electrodes for 
EMG signal acquisition.

Similarly to the correlation matrix in Fig. S1 and Fig. S2, six more complex correlation 
matrices are shown in the supplementary, describing the relations between extracted 
features and given tasks (Fig. S1) and between extracted features (Fig. S2). The latter one 
gives insight into which extracted features are closely tied to one another, while Fig. S1 
shows the significance of different features when performing a specified task.

The radar chart provides a clear visual comparison of the standardized mean EMG 
features across five muscle functions, with each function represented by a different color. 
As can be seen in all three subfigures (Fig. 3a, c, e), the action of “Lip puckering” has the 
overall highest values in power spectrum-related features, indicating significant mus-
cle engagement during this function. Furthermore, in Fig. 3a, c, for musculus Mentalis 
and Orbicularis Oris, the act of “swallowing” has significantly lower values for features 
related to the power spectrum indicating less engagement. For musculus Mentalis and 
Orbicularis Oris, in Fig. 3a, c, kurtosis is highly pronounced during the act of pronounc-
ing the syllable “PA”, while for musculus Zygomaticus Major, in Fig. 3e, the act of “swal-
lowing” produces the highest value of kurtosis. As can be seen in Fig. 3 the act of “lip 
pressing” has higher values for musculus Mentalis (a), and an overall similar pattern for 
musculus Orbicularis Oris (c) and Zygomaticus Major (e). Furthermore, max power as 
a feature is overall lower in acts related to musculus mentalis, except for the act of “lip 
puckering”.

The other half of Fig. 3 displays the mean values of 12 EMG features for three different 
muscles across different tasks. As it can be seen, the power bands are highly active in all 
five tasks. For example, all features have a strong response during the act of “lip puck-
ering”, for all three muscles. The features are more evenly present for musculus Zygo-
maticus Major (Fig. 3f ), while for musculus Orbicularis Oris (Fig. 3d), there is a clear 
distinction in tasks which give a stronger response reflected in extracted features and 
those that do not. The similarity in features can be observed between musculus Orbicu-
laris Oris (Fig. 3d) and musculus Mentalis (Fig. 3b).

In Fig. 4, box and whiskers plots are shown for all features separately. Each participant 
is depicted as a point. Some features exhibit wider ranges, suggesting differences in mus-
cle control or physiological variations, while others show more consistent responses. As 
can be seen in Fig. 4a, c, e the boxplots for frequency at max power, mean and median 
frequency have similar distributions, in terms of the middle 50% of the data. However, 
all features exhibit higher variability in the lowest quartile in Fig. 4b, having no outliers 
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in the highest one. This is contrary to Fig. 4a, b, in which a more even distribution of 
outliers is seen. Furthermore, amplitude, RMS and variance are tightly packed near zero, 
suggesting lower variability of data. In Fig. 4b, d, f power spectrum features are shown. 
These box and whisker plots indicate higher variability of values in the highest quartile. 
Some features may exhibit a wide range of values, which results in high standard devia-
tion as seen in Fig. 4, suggesting differences in how participants activate muscles during 
specific functions, while others show a more consistent response across individuals. This 
variability could be due to differences in individual muscle control, measurement con-
ditions, or inherent physiological differences between participants. For example, some 
participants have high values of band power, while others do not. Additionally, there is 
a difference in which bands of power (high, medium or low) exhibit the highest values 
during each task per individual. However, the maximum power, which is the standard-
ized resulting power of all three bands together, is close to the average value across all 
individuals.

Fig. 3 Radar charts of the database grouped by: a standardized mean EMG features for M. Mentalis; b tasks 
for m. Mentalis; c standardized mean EMG features for M. Orbicularis Oris; d tasks for m. Orbicularis Oris; e 
standardized mean EMG features for M. Zygomaticus Major; f tasks for m. Zygomaticus Major
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Figure 5 shows how participants are grouped into distinct clusters based on simi-
larities in their EMG profiles. Participants within the same cluster are closer together, 
indicating similar muscle activity patterns. Moreover, the distribution of points across 
PCA components suggests that some clusters are more tightly grouped (indicating 
less variability within the cluster), while others are more spread out. This spread is not 
wide when analyzing musculus Mentalis (a) and musculus Orbicularis Oris (c), how-
ever, when looking at Fig. 5e, for musculus Zygomaticus Major there are some par-
ticipants exhibiting values relatively different in comparison to others. Furthermore, 
clustering profiles divided by tasks are shown in Fig S3 (b) for musculus mentalis, (d) 
for musculus Orbicularis Oris and (f ) for musculus Zygomaticus Major. Interestingly 

Fig. 4 Boxplots of EMG features across participants, per muscle: amplitude, frequency at max power, kurtosis, 
mean frequency, median frequency, RMS, total power, variance: a of musculus Mentalis; c of musculus 
Orbicularis Oris; d of musculus Zygomaticus Major; as well as band power high, band power low, band power 
medium and max power: a of musculus Mentalis; c of musculus Orbicularis Oris; d of musculus Zygomaticus 
Major
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all participants show similar muscle activation for each task, as one cluster is always 
dominant, regardless of task. These clusters could be influenced by factors such as 
muscle control, physiological differences, or even measurement conditions. The plot 
helps to identify these patterns, which could be useful for further studies or targeted 
interventions based on participant groupings. Finally, principal component analysis 
was done after grouping participants per muscle and per task, illuminating how con-
sistent the results are in the figures. The ranges of principal components for each task 
are located in an area between −5 and 5 for both components, showing similarity 
between tasks, when the dimensionality is reduced. This can pose a problem for pat-
tern recognition. These results are shown in the supplementary (Fig. S3).

Fig. 5 Cluster separation using principal component analysis reduction on to 2 axes: a Musculus Mentalis; c 
Musculus Orbicularis Oris; e Musculus Zygomaticus Major; cluster distribution per task: b Musculus Mentalis; 
d Musculus Orbicularis oris; f Musculus Zygomaticus Major
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Figure  6 shows extracted features sorted by their statistical significance after per-
forming statistical test-based selection using the ANOVA F value test, as the targeted 
features (muscles and tasks) are categorical features, while the used features for pre-
diction are numerical by nature. As can be seen in Fig. 6a, the amplitude of the EMG 
signal has the highest statistical significance, followed by RMS and power in the high 
band range. The lowest one for muscle prediction is the task itself, as it is a categori-
cal value and not much discriminatory information can be found. Similarly, in Fig. 6b 
the use of which muscle has the lowest statistical significance in terms of the task 
prediction itself. Interestingly both for task and muscle prediction the group of fea-
tures that has the highest statistical significance are band power high and medium, 
rms, variance and amplitude. In contrast to that, mean and median frequency, as well 
as frequency at max power have a higher statistical significance in predicting tasks 
than muscles which have been used (Fig. 6b). On the other hand, features such as max 
power and kurtosis are more significant in terms of predicting which muscle is used 
than the task at hand.

Fig. 6 Sorting of features by their statistical significance in terms of: a acting muscle prediction; b task 
prediction
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Example of pattern recognition

In Table 2, the results of recognition of task: “Swallowing” are shown, per muscle. The 
presented classifier performance metrics are: accuracy, sensitivity (recall), specificity 
and precision. They have been multiplied by 100, and are shown per classifier (logistic 
regression, linear discriminant analysis and random forest).

Discussion
The aim of this study was to measure the electrical activity of three facial muscles in 
healthy individuals and assess the feasibility of using surface electromyography to evalu-
ate the condition, function, or dysfunction of these muscles. Moreover, to determine if 
there is a possibility of application of pattern recognition and artificial intelligence in 
discrepancy between different tasks. Our research among individuals without health 
problems demonstrates a strong correlation with previously established criteria for mus-
cle activity. Specifically, the use of surface electromyography enabled precise monitoring 
of muscle activation during various oral movements.

The findings from this study demonstrate the feasibility of sEMG in distinguishing 
between different facial muscle activities, supporting its potential application in clinical 
and research settings.

Mueller et al. conducted a similar study; however, they encompassed a broader array of 
different facial muscles. They have used high-resolution sEMG to gather raw EMG sig-
nals, which were then used to produce heatmaps and other statistical methods with the 
goal of observing changes in the signal during mimic movements [20]. They considered 
the impact of variability in EMG signals due to electrode placement on data consistency 
[20, 22]. Despite these challenges, their study showed a good correlation between muscle 
position and fiber orientation, in line with anatomical references. Similarly, our study 
indicated that proper electrode placement on anatomically defined muscle regions facili-
tates the identification of signals related to specific actions. While this study primarily 
focused on functional aspects of muscle activity during swallowing and tongue protru-
sion, the observed differences in activation patterns suggest the potential to explore 
emotional expressions in future research. The Mentalis and Zygomaticus Major muscles, 
known for their roles in facial expression, exhibited unique activity patterns that may 
have relevance beyond oral motor functions [23].

The correlation between EMG amplitude and facial expression effectiveness was 
explored by Saponaro et  al., through the analysis of EMG amplitude of facial muscles 
[24]. In facial expression muscles, high variance can indicate abnormal or inconsistent 
muscle activity. Studies like Castroflorio et  al., have evaluated variance in masticatory 
muscles, highlighting its importance in understanding muscle coordination and control 
[25]. RMS has been extensively used in studies on facial muscles, such as the work by 
Nicolini et al., which examined RMS values in the context of facial muscle training [26]. 
Kurtosis helps identify outliers in muscle activity, such as spasms or involuntary con-
tractions. In facial expression muscles, this feature can be critical for detecting abnormal 
muscle behavior, which might not be apparent through amplitude or RMS alone. Even 
though abnormal muscle activity has not been analyzed in our paper, it is imperative 
to highlight it. Turlapaty et al. discussed the use of kurtosis in analyzing EMG signals 
to detect abnormal muscle activity [27]. Furthermore, muscle fatigue is best quantified 
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through frequency-based features. Shifts in median and mean frequencies in facial 
expression muscles, similarly to other ones, can indicate fatigue or change in muscle 
fiber recruitment patterns. De Luca et al. analyzed the effect fatigue has on median and 
mean frequency [28]. As power distribution across different frequency bands can pro-
vide information on different types of muscle activity, as reported by Merletti et al., we 
have used these bands as features in our analysis [29].

In terms of pattern recognition, sEMG has been used extensively for detection of 
motion, complex tasks, as well as in gait correction [30]. The classification results for the 
three muscles—M. Mentalis, M. Orbicularis Oris, and M. Zygomaticus Major—demon-
strate varying levels of performance across the tested models. For M. Mentalis, all mod-
els achieved an accuracy of 70%, with LDA and logistic regression showing perfect recall 
(100%) but low specificity (40%), indicating that while positive cases were correctly iden-
tified, there was a high rate of false positives. Random Forest offered a more balanced 
performance with a recall of 80%, specificity of 60%, and improved precision (66.67%). 
For M. Orbicularis Oris, Logistic Regression outperformed other models with an accu-
racy of 70%, a recall of 80%, and a specificity of 60%, indicating strong overall perfor-
mance. In contrast, LDA showed poor results, with an accuracy of 40% and specificity 
of only 20%. Random Forest achieved high recall (100%) but struggled with specificity 
(20%), reflecting an imbalance in its predictions. Finally, for M. Zygomaticus Major, both 
LDA and Logistic Regression achieved high and balanced results, with accuracy, recall, 
specificity, and precision of 80%, indicating consistent performance in classifying this 
muscle’s activity. However, Random Forest underperformed relative to these models, 
with an accuracy of 60% and specificity of only 40%. These results suggest that while 
logistic regression and LDA generally perform well, Random Forest may require addi-
tional parameter tuning to improve its balance between recall and specificity for certain 
muscle groups. These models overall do not achieve the accuracy presented in litera-
ture [30–32], this can be a consequence of various underlying effects, such as muscle 
cross-talk, variations in electrode placement and issues that can stem from aliasing 
(even though the Nyquist criterion was met). It is important to note that due to the close 
proximity of facial muscles, as well as the tongue muscle, cross-talk between signals is 
possible. This can be the underlying reason to lower model performance compared to 
the ones found in literature [32]. Small variations in electrode placement can conse-
quently affect the model’s performance, as well. These limitations can affect the signal 
quality and can show up as similarities in compared tasks within all analyzed muscles. 
To combat this, the extracted features were ranked beforehand using ANOVA’s F-value, 
to see which features differ from one another the most. As facial expression muscles are 
densely intertwined with one another, encompassing a relatively small space, in com-
parison to muscles found on the human torso or limbs, significantly less research has 
been done in this field. Kelati et al. used classification, more precisely a support vector 
machine classifier (SVC), to recognize either happiness or sadness, depending on the 
patterns found in sEMG obtained from m. Zygomaticus Major and m. Corrugator [31]. 
Similarly to Kelati et al., we used SVC for our task recognition, however, we got lower 
accuracy than them. This can stem from various reasons. For example, our study had 24 
participants, with each performing 5 tasks, repeated three times. From these EMG sig-
nals, features were extracted. In comparison to their study which had 1–2 participants, 
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our method has a more generalized approach, not focusing on individual examinees, but 
the whole group. Furthermore, Paul et al. did a comparative analysis of different classi-
fiers, similarly to the ones presented in our paper [32]. This study did not focus on facial 
expression muscles, but on hand movements. They used 6 basic movements, with clas-
sification done through k-nearest neighbor (KNN) and SVC, showing that the highest 
accuracy was acquired with SVC. We had done a preliminary analysis using different 
classifiers, however, logistic regression, random forest and linear discriminant analysis 
outperformed SVC and KNN. It is important to note, that due to the close proximity 
of facial muscles, as well as the tongue muscle, cross-talk between signals is possible. 
This can be the underlying reason to lower model performance compared to the ones 
found in literature [32]. Small variations in electrode placement can consequently affect 
the model’s performance, as well. These limitations can affect the signal quality and can 
show up as similarities in compared tasks within all analyzed muscles. To combat this, 
the extracted features were ranked beforehand using ANOVA’s F-value, to see which fea-
tures differ from one another the most.

Clinical applicability of findings

The findings of this study have several potential clinical applications, particularly in the 
diagnosis and rehabilitation of facial expression muscle dysfunctions. The ability to dis-
tinguish between the electrical activities of specific facial muscles during various tasks 
using sEMG provides valuable insights into muscle performance and coordination.

In clinical practice, this methodology could be employed to assess muscle activity in 
individuals with conditions such as Bell’s palsy, facial paralysis, or post-stroke facial dys-
function, helping clinicians identify affected muscles and monitor recovery progress. For 
example, the significant differences in muscle activation patterns observed in this study 
could inform personalized rehabilitation programs targeting specific muscle groups.

Furthermore, the application of pattern recognition techniques demonstrated in this 
study highlights the potential for developing automated tools to analyze sEMG data. 
These tools could aid clinicians in diagnosing subtle muscle dysfunctions or evaluating 
the efficacy of therapeutic interventions in real-time.

In the context of dentistry, the results could enhance the understanding of muscle 
coordination during oral movements, which is critical for managing temporomandibu-
lar disorders or planning prosthetic and orthodontic treatments. Future research should 
focus on validating these findings in larger and more diverse populations, as well as 
exploring the integration of sEMG systems into clinical workflows to enhance diagnostic 
and therapeutic precision.

Limitations

While this study provides valuable insights into the electrical activity of facial expression 
muscles, several limitations must be acknowledged:

1.Sample size: This study was conducted with a relatively small sample of 24 partici-
pants, limiting the generalizability of the findings to broader populations. Future studies 
with larger and more diverse cohorts are necessary to validate the results and explore 
inter-individual variability.
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2.Electrode placement challenges: The high variability in facial muscle anatomy 
and the proximity of muscles introduce challenges in standardizing electrode place-
ment. This could lead to cross-talk or signal interference, potentially affecting the 
precision of measurements.

3.Task selection: The tasks selected for this study, while clinically relevant, may not 
comprehensively represent all functional movements of facial expression muscles. 
Expanding the range of tasks in future studies may provide a more holistic under-
standing of muscle activity.

4.Feature selection and pattern recognition: Although feature extraction and clas-
sification methods were employed, the limited sample size and high-dimensional 
feature space may have influenced the accuracy and reliability of the classification 
models. Future studies should incorporate advanced algorithms and larger datasets 
for improved robustness.

5.Pilot nature of the study: As a pilot and methodological study, the primary aim 
was to assess feasibility rather than establish definitive conclusions. The exploratory 
nature of the work necessitates cautious interpretation of the results, particularly in 
the context of clinical applications.

These limitations underscore the need for further research to refine the methodol-
ogy, validate findings, and expand the scope of applications in clinical practice.

Conclusion
Despite the challenges associated with this method, such as individual muscle mor-
phology, variation in muscle activity across the population and proper electrode 
placement, this study demonstrated, in context of surface EMG, sufficient precision 
in measuring muscle activity during various movements.

This study confirms the feasibility of sEMG for facial muscle evaluation, paving 
the way for its integration into clinical assessments and rehabilitation protocols.

Surface electromyography has proven to be an indispensable method for the 
detailed study of facial muscles, which are crucial for expression, swallowing, and 
speech. Furthermore, through examples of pattern recognition, it shows the future 
possibilities of detection, prediction and down the line possible assistance in cor-
rection of facial movements. In future studies, we plan to use coherence analysis 
and independent component analysis to combat these issues. Furthermore, we will 
broaden our feature ensemble to the time–frequency domain, utilizing the wavelet 
transform. The potential of surface electromyography in clinical practice is vast. 
This method can be used in tracking orthodontic treatment, diagnostics till the end 
of the intervention process. Another useful use of this technique can be witnessed 
in diagnostics, process tracking, rehabilitation status follow-up and abilitation as a 
whole, in patients that have suffered from stroke or other facial muscle disorders 
such facial nerve paresis or paralysis. Muscle activity tracking before, throughout 
and after the end of the rehabilitation process can help technicians not only ana-
lyze the results of their work but help guide the process of rehabilitation in the right 
direction.
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Methods
In Fig.  7, a graphical depiction of the complete methodology has been presented. 
Starting from signal acquisition, defining landmarks on which the electrodes will be 
placed, such as anatomical features for M. Zygomaticus Major, m. Orbicularis Oris 
and m. Mentalis, as well as following the literature for electrode placement [33–35]. 
Furthermore, processing and segmentation was done on each acquired signal after 
which standardization was done. The EMG signal shown in "Results" section in Fig. 7, 
is an example of one of the signals acquired during measurement of m. Orbicularis 
Oris. In "Discussion" section statistical analysis was performed to evaluate and quan-
tify the significant differences between the acquired electrophysiological signals. 
Descriptive and quantitative statistical analyses were used. Finally, to see if there is a 
possibility of discrimination of muscles in healthy individuals using pattern recogni-
tion methods, feature extraction and classification was used.

Figure 7 represents a graphical flowchart of the methodology.

Subjects and measurement setup

The study involved 24 participants, of which 7 were male and 17 were female, aged 
between 20 and 40 years. Ethical approval has been obtained from the Dental Clinic 
of Vojvodina, Novi Sad, under the 01-17/12-23 and was in accordance with the World 
Medical Association’s Declaration of Helsinki. Participants were recruited through 
convenience sampling, involving students and staff from the University of Novi Sad. 
Starting from signal acquisition, defining landmarks on which the electrodes will be 
placed, such as anatomical features for M. Zygomaticus Major, m. Orbicularis Oris 
and m. Mentalis, as well as following the literature for electrode placement [33, 34]. 
The inclusion criteria for participation were:

1. Adults aged 20–40 years.
2. No history of neurological, muscular, or systemic diseases affecting facial muscles.
3. No ongoing orthodontic treatment or recent facial surgeries.
4. Ability to perform all specified facial tasks without discomfort.

Exclusion criteria included:

1. Any diagnosed orofacial or neuromuscular disorder.
2. Use of medications that could impact muscle function (e.g., muscle relaxants).
3. Presence of skin conditions or sensitivities that could interfere with electrode place-

ment or sEMG measurements.

All participants provided written informed consent before participating in the 
study. Ethical approval was obtained from the institutional review board at the Uni-
versity of Novi Sad, ensuring compliance with the Declaration of Helsinki.

Beforehand, each participant was given a random eight-digit number, generated 
with a Python script. The facial muscles examined in this study were Orbicularis Oris, 
Zygomaticus Major and Mentalis muscles. With that in mind, each recording was 
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named with two letters (ZM-Zygomaticus Major, OO-Orbicularis Oris, ME-Mentalis) 
denoting the measured muscle, followed by the eight-digit number, assigned to each 
examinee. This was done for ease of computing later on. These muscles were selected 
due to their involvement in various facial expressions and movements. The orbicu-
laris oris muscle is responsible for actions such as raising the upper lip, lowering the 
lower lip, closing the mouth, whistling, and articulating vowels. The zygomaticus 
major muscle elevates the upper lip corner upward and outward, and assists in the 
pronunciation of sounds like “S”, “Z”, and “C”. The mentalis muscle tightens the skin of 
the chin and aids in the pronunciation of sounds like “O”, “U”, and “I” [33].

EMG signals were recorded under five different conditions/movements. Each partici-
pant was given clear instructions regarding body position, head position, and the execu-
tion of the specified movements:

1.Baseline condition (resting state): Participants were instructed to remain relaxed 
with minimal facial movement. This baseline condition served as a reference for com-
parison with other experimental conditions.

2.Swallowing: Participants were asked to swallow saliva naturally, without any forced 
or exaggerated movements.

3.Lip puckering: Participants were instructed to pucker their lips as if sending a kiss.
4.Lip pressing: Participants were instructed to press their lips together firmly.
5.Pronouncing the syllable "PA": Participants were instructed to sharply articulate 

the syllable /pɑ/ (as per the International Phonetic Alphabet, IPA), commonly used 
in speech analysis to assess the activity of the Orbicularis Oris muscle during bilabial 
plosives.

Tongue extension
Electromyography was conducted using BIOPAC MP36 (California, USA, BIOPAC Sys-
tems Inc.). Three electrodes were placed—two on the skin over the selected muscle (V− 
and V+) and a third (ground electrode) behind the ear. The ground electrode, also called 
the driven right leg electrode, is used for minimizing the common mode signal found on 
the differential input (V− and V+). The electrode placement was carefully and precisely 
determined based on specific anatomical landmarks for each muscle [35]. Silver/silver 
chloride, single use electrodes (manufacturer Skintact, Country UK) were used in this 
study to ensure optimal conductivity and signal quality. The size of these electrodes is 
standardized and are 30 mm in diameter. Participants sat comfortably in a quiet, well-lit 
room throughout the experiment. Before electrode placement, the skin surface of the 
targeted muscle regions was cleaned with alcohol wipes to minimize impedance. Ana-
tomical landmarks were taken into consideration when coming up with the methodolo-
gies for the three muscles used in this study. As Orbicularis Oris muscle is the circular 
muscle surrounding the mouth, the electrodes were placed near the center of the mus-
cle along the upper lip at the same distance from the modiolus, at least 1 cm apart to 
capture the full range of muscle activity without inter-electrode interference. For Zygo-
maticus Major muscle, the zygomatic bone, from which it extends to the corner of the 
mouth was first identified and at the midpoint between those two facial structures with 
2 cm of inter-electrode distance, two electrodes were placed. On Mentalis, a small mus-
cle located at the chin, two electrodes were placed directly below the lower lip, meeting 
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at the midline with 1–2 cm inter-electrode distance. The placement of the electrodes can 
be seen in Fig. S4 in the supplementary file. To ensure the right placement, participants 
were instructed to perform movements related to the said muscles, such as smiling and 
frowning.

Foremost, the measurement procedure and tasks during the measurement process 
were described in detail to each examinee. Following that, to optimize the participants’ 
readiness for the experiment, a brief rest period was provided to allow them to relax 
their muscles and mentally prepare for the upcoming tasks. The resting period lasted 
20 s, while each movement was performed at 20-s intervals, during which the exami-
nees repeated the designated task three times. In between tasks, the examinee relaxed 
for 10 s. The recording lasted 3 min per muscle. The signals were recorded for further 
analysis. Task repetition ensured that the data collected were reliable and representative 
of the participants’ oral motor function.

Data acquisition

A notch filter on 50 Hz to filter out powerline noise, as it is present in the frequency 
range in which the recordings were done. The frequency range in question was between 
30 and 250 Hz. Cutting out lower frequencies was done to eliminate the possibility of 
motion artifacts and DC offset, as well as any other low-frequency noise which could 
affect signal acquisition. The gain was set to 200 and the cutoff frequency was 250 Hz, as 
the highest amount of muscle activity information, for this study, is contained up to this 
frequency. Sampling frequency was set to 1000 Hz. All additional calculations were done 
after data acquisition was finished.

Pre‑processing, segmentation and feature extraction

Figure 8 represents a diagram showing each phase and step of this stage in the meth-
odology. First of all, the signal was denoised using a low-pass filter (cutoff frequency at 
250 Hz) and high-pass filter (cutoff frequency at 30 Hz), as an additional precaution with 
the goal of eliminating low and high frequency noise. After signal acquisition and filter-
ing, to ensure adequate comparability and lower the effects of muscle asymmetries and 
facial hair existence, we have standardized all EMG signals to the range of 0 to 1 using 
Eq. 1. The x(i) stands for the ith value in the EMG data array, which has been standard-
ized, while X(i) represents the non-standardized value in the same position in the array. 
Functions ‘min’ and ‘max’ find the minimum and maximum values, respectively, in the 
analyzed EMG data array, while X represents the whole data array:

After feature extraction the data of interest were destandardized, to show the adequate 
amplitudes and values in their respective units. Segmentation was done next.

Segmentation was done in three steps, as seen in Fig. 8. Envelope was extracted from 
each EMG signal, using the Hilbert transform [35], after which the modified signal was 
smoothed utilizing a moving average filter with a window size of 600. Following that, 
maxima values were detected for each task. As each task contained three action rep-
etitions, followed by a pause of 10  s, the maximum values were searched using Eq.  2. 

(1)Xnorm(i) =
(

X(i)− average(X)
)

÷ std(X).
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Where n_samples = 10,000, k = {0, 1, 2, 3, 4, 5} and (2 + k) represents the end of the task, 
20 s + k*n_samples:

As a result, the maximum values of the amplitude of each task as well as the indices of 
those maxima were found. Depending on each index value, a window of approximately 
20,000 samples was formed to encapsulate the whole task. Finally, a matrix was made as 
the segmented signal output.

Following that, as seen in Fig. 8, feature extraction was done. The EMG envelope, pre-
processed EMG series, as well as the time series obtained from acquisition was employed 
in this step. From each segment time domain, frequency domain and power spectrum 
features were extracted. Each extracted feature is described in detail in Table  1. Time 
domain features are average of all three maximum amplitudes extracted from the enve-
lope, variance of the EMG signal, root mean square (RMS) and kurtosis. Frequency 
domain features are mean and median frequency. Finally, power spectrum features are 
average power in specific frequency bands (low: 0–50  Hz; medium: 50–150  Hz; high: 
150–250  Hz). Moreover, maximum and total power was calculated. The frequency at 
maximum power was extracted as well. For frequency domain and power spectrum fea-
tures, fast Fourier transform and power spectrum density was used and calculated.

Statistical analysis

With the goal of a thorough statistical analysis, a few different approaches have been 
applied. In terms of descriptive statistical analysis, box and whiskers plots were 
employed to analyze the distribution of values of participants for each feature for each 
muscle. Furthermore, correlation matrices were employed to display the interplay 
between muscles in each task, as well as the correlation between features themselves, 
as some have been calculated with the use of others. Moreover, for data visualization, 
with the goal of displaying the relative uniformity of features between participants, heat-
maps have been used. Radar charts were used to describe and display the multivariate 
nature of extracted features, tasks and muscles. Alongside radar charts, principal com-
ponent analysis (PCA) was used to present clusters of patients in terms of each muscle 
and each task. More precisely, it was used to show groupings of similar muscle activity 
over patient groups and tasks. Finally, ANOVA test was used to determine the statistical 
significance of all extracted features and to sort them by significance through the use of 
statistical test-based selection.

Pattern recognition

As a final step in the analysis of the extracted features and how well they can be used 
as a discriminant between given tasks and muscles, we have done task recognition. 
The flowchart can be seen in Fig. 9. More precisely, classification was done between 
two groups. One group consisted of the “Swallowing” task, while the other group 
consisted of the “Tongue Protrusion” task. This was done due to having only 24 par-
ticipants, and classification of multiple classes would demand a higher number of 
samples. Moreover, “Swallowing” was chosen, as it has significant physiological and 

(2)[x1, x2, x3] = max(x[n_samples ∗ k] : x[(2+ k) ∗ n_samples]).
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Table 2 Classifier performance metrics of classification between the “Swallowing” and “Tongue 
Protrusion” tasks

Accuracy Recall Specificity Precision

M. Mentalis

 LDA 70.00 100.00 40.00 62.50

 Log. Reg 70.00 100.00 40.00 62.50

 Rand. Forest 70.00 80.00 60.00 66.67

M. Orbicularis Oris

 LDA 40.00 60.00 20.00 42.86

 Log. Reg 70.00 80.00 60.00 66.67

 Rand. Forest 60.00 100.00 20.00 55.56

M. Zygomaticus Major

 LDA 80.00 80.00 80.00 80.00

 Log. Reg 80.00 80.00 80.00 80.00

 Rand. Forest 60.00 80.00 40.00 57.14

Fig. 7 Graphical representation of the Methodology section
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medical importance. In contrast to that “Tongue Protrusion” uses mostly different 
facial muscle groups, except for m. Orbicularis Oris.

Following that, standardization was done, with the goal of eliminating any high 
value differences between features (e.g., power spectrum features and statistical fea-
tures show significant value differences). Furthermore, through principal component 

Fig. 8 Graphical depiction of the algorithm used for feature extraction and segmentation of the 
acquisitioned EMG database

Fig. 9 Flowchart of the task recognition process
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analysis, the feature space was reduced to three dimensions, with the goal of lowering 
the “emptiness” of the feature space, increasing the likelihood of a successful classifica-
tion. Following that, three different classifiers were tested: linear discriminant analysis 
(LDA), logistic regression and Random Forest classifier. On all of them, fivefold cross-
validation was done, to ensure reliability and repeatability of classification metrics, 
as well as to not get overly optimistic classifier results. During cross-validation grid 
search was done to optimize hyperparameters, significant to each classifier. Finally, 
classification successfulness metrics were calculated from the confusion matrix.
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