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Abstract 

Background: Established assessment scales used for Parkinson’s disease (PD) have 
several limitations in tracking symptom progression and fluctuation. Both research 
and commercial-grade wearables show potential in improving these assessments. 
However, it is not known whether pervasive and affordable devices can deliver reliable 
data, suitable for designing open-source unobtrusive around-the-clock assessments. 
Our aim is to investigate the usefulness of the research-grade wristband Empatica E4, 
commercial-grade smartwatch Fitbit Sense, and the Oura ring, for PD research.

Method: The study included participants with PD (N = 15) and neurologically healthy 
controls (N = 16). Data were collected using established assessment scales (Move-
ment Disorders Society Unified Parkinson’s Disease Rating Scale, Montreal Cognitive 
Assessment, REM Sleep Behavior Disorder Screening Questionnaire, Hoehn and Yahr 
Stage), self-reported diary (activities, symptoms, sleep, medication times), and 2-week 
digital data from the three devices collected simultaneously. The analyses comprised 
three steps: preparation (device characteristics assessment, data extraction and pre-
processing), processing (data structuring and visualization, cross-correlation analysis, 
diary comparison, uptime calculation), and evaluation (usability, availability, statistical 
analyses).

Results: We found large variation in data characteristics and unsatisfactory cross-
correlation. Due to output incongruences, only heart rate and movement could be 
assessed across devices. Empatica E4 and Fitbit Sense outperformed Oura in reflect-
ing self-reported activities. Results show a weak output correlation and significant 
differences. The uptime was good, but Oura did not record heart rate and movement 
concomitantly. We also found variation in terms of access to raw data, sampling rate 
and level of device-native processing, ease of use, retrieval of data, and design. We 
graded the system usability of Fitbit Sense as good, Empatica E4 as poor, with Oura 
in the middle.

Conclusions: In this study we identified a set of characteristics necessary for PD 
research: ease of handling, cleaning, data retrieval, access to raw data, score calculation 
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transparency, long battery life, sufficient storage, higher sampling frequencies, software 
and hardware reliability, transparency. The three analyzed devices are not interchange-
able and, based on data features, none were deemed optimal for PD research, but they 
all have the potential to provide suitable specifications in future iterations.

Keywords: Wearable devices, Parkinson’s disease, Cross-evaluation, System usability, 
Smart wearables, Multi-modal sensing

Background
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder [1, 
2]. Clinically, PD is characterized by progressive motor dysfunction, including bradyki-
nesia, tremor, and rigidity, and a multitude of non-motor symptoms, including hypos-
mia, autonomic dysregulation, neuropsychiatric disorders, gastrointestinal dysmotility, 
cognitive impairment and dementia [3, 4]. In addition, a large proportion of individuals 
with PD exhibit sleep disorders, predominantly rapid eye movement (REM) sleep behav-
ior disorder (RBD), characterized by loss of REM-sleep atonia and dream enactment 
[5]. Both motor and non-motor symptoms of PD show highly interindividual variability 
in terms of composition, severity, and progression rates [6]. Moreover, many of these 
symptoms exhibit diurnal fluctuations, which may or may not be associated with dopa-
minergic treatment [7–9].

Established clinical scales, such as the Movement Disorders Unified Parkinson’s Dis-
ease Rating Scale (MDS-UPDRS) are routinely used to assess disease severity in PD. 
However, these scales suffer of important limitations in tracking symptom progression 
and fluctuation [10–12]. First, as they require neurological assessment, they only pro-
vide a limited number (typically 1–3 per year) of static snapshots of the individual state. 
This is particularly problematic for motor symptoms which vary significantly depending 
on the dose and time from last intake of dopaminergic treatment. Symptom diaries can 
complement the scales, but they have limited accuracy and reliability due to variation 
in adherence and reporting time [13, 14]. Second, these scales are prone to substantial 
inter- and intra-rater variability [15], limiting their reliability in long-term disease moni-
toring. Thus, there is currently a need for developing objective means of tracking PD 
symptoms in free-living conditions.

Wearable sensors have shown potential in improving the assessment of PD symptoms 
by providing high-resolution quantitative data on prevalence, severity, and treatment 
response over time [10, 11, 16–18]. Devices such as the Motor fluctuations Monitor for 
Parkinson’s Disease (MM4PD) or the Parkinson’s KinetiGraph (PKG) have shown good 
correlation with clinical scales [19], potential to measure bradykinesia and dyskinesia 
[20], tremors [21], fluctuations [22] and immobility [23] under real-world conditions.

From the perspective of the person with PD, user friendliness, affordability, small size 
and lightweight style, durability, energy efficiency, and waterproof properties are impor-
tant in a wearable. From the perspective of the PD researcher, high sensitivity (high sam-
pling rate), costs and reproducibility are also critical [24–27]. For instance, while PKG 
has shown good results, the manufacturer has received criticism for not disclosing the 
algorithm that calculates their scores, making it unavailable for others to validate [28]. In 
a recent review [29], devices such as the PDMonitor, STAT-ON, Kinesia360 and Feet Me 
have been identified, along with PKG, as among the most used in Europe for monitoring 
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and treatment management in PD. These wearables are either wrist/ankle-worn, clipped 
on the belt, or inserted in shoes, and have shown moderate-to-high correlation with 
clinical assessment scales or symptom diaries. Out of seven total wearable devices evalu-
ated by [29], four are specific to PD symptoms, while the other three are specific to gait, 
posture and walking parameters. For clinical studies that aim to investigate other physi-
ological parameters, additional sensors would be necessary, which has raised the ques-
tion on whether general-purpose devices could be more easily adapted across clinical 
trials by allowing the computation of a wider range of outcomes.

All these factors make consumer-grade devices very attractive for long-term use, 
whereas research-grade devices have been described as designed for short-term use 
[30]. However, it is unknown whether these pervasive and affordable general-purpose 
devices can deliver reliable data and could this data be used in designing open-source 
unobtrusive around-the-clock assessments [19, 31–33]. For instance, previous research 
has shown large variation in data storage, access to data and software development kits 
(SDK) between Google Fit + Android Wear, Apple Health and S-Health, three large soft-
ware platforms for consumer wearables [34]. This paints a picture of a large and complex 
world of wearables sensing devices.

Therefore, the aim of the current study is twofold: (1) investigate the utility of three 
general-purpose wearable devices for PD research; (2) perform an assessment of output 
data from these devices to evaluate how comparable their outputs are. To this end, we 
chose one research-grade device (Empatica E4), one popular commercial-grade smart 
watch (Fitbit Sense), and one novelty ring device (Oura). Thus, the research questions 
are:

RQ1. What are the characteristics of the native data from the different types of 
devices?
RQ2. How well does the data output correlate between the devices?
RQ3. How well does the device data output reflect self-reported symptoms and 
activities?
RQ4. Which type of device has the necessary physical characteristics for practical 
use in PD research?

Results
A total of 31 participants were screened for participation in the study, and 28 were 
included in the PD group (N = 13) and in the non-PD group (N = 15). Figure 1 shows the 
flowchart of participants and the continuous monitoring data segments, resulting from 
the process of applying the inclusion/exclusion criteria and methodology, respectively.

The demographic information and the clinical assessment scores at baseline and end 
of study are presented in Table 1. The two groups were balanced for age, but not gender. 
The PD group had a Hoehn and Yahr stage of 1.92 ± 0.26, indicative of moderate disease 
severity. MDS-UPDRS III was slightly higher at baseline compared to the end of study 
due to a longer interval from last medication dosing. The PD group had a slightly lower 
MoCA score, which slightly improved in both groups at the last visit, as a result of a 
learning effect.
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Table 2 presents the device and data characteristics, as well as the results of the imple-
mentation assessment. During this step, we determined that not all sensor data were 
comparable across all three devices. For instance, Fitbit Sense and Oura are equipped 
with 3-axis accelerometers, but the raw data are not saved and thus not available for 
download. Therefore, based on the types of sensors and the accessible signals from the 
devices, we selected the HR and activity (MET and MOV) as variables, because these 
two types are used to track behavioral trends over time. The MET and MOV quantify 
the level of physical activities, while the HR reflects the physiological response of the 
body to these activities. While HR is not usually found in the tracking of PD symptoms, 

Fig. 1 Flowchart of participants and data segments

Table 1 Demographics and baseline clinical assessment scores

Values are given in mean and standard deviation in parenthesis, except for gender

PD Parkinson’s disease, UPDRS Unified Parkinson’s Disease Rating Scale, MoCA Montreal Cognitive Assessment scale, RBSDQ 
REM Sleep Behavior Disorder Screening Questionnaire; Medication time: minutes since last levodopa dose, SD standard 
deviation, – not collected

Characteristics and scores PD group (N = 13) Non-PD group (N = 15)

Baseline End of study Baseline End of study

Age 70 (7.73) 72 (9)

Gender: male (female) 10 (3) 4 (11)

Hoehn and Yahr 1.92 (0.26) 1.84 (0.36) – –

MDS-UPDRS III 31.4 (13.9) 21.9 (6.8) 3.93 (4.1) 4.6 (4.1)

Medication time 173 (179.7) 116 (93.9) – –

MoCA 24.4 (2.95) 25.8 (3.8) 25.2 (1.83) 26 (2.5)

RBDSQ 5 (4.13) 4.4 (3.52) 2.92 (2.73) 3 (3.1)

Handedness: right (left) 12 (1) 14 (1)
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we believe it provides valuable information on the overall health status of the partici-
pants [35]. The HR is provided by all three devices in bmp (beats per minute), while the 
activity is provided as MET scores for Fitbit Sense and Oura, and as 3-axis accelerations 
for Empatica E4 (either raw for annotation or as the aggregate MOV).

Figure 2 shows an example of data annotation and visualization for one participant and 
one day (midnight to midnight), in which areas are annotated after being identified as 
the beginning and end of the sleep cycle, sleep disturbances, and activities, which were 

Table 2 Device and data characteristics, and implementation assessment results

HR heart rate, MET metabolic equivalent task, BVP blood volume pulse, IBI inter‑beat interval, EDA electrodermal activity, 
HRV heart rate variability, CSV comma‑separated values, JSON JavaScript object notation, MB megabyte, GB gigabyte, USB 
universal serial bus, NFC near‑field communication
a Reported by manufacturer. The characteristics “cleaning the device” and “mounting” are based on the experience of the 
researchers when using the device throughout the study. “Activity calculations” is a term used to cover a range of activity 
states. Volume per 14 days is an approximate value based on the data we collected throughout the study period

Characteristics Empatica E4 Fitbit sense Oura

Processing level Raw and aggregate Aggregate Aggregate

Sampling rate (for com-
pared variables)

1 Hz for HR and 32 Hz for 
acceleration

Average sampling rate of 
0.2 Hz for HR, but varies 
based on type of activity 
(rest/active), and 0.016 Hz 
for MET

0.0033 Hz for HR and 
0.016 Hz for MET

Outcome availability for 
continuous monitoring

All HR (rest are aggregates) HR (rest are aggregates)

Raw data HR, BVP, IBI, EDA, tempera-
ture, 3-axis acceleration

– –

Aggregates (minutes) – HR, MET level, MET min-
utes, calories, steps

HR, HRV, MET level, MET 
minutes, hypnogram

Aggregate (daily) – – Respiration, sleep stage 
duration, temperature, 
steps, calories, activity 
calculations

Filetype CSV CSV CSV, JSON

Data ready for analysis Need restructuring Need restructuring Need restructuring

Volume per 14 days Approx. 750–1000 MB Approx. 3 MB Approx. 0.3 MB

Cleaning the device Difficult Easy Easy

Device dependency Operational without 
phone, tablet, or com-
puter

Required to connect to 
phone or tablet for activa-
tion. Operational without 
phone afterwards

Required to connect 
to phone or tablet for 
activation. Not operational 
without phone afterwards 
due to lack of screen

Data retrieval Bluetooth (only for 24-h 
of data) and USB cable via 
web platform

Bluetooth via web 
platform

Bluetooth via web platform

Mounting Difficult wrist strap latch-
ing

Easy to latch Easy to use, but different 
fingers had to be chosen 
due to fixed ring sizes

Data  storagea Cloud storage Cloud storage Cloud storage

Data  transfera USB 2.0, Bluetooth Bluetooth 5.0, Wi-Fi chip, 
and NFC chip

Bluetooth

Charging time  < 2 h 45 min 20–80 min

Battery  lifea 48 h 72–144 h 72–168 h

Charging  typea USB micro Magnetic + USB 2.0 Magnetic + USB C-type

Data processing level Raw signal data Processed data Processed data

Storage  capacitya Approx. 60 MB 4 GB 0.5 MB (V2), 16 MB (V3)

Water  resistanta No Yes Yes
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then compared to the diary self-reports. Figure 3 illustrates two 1.5-h periods from one 
participant’s two hands: the non-dominant hand was reported as experiencing tremor, 
while the dominant hand was most active during working time (according to the diary). 
Thus, the overall daily behavior trends have a higher correspondence to the diary self-
reports, while the tremor symptom was more difficult to discern visually by the rater.
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Fig. 2 Visualization of four 24-h data segments from Empatica E4 and Fitbit Sense. Top: HR (in bpm). Bottom: 
movement as acceleration aggregation MOV (in m/s2) from Empatica E4 and scaled metabolic equivalent 
task (in METs) from Fitbit Sense. Annotations: A (light blue) for the sleep–wake cycle, B (green) for sleep 
disruptions, and C (pink) for activities during the day (walks)

Fig. 3 Visualization of Empatica E4 3-axis acceleration segments of 1.5 h each, from one participant with 
PD, for both the hand affected by tremor symptoms (left, non-dominant) and the hand not affected (right, 
dominant). Top to bottom: (1–3) acceleration on each axis, (4) Euclidean norm of (1–3) without the mean 
component, (5) Fast Fourier Transform of (4)
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The signal correlation analysis results are presented in Table  3. Results show that 
there is in general a weak correlation between the three devices. The HR outputs from 
Empatica E4 and Fitbit Sense show smaller differences in terms of NRMSE, while the 
movement-based MET/MOV show up to 20% difference. The Pearson coefficient val-
ued at around 0.42–0.63 shows little similarity between the shapes of the signals, i.e., 
the variations in HR are not recorded simultaneously by the two devices, even though 
they are mounted on the body, monitoring the same cardiovascular system. While 
Pearson’s coefficient removes the mean, the cross-correlation coefficient includes the 
mean of the signals and is thus higher in value, confirming the results illustrated by 
the NRMSE: values are similar, but shape is not. An example is depicted in Fig. 2, HR 
section, during activities annotated C.

The mean fit scores based on the manual annotation are presented in Table 4; the 
calculation includes the scores of 0 for device not recording. Results show a slightly 
better performance for HR in the Fitbit Sense data compared with Empatica E4, while 
the performance for movement was better for Empatica E4 compared to Fitbit Sense. 
The Oura data had the overall lowest fit scores. During annotation, we discovered that 
the MET and MOV signals were not detailed enough to allow for assessment of motor 
symptom reports, thus these were assessed only for the raw 3-axis acceleration from 
Empatica E4. Among these, tremor symptoms were the easiest to discern (although 

Table 3 Signal correlation analysis results: Pearson’s correlation coefficient, the normalized cross-
correlation, and the normalized root mean of square error

All p‑values = 0.000

PD Parkinson’s disease, HR heart rate, MET metabolic equivalent task, MOV Empatica E4 movement aggregate score, NRMSE 
normalized root mean of square error, n number of datapoints (per signal in pair) after resampling over 832 segments (days, 
PD group) and 961 segments (days, non‑PD group)

Signal pairs PD group Non-PD group

Pearson’s Coeff Cross-corr NRMSE Pearson’s Coeff Cross-corr NRMSE

HR (n = 1,769,053) (n = 2,316,481)

 Fitbit Sense vs. Empatica 
E4

0.54 0.97 0.09 0.59 0.97 0.09

MET/MOV (n = 147,436) (n = 179,644)

 Fitbit Sense vs. Empatica 
E4

0.50 0.73 0.12 0.42 0.68 0.20

 Oura vs. Empatica E4 0.56 0.74 0.20 0.47 0.68 0.20

 Fitbit Sense vs. Oura 0.61 0.80 0.13 0.63 0.81 0.16

Table 4 Fit scores means and standard deviations for the three devices and the two groups

PD Parkinson’s disease, HR heart rate, MET metabolic equivalent task, MOV Empatica E4 movement aggregate score, SD 
standard deviation, n number of annotations (total per device)
a 582 annotations

Device fit scores PD group (n = 1475) Non-PD group 
(n = 1294)

HR MET/MOV Accelerationa (raw) HR MET/MOV

Empatica E4: mean (SD) 3.91 (1.42) 4.10 (1.33) 2.26 (1.80) 3.71 (1.45) 3.72 (1.40)

Fitbit Sense: mean (SD) 4.05 (1.41) 3.85 (1.55) – 3.92 (1.25) 3.87 (1.30)

Oura: mean (SD) 1.20 (1.89) 2.50 (2.03) – 2.27 (2.05) 2.39 (2.13)
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not with enough precision), while dyskinesia events were not possible to disambigu-
ate from regular activities. Overall, the motor symptoms (tremor, bradykinesia, rigid-
ity and dyskinesia) were the most challenging to evaluate visually by the human rater, 
while sleep disturbances were ostensibly more obvious.

The differences between devices for the PD and non-PD groups for both HR and 
MET/MOV are presented in Table 5, as percentage of zero differences (i.e., amount of 
score similarity). Results show significant differences between Empatica E4 and Oura, 
and between Fitbit Sense and Oura, for both HR and MET/MOV. Additionally, a sig-
nificant difference is shown for HR between Empatica E4 and Fitbit Sense in the PD 
group.

The total annotatable data (Table 6) varies across devices and data streams, showing 
that Empatica E4 had the highest amount of annotatable data for the non-PD group, 
closely followed by Fitbit Sense. Results were reversed for the PD group. Oura had the 
least annotatable data.

The mean SUS scores and standard deviations (N = 4 researchers) are: 37.5 (0.86) 
for Empatica E4 indicating a poor usability, 70 (1.1) for Fitbit Sense indicating good 
usability, and 60.62 (1.28) for Oura indicating an “okay” usability [36]. Empatica E4 
is described by the researchers collecting data as challenging to use when latching, 

Table 5 Percentage of zero differences between devices for HR and MET/MOV

PD Parkinson’s disease, HR heart rate, MET metabolic equivalent task, MOV Empatica E4 movement aggregate score, n 
number of segments (days, total), which is divided for the sign test in segments (days) per device, per output signal (HR, 
MET, acceleration) n = 143 (PD group) and n = 147 (non‑PD group)

Differences between 
devices: zeroes [%]

PD group (n = 1144) Non-PD group (n = 1361)

HR MET/MOV HR MET/MOV

Empatica E4–Fitbit Sense 53.8 (p = 0.0092) 53.1 (p = 0.4638) 69.3 (p = 0.0725) 62.5 (p = 0.1048)

Empatica E4–Oura 11.1 (p = 0.0000) 18.8 (p = 0.0000) 19.7 (p = 0.0000) 25.8 (p = 0.0000)

Fitbit Sense–Oura 11.8 (p = 0.0000) 24.4 (p = 0.0000) 17.6 (p = 0.0000) 32.6 (p = 0.0000)

Table 6 Percentage of data available for manual annotation and uptime calculation

PD Parkinson’s disease, HR heart rate, MET metabolic equivalent task, MOV Empatica E4 movement aggregate score, n 
number of segments (total, days)

Device PD group Non-PD group

HR MET/MOV HR MET/MOV

Annotatable data [%] (n = 1144) (n = 1361)

 Empatica E4 93.83 95.00 91.98 93.50

 Fitbit Sense 96.91 96.56 92.90 93.64

 Oura 59.88 63.44 32.19 66.24

Inter-day uptime [%] (n = 1168) (n = 1361)

 Empatica E4 98.08 100.00 93.18 100.00

 Fitbit Sense 94.87 94.87 94.89 84.97

 Oura 80.13 80.77 89.20 92.74

Intra-day uptime [%] (n = 1168) (n = 1361)

 Empatica E4 95.53 99.79 84.67 100.00

 Fitbit Sense 99.97 94.52 87.58 94.42

 Oura 88.48 78.74 76.78 90.69
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uploading data, cleaning and charging. The device has many small crevices where 
dry sweat and skin would collect, and with the device not being waterproof, it made 
cleaning difficult. Participants in the first collection wave who were asked to charge 
the device themselves were unable to do so reliably, due to difficulties in connecting 
the charger, which triggered a more time-consuming re-design of the data collection 
procedure. While Fitbit Sense has an easy strap to operate both for researchers and 
participants, Oura’s ring rigidity can complicate trial designs when multiple partici-
pants require the same ring size at the same time. However, both Fitbit Sense and 
Oura have an intuitive design for both charging and mounting. All three devices have 
had challenges when uploading data, ranging between manual procedure, not syn-
chronizing, requiring connection to power source, debris on connectors, etc.

Measurement errors and challenges

(1) Empatica E4: During the annotation process, the Empatica E4 HR signal showed 
measurement errors when devices were reported as removed from the wrist (e.g., for 
showering), displaying values of over 200  bpm which are implausible for these par-
ticipant groups. Upon this discovery, we chose to continue following our data analysis 
methodology (as described in "Methods") and keep these implausible values, because 
the aim of this study is to assess the native (out-of-the-box) data of these devices, on a 
level that does not require further software development. Moreover, several participants 
ended sessions when intending to mark events, resulting in gaps in the data. The data 
upload would sometimes disconnect when multiple devices were connected at once. 
Uploading would sometimes fail and customer support had to be contacted. During use, 
some participants noted that the strap gave them a rash. Others complained about dif-
ficulty latching the strap, and one participant reported light from sensors waking them 
up. (2) Oura: The ring data showed discrepancies between non-wear values in MET 
scores vs. measured HR during sleep.

Discussion
In this study, we investigated the utility of three wearables—Empatica E4, Fitbit Sense 
and Oura—for PD research, focusing on their data output. Our analysis revealed sig-
nificant variation in the data characteristics and a low correlation between devices. 
Empatica E4 and Fitbit Sense demonstrated better alignment with self-reported activi-
ties compared to Oura. Through this assessment, we identified key features that weara-
bles for PD research should have, which were collectively represented across the three 
devices. We concluded that while no single device fully meets all research and devel-
opment requirements, each has valuable technical or practical strengths, which offer 
potential for improvement.

The devices varied in terms of access to data output, sampling rate and level of device-
native data processing, ease of use and retrieval of data, and design. Oura and Fitbit 
Sense were durable, waterproof, and easy to mount, charge, clean and use. Empatica E4 
was more cumbersome to use, had a bulkier design, challenging to mount, charge, clean 
and use. Design features such as being lightweight, comfortable, easy to use, unobtru-
sive are highlighted as important for PD research [15, 27]. Noteworthy, the Empatica 
E4’s successor, the Embrace Plus has a different design [37]. Depending on outcome 
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measures, the three wearables can provide different resolutions of measurement, in 
which the research-grade data are useful for investigating motor symptoms, while the 
commercial-grade aggregates can track overall behavioral trends of sleep and daily activ-
ities. None of the devices provided native calculations for PD symptoms specifically, 
which, on the one hand opens up possibilities for further development of transparent 
assessment tools, but on the other hand requires interdisciplinary resources and dedi-
cated research efforts.

The wide variation in battery life can affect how a study is conducted when including 
older adults, especially with neurological conditions such as Parkinson’s disease. This is 
due in part to reduced digital literacy and function, i.e., some participants might have 
difficulties in charging the devices by themselves [38, 39]. In our study, we have encoun-
tered this very problem, which then informed the design of the data collection schedule. 
For very large studies that are geographically distributed, this may pose an obstacle. At 
the same time, even for devices with longer battery life, the collection of high-frequency 
data might be affected by the limitations of the available storage. With important dif-
ferences in the proprietary platforms for data download, we believe it is unrealistic to 
expect that all study participants might manage the device during long periods of data 
collection without support.

The effect of the device placement on HR and activity (MET and MOV) has been con-
sidered during and is partly reflected in the signal correlation analysis. For HR, we per-
formed the comparison between Empatica E4 and Fitbit Sense, the former having been 
shown to provide measurements independent of side and handedness [40]. To account 
for inter-hand variations and lateralization of symptoms, we calculated both Pear-
son’s coefficient and NRMSE, which together describe similarity in shape (longitudinal 
match) and values (vertical match), as shown in Table 3. Thus, the HR values are close 
(NRMSE = 0.09), while their shape differs (Pearson’s coefficient = 0.54–0.59), confirmed 
by the cross-correlation coefficient (0.97).

For activity, the participants’ handedness and/or lateralization may have impacted 
the comparison. Earlier research found differences between the dominant vs. the non-
dominant hand on some devices [41]. Similarly, step estimation accuracy has been found 
to depend on PD symptoms and medication status [42]. As with the HR analysis, we 
use Pearson’s coefficient, the cross-correlation coefficient, and NRMSE to account for 
these variations. Results show low correlation between Empatica E4 and Oura, worn on 
the same hand, for which we would expect marginal differences (due to finger vs. wrist 
mounting), regardless of lateralization or handedness. This indicates that native calcula-
tions of commercial devices are not necessarily interchangeable (e.g., MET vs. MOV) 
and could affect activity tracking over time. Interestingly, the Fitbit Sense vs. Oura pair 
showed the highest correlation out of all pairs, despite being worn on opposite sides, 
likely due to the nature of MET scores; these are proprietary to both manufacturers, and 
the underlying calculation methods cannot be compared. We surmise that future studies 
should investigate the effect of lateralization, handedness and participant preference on 
various permutations before choosing a device configuration.

The low correlation between HR signals for the three devices is concerning. While 
Empatica E4 produced raw HR data, it also assigned erroneous values (e.g., 200 bpm) 
when the devices were not worn. Fitbit Sense HR appeared more accurate, but the data 
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did not reflect HR at constant measurement frequency throughout the day; instead, the 
device returned an aggregate at a priori undisclosed time resolutions, which ultimately 
affected how this data could be analyzed. Oura V2 only measured HR during rest, but 
when the continuous HR measurement service was introduced in version V3, it came 
with additional subscription costs. Differences in HR measures have been reported 
among commercial-grade devices [43], even between devices from the same manufac-
turer [44]. Comparatively, the Empatica E4 sensor has been constantly obscured by skin 
and sweat residue, whereas Fitbit Sense and Oura had a smooth glass coating over the 
sensing elements.

For activities, we found large discrepancies between Oura and the other two devices, 
which could be due to the ring being worn on the finger and the watches on the wrist. 
Even so, tracking activity as a MET score is insufficient for research, as MET is an esti-
mate of energy expenditure [45] and not movement directly, whereas the MOV score 
we calculated is an aggregate of the raw acceleration signal [46]. MET is prone to error 
[47] due to individual differences in resting metabolism, body-mass index and age [48], 
and therefore the MOV metric has mirrored bouts of activity reported in the diary more 
closely.

Interestingly, the annotatable data from Oura (30% for HR and 65% for MET) provides 
insight into the average hours of sleep and wakefulness among older adults [49]. How-
ever, the limitation of only measuring HR during sleep and MET while awake, makes the 
Oura ring less reliable for RBD research. Individuals with PD typically experience altered 
sleep [50] with fewer total sleep hours and fewer consecutive hours of sleep [51], result-
ing in more awakenings, and, consequently, more interruptions in HR recording from 
Oura. These interruptions are not due to the device detecting sleep or wake states but 
are caused by movement of the ring. On the positive side, the ring’s shape may make it 
more suitable for sleep-related research, as it is more comfortable to wear at night com-
pared to wristbands.

The three devices are not interchangeable and future PD applications should carefully 
consider factors such as hardware and software reliability, data quality, whether valida-
tion studies have been performed, transparency from manufacturers and, the commer-
cial practices of these companies to avoid hidden costs. Moreover, access to raw data is 
crucial for research, where new indicators or scores need to be designed and validated, 
which commercial-grade devices currently do not provide.

Trends such as movement during sleep time, awakenings, sedentary behavior, general 
activity level, walks and exercise can be tracked using aggregated data available from 
commercial devices [52, 53] and may have utility for clinical practice [32]. Although Fit-
bit Sense only provided aggregate data, it does allow for extracting raw accelerometer 
data using custom software. This acceleration data have been compared to research-
grade devices and produced comparable output results [54]. Raw accelerometer data 
from wearables over long periods have shown that severity of disease is associated with 
less time walking [55], and machine learning models trained on accelerometry data have 
been found to outperform models trained on measurement modalities such as genet-
ics, lifestyle, blood chemistry in predicting prodromal PD up to 7  years pre-diagnosis 
[51]. The utility of acceleration data in general is promising. The potential of acceleration 
data is promising, but a key challenge with Fitbit Sense is that researchers must develop 
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custom software to access and record the raw data, which can be both costly and delay 
data collection. Lastly, access to raw data from all sensors embedded in a device and 
transparency of how the device operates is crucial for accurate and reproducible science, 
especially science involving the potential clinical outcomes of patients in the future. 
When it comes to symptom tracking from raw data, visualization is not enough, and 
building algorithms to quantify these features is a more adequate approach to symptom 
tracking.

Although designing new devices tailored for research is possible [56], utilizing already 
existing ones is preferable, not only to save costs, but also for environmental reasons. 
However, beyond issues of data access and transparency, these already existing devices 
suffer from planned obsolescence [57], and changing the device mid-collection may 
cause validity issues in clinical trials. Ideally, new digital measures would be designed 
together with the hardware (e.g., smartwatch), but this requires considerable interdisci-
plinary collaboration and lengthy medical approval processes.

Limitations

The addition of a control group (non-PD) allowed us to explore differences between 
groups in terms of benefits, challenges, and output for the devices. During the study 
period, Oura V2 was phased out for the newer version V3. The fit score used to rate the 
congruency between self-reported diary and symptoms visualized through device data is 
a subjective assessment. The annotation process had only one rater, to avoid inter-rater 
bias, which can ultimately reflect in an offset for the fit scores.

This study is centered around the cross-evaluation of data from the three wearable 
devices. Due to the fact that most outcome measures were device-specific and not pro-
vided by all three, the comparative assessment was limited to two signals (HR and MET/
MOV). Therefore, we did not assess the additional functionality or potential for multi-
modal sensing that might be possible by considering, e.g., EDA, HRV, number of steps, 
or temperature.

The diary for the PD group was much more open, allowing participants to explain 
what symptoms they had and how they felt it impacted them, but this also made it more 
prone to difference between participants, whereas the diary for the non-PD participants 
was more structured and shorter to administer. Neither of these diaries were validated 
instruments. Visiting participants every second day was laborious, but was perceived as 
a nice experience for both the researchers and, more importantly, the participants, giv-
ing them a chance to at length talk about their condition and how it affects their lives. 
Many participants expressed great appreciation for the informal conversations and visits 
from the researchers.

Conclusions
In this study, we evaluated three commercial and research-grade wearable devices with 
the aim of investigating their utility in PD research and performing an assessment on 
their output data. We ultimately identified necessary characteristics for PD research, 
such as ease of handling, cleaning, and data retrieval, access to raw data, score calcu-
lation transparency, long battery life, sufficient storage, higher sampling frequencies. 
None of the three devices were deemed optimal for PD research, but they all present 
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reasonable qualities, meaning that future iterations could provide suitable specifications. 
But planned obsolescence is an issue across the board, which can cause validity prob-
lems in PD trials, and so we conclude that more restrictive policies for wearable develop-
ment are required, especially for use in healthcare.

Methods
Participants and setting

This work includes data from all eligible participants in the ActiveAgeing study, formed 
of the DIGI.PARK and Helgetun branches. The participants in the DIGI.PARK branch 
are individuals with PD recruited from the STRAT-PARK cohort (N = 15) [58], while the 
control group comprised older adults without PD from the Helgetun branch (N = 16) 
[59]. The inclusion and exclusion of participants is: (a) diagnosis of PD (must have for 
the PD group and must not have for the non-PD group); and (b) recruitment location 
for the Helgetun branch. A detailed description of the ActiveAgeing study has been pub-
lished [60].

Outcome measures

Clinical assessment scales

The MDS-UPDRS is a clinical measurement tool for motor symptoms in PD consisting 
of four parts, out of which we use part III, an 18-item observer-rated motor examina-
tion on symptom types and severity (range 0–4) [61]. The Montreal Cognitive Assess-
ment scale (MoCA) is a validated cognitive screening tool used to detect mild cognitive 
impairment [62]. The REM Sleep Behavior Disorder Screening Questionnaire (RBDSQ) 
is a tool used for screening rapid eye movement (REM) sleep behavior disorder, vali-
dated in both people with and without PD [63, 64], consisting of 13 questions and Yes/
No responses. The validated Norwegian language versions of MoCA [65] and RBDSQ 
[66] are applied in this study. The Hoehn and Yahr Scale [61] is used to describe the 
functional disability associated with PD, consisting of five stages from minimal to severe 
disability.

Self‑reported measures

A diary was constructed to log the occurrences of various activities, symptoms (tremor, 
dyskinesia, bradykinesia, rigidity, stiffness of gait, balance), sleep schedule, sleep distur-
bances, medication times, symptom lateralization, and handedness. For the PD group, 
the diary is divided into 30-min intervals, with the severity of motor symptoms reported 
on a scale of mild to severe. Fluctuations of ON/OFF states caused by variations in dopa-
mine levels are also logged. For the non-PD group, the diary is divided into 24-h inter-
vals and is structured as a questionnaire (Additional file 1).

Digital measures

Empatica E4 is a research-grade wrist-worn multi-sensor device with a single button 
used for starting device and recording, marking events, and ending recording [67]. The 
device measures heart rate (HR), inter-beat interval (IBI), blood volume pulse (BVP), 
movement, electrodermal activity (EDA) and body temperature (Table 7). Empatica E4 
has mixed results for the validity and reliability of both HR and EDA [40, 68–70].
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Oura is a consumer-grade multi-sensor smart ring, which provides several aggre-
gated scores, including hypnogram (sleep), heart rate variability (HRV), HR and 
metabolic equivalent task (MET) (Table 7). The ring has shown promising results for 
measuring MET [71], HR during sleep [72], and mixed results for measuring sleep 
stages when compared to polysomnography [73, 74]. Both version V2 and V3 are 
used, due to V2 obsolescence during the study period.

Fitbit Sense is a consumer-grade multi-sensor smartwatch that outputs several 
aggregated scores, including HR, energy expenditure (calories), MET and number 
of steps (Table 7). Fitbit wearables have been found to be the most utilized smart-
watches for research in 2018 [75]. Fitbit Sense specifically has shown good agree-
ment with validated devices for heart rate monitoring, but poor performance for 
monitoring energy expenditure [43].

Fitbit Sense and Oura ring were connected to a Samsung Galaxy Tab A7 running 
Android OS.

The selection of these three devices was informed by several factors: people with 
PD have shown high acceptability and compliance in studies using wrist-worn smart-
watches [76, 77]; minimization of the number of sensors and their ease-of-access 
locations, as suggested by the roadmap for digital measures in PD [15]; the perva-
siveness and availability of wrist-worn devices. As more people start wearing smart-
watches [78], they will become a staple in daily life, and as such, it is of high interest 
to investigate whether they can fulfill the additional function of symptom monitor-
ing over time, despite their obvious limitations: unilateral motion assessment as the 
smartwatch is worn on one arm, noisy measurements due to daily life activities, or 
the challenges of estimating postural parameters from the movement of the wrist.

Table 7 Description of devices and their sensors, outputs, and sampling rates

Hz hertz, MET metabolic equivalent task, IBI inter‑beat interval, HR heart rate, HRV heart rate variability, EDA electrodermal 
activity, PPG photoplethysmography, BVP blood volume pulse
a Reported by the manufacturer
b Not reported by the manufacturer
c Only for version V3
d Only during sleep

Sensor type Device

Empatica E4 Oura ring Fitbit Sense

Sensor, 
frequency

Output Sensor, 
frequency

Output Sensor, 
frequency

Output

Accelerometer ✓a, 32  Hza Raw  dataa ✓, b Sleepa ✓, a –b

Gyroscope – – – – ✓, a –b

Altimeter – – – – ✓, a –b

EDA sensor ✓*, 4  Hza Raw  dataa – – ✓, a –b

PPG/BVP ✓*, 64  Hza Raw IBI/HRV, 
 HRa

✓, 50  Hzc Sleepa,  HRd, 
 HRVa

✓, a Calories,  METa

Light sensor – – – – ✓, a –b

Temperature ✓*, 4  Hza Raw  dataa ✓ Sleepa – –
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Data collection procedure

The duration of data collection for each participant is 14 days. Researchers visited the 
participants in their homes every 48  h to perform data collection and device mainte-
nance. The non-PD group was structured in consecutive waves of 5 participants, 
between 12.2021 and 03.2022. The PD group data collection took place asynchronously 
for the participants, between 03.2022 and 12.2022. The data collection timeline is 
described in Fig. 4:

• Clinical assessment scales were applied at baseline and at the end of study (14 days).
• Diaries (self-reported measures) were collected every second day. Participants were 

advised to keep track of their days on their own, by writing down events, and then 
were asked to summarize their days during the data collection visit.

• Wearable devices. Participants wore the three devices simultaneously. Participants in 
the non-PD group wore the Empatica E4 and Oura ring on the right hand and Fitbit 
Sense on the left hand. Participants in the PD group switched hands for the second 
week (Fig. 4).

The mounting configuration of the three devices is informed by their type and the 
usual placement choice of regular wrist watches or similar commercial smartwatches. 
This is because the Empatica E4 is embedded in a non-transparent box, whereas the Fit-
bit Sense has a screen with a watch face; thus, we are able to compare Empatica E4 and 
Fitbit Sense as a research-vs.-commercial-grade pair. Oura is placed on the same side as 
Empatica E4 to allow for a finger vs. wrist comparison. To capture the lateralization of 
PD-related symptoms, this configuration is applied to both sides of the body in the PD 
group. The device placement, symptom lateralization and handedness are recorded in 
the diary.

Analysis

The analysis for the cross-evaluation of the three devices is structured over three steps, 
as shown in Fig. 5: I. preparation, II. processing, and III. evaluation.

Step I. Preparation. This analysis stage covers the assessment of device character-
istics and the implementation process, as well as the pipeline for data extraction and 
preprocessing.

To assess device characteristics, we inspect the design features such as shape, size, 
mounting type, buttons, and screen. The implementation assessment covers the ease of 

Fig. 4 Data collection timeline. UPDRS Unified Parkinson’s Disease Rating Scale, MoCa Montreal Cognitive 
Assessment scale, RBSDQ REM Sleep Behavior Disorder Screening Questionnaire
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use in terms of charging, connecting to tablet or computer, retrieving data, cleaning the 
device, and mounting on intended body part. Moreover, we assessed the battery life of 
devices and memory capacity during the first data collection wave of the non-PD group 
(N = 5).

We extract data through the proprietary dashboards that each device had as a default. 
We then assess the characteristics of the data in terms of resolution (sampling rates), 
processing level (on a scale from raw to aggregated), volume, type of sensor outcome 
measures (e.g., acceleration in m/s2, sleep stages, etc.), filetype and format. Based on 
these characteristics, we choose the outputs which are comparable across devices to uti-
lize in the next two steps.

During preprocessing we: standardize the timestamps to Unix time, segment the data 
into 24-h segments (00:00:00–23:59:59), and convert filetype to MATLAB-compatible 
types.

Step II. Processing. This stage covers data structuring and visualization, cross-correla-
tion between outputs, comparison with diary and the uptime calculation.

For data structuring, we inspect each segment and exclude the incomplete days (due 
to pause in data collection and partial days from segmenting), if more than 70% of the 
data from at least one device is missing. We visualize the data by plotting each segment 
across the three devices, per outcome measure, as follows: HR is plotted for all three 
devices, 3-axis acceleration for Empatica E4, and MET (Fitbit Sense and Oura) vs. move-
ment (MOV) (Empatica E4). MOV is an aggregated movement score calculated based 
on the 3-axis acceleration from Empatica E4, calculated with a sampling time of 1 min 
(to match the sampling time of MET from Fitbit Sense and Oura):

where x, y and z are accelerations on the three axes, k is current datapoint (sampling rate 
of the raw acceleration), and m is the number of concurrent samples per minute (i.e., for 
one axis).

To compare device outcome measures (outputs) against each other, we perform a sig-
nal cross-correlation analysis for which we calculate Pearson’s correlation coefficient 
[79], the normalized cross-correlation [80], and the normalized root mean of square 
error (NRMSE) [81]. We perform the cross-correlation calculation per participant 
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Fig. 5 Analysis steps for the cross-evaluation of the three devices
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category (PD and non-PD groups) between (1) HR from Fitbit Sense and Empatica E4 
(Oura is excluded due to device only recording during nighttime); (2) MET (Fitbit Sense 
and Oura) and MOV (Empatica E4). In signal processing, Pearson’s coefficient and the 
normalized cross-correlation are used to indicate the longitudinal match of two signals 
and is defined over [−1; 1], where 1 is best match, 0 is no match, and −1 is for mirrored 
signals. The NRMSE indicates the vertical match defined over [0; 1], where 0 is best 
match and 1 is worst. Because the three devices record data at different sampling rates, 
the signal correlation analysis requires resampling, for which we use the Fitbit Sense 
sampling rate as a reference. We resample the Empatica E4 HR output at 1 s, via times-
tamp alignment and omitting the non-overlapping values. The MET and MOV scores 
are sampled at 1 min, either by design (provided by the device) or calculation (for MOV). 
MET measures are normalized on a [0–10] scale to enable comparisons across devices 
and with the MOV aggregate. To calculate the cross-correlation related measures, we 
handle missing values by removing datapoint pairs when at least one of the datapoints is 
missing (due to, e.g., device not recording). Thus, we omit data gaps of different lengths 
during the 24-h period.

To compare diary data with output from devices, we use a manual annotation pro-
cedure, in which a rater (H.R.) judges whether a particular activity or symptom in the 
diary data corresponds to an expected change in the visualized sensor data. We perform 
manual annotation of the HR and MET for all devices, and the 3-axis acceleration sig-
nals from Empatica E4, assigning fit scores ranging between 0 and 5. The annotation pro-
cedure excludes the segments for which diary data are missing (annotation not possible). 
The fit scores represent how well the plotted signal fits the reported activity/behavior 
or symptom at that time. Scores 1–5 are assigned for low to high congruency. A score 
of 0 represents a missing recording for that specific diary entry. For instance, if a par-
ticipant reports exercising between hours 13:00 and 14:00, and the HR and MET/MOV 
signals increase correspondingly during this time window, this yields a fit score of 5, rep-
resenting high congruency. If the heart rate and activity are low during the time window, 
this yields a fit score of 1, representing low congruency. For PD motor symptoms and 
sleep disturbances, the fit scores are assigned based on their manifestation. For instance, 
tremor is expected to show as rapid fluctuation in the movement signals, while sleep dis-
turbances appear during nighttime in HR and movement as sudden changes surrounded 
by “flat” zones. If in the diary a tremor episode is reported, the rater would then search 
for a higher density of movement during that time period compared to adjacent ones 
and score accordingly. In contrast, we expect that bradykinesia and rigidity would appear 
as less dense, i.e., characterized by slower and rarer movement of the wrist. Finally, dys-
kinesia is the most challenging to discern, as it is expected to show as sudden and repeti-
tive spikes in movement, and so the rater assessed these movements comparatively to 
the rest of the day. Stiffness of gait and balance are not expected to be visually evident 
due to the smartwatch being worn on the wrist.

We calculate the amount of annotatable data as the percentage of 0 value fit scores to 
non-zeros (1–5). We calculate the uptime as two measures:

• Inter-day uptime is the percentage of days where at least one device is recording from 
the total number of days. Pauses in data collection (all three devices not recording, 
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over 70% of missing data per segment, partial days due to trimming) are excluded 
from calculation. Inter-day uptime allows us to assess the reliability of the device 
recording over many days.

• Intra-day uptime is the percentage of total non-zero data points out of all expected 
data points (NE), per device. For Empatica E4, we estimate NE based on the fixed 
sampling rate reported by the manufacturer (Table 7). For Fitbit Sense and Oura, we 
estimate NE based on each participant’s average sampling rate. For Fitbit Sense and 
Empatica E4 we expect the recordings to be continuous 24-h, and for Oura we expect 
HR only during sleep and MET during waking life. The intra-day uptime allows us 
to evaluate the reliability of a device consistently and continuously recording data 
throughout the day, and to determine if there are sudden disruptions in recording.

Step III. Evaluation. This stage covers the evaluation of usability and availability, as 
well as the rest of the statistical analyses. The acceptability and compliance of people 
with PD in wearable-driven studies has been shown before as high [76, 77], and thus we 
focus on investigating the usability of the devices from the perspective of the researcher. 
Therefore, evaluate the devices with the system usability scale (SUS), which is an instru-
ment validated for measuring the usability of a system [82]. SUS yields a score from 0 to 
100, where high score means that a system has a high usability, and a low score indicates 
a low usability, with scores > 85 representing excellent [36]. Four researchers (HR, BM, 
MP, EF) completed three SUS questionnaires, one for each device, based on their inter-
action with the device-platform system. The results are aggregated by item-wise averag-
ing. We use the sign test [83] to compare the day-averaged fit scores for HR and activity 
(MET, acceleration) outcomes between devices. Summary reports (mean, standard devi-
ation) are used to describe the mean fit scores and signal correlation measures (Pearson’s 
coefficient and NRMSE) for the two groups. To estimate device availability and record-
ing reliability, we evaluate the annotatable data percentages and the uptime.

Software and tools

Scripts developed in-house in Python (Jupyterlab v. 3.0.14) are used to retrieve data 
from Oura and Fitbit Sense, and to segment data from all devices. Data formatting, visu-
alization, preprocessing, resampling, and signal correlation analysis are performed using 
MATLAB v. 2019a. The other statistical analyses are performed using StataSE v.18.
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