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Introduction
Lumbar degenerative disease, a prevalent spinal disorder, manifests as chronic low back 
pain and progressive mobility restriction with heterogeneous clinical presentations. In 
advanced stages, progressive neurological deterioration and biomechanical instability 

Abstract 

Background:  To develop and validate a model that integrates clinical data, deep 
learning radiomics, and radiomic features to predict high-risk patients for cage subsid-
ence (CS) after lumbar fusion.

Methods:  This study analyzed preoperative CT and MRI data from 305 patients under-
going lumbar fusion surgery from three centers. Using a deep learning model based 
on 3D vision transformations, the data were divided the dataset into training (n = 214), 
validation (n = 61), and test (n = 30) groups. Feature selection was performed using 
LASSO regression, followed by the development of a logistic regression model. The pre-
dictive ability of the model was assessed using various machine learning algorithms, 
and a combined clinical model was also established.

Results:  Ultimately, 11 traditional radiomic features, 5 deep learning radiomic features, 
and 1 clinical feature were selected. The combined model demonstrated strong predic-
tive performance, with area under the curve (AUC) values of 0.941, 0.832, and 0.935 
for the training, validation, and test groups, respectively. Notably, our model outper-
formed predictions made by two experienced surgeons.

Conclusions:  This study developed a robust predictive model that integrates clinical 
features and imaging data to identify high-risk patients for CS following lumbar fusion. 
This model has the potential to improve clinical decision-making and reduce the need 
for revision surgeries, easing the burden on healthcare systems.
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may profoundly compromise functional capacity, frequently resulting in substantial 
impairment of activities of daily living [1]. Lumbar fusion surgery has become a standard 
treatment option when conservative treatment fails. Interbody fusion cages play a cru-
cial role in lumbar interbody fusion surgery for treating degenerative lumbar diseases. 
They achieve interbody fusion as a bone graft carrier, enabling unstable segments to 
regain stability and ultimately alleviating low back and leg pain [2]. However, cage sub-
sidence (CS) reduces the intervertebral height, weakens the anterior column support, 
decreases the local lumbar lordosis, and deteriorates the posterior soft-tissue tension, 
thereby affecting the indirect decompression effect of the surgery [3–6]. Patients may 
require revision surgery or additional interventions when CS progresses to a sympto-
matic stage [7, 8]. This not only significantly increases the healthcare system burden but 
also greatly affects patients’ quality of life and work capacity. Therefore, accurately deter-
mining patients at high risk of CS preoperatively is crucial for reducing surgical risks, 
optimizing treatment strategies, and enhancing prognosis.

Computed tomography (CT) and magnetic resonance imaging (MRI) are both non-
invasive and high-resolution imaging techniques. MRI is popular for its superior tis-
sue contrast and multiplanar imaging capabilities, whereas CT excels in imaging bone 
structures. Thus, they are both considered important examinations for assessing lum-
bar degenerative disease. However, existing predictive methods for CS based on medical 
imaging are often limited by their reliance on subjective clinical judgment, leading to 
significant variability in the results. While traditional approaches such as visual assess-
ment by clinicians and simple statistical models have been used, they lack consistency 
and fail to adequately capture the complex relationships between imaging features and 
the risk of CS. This variability highlights the need for more reliable, objective, and data-
driven approaches. Our study aims to address these gaps by integrating radiomics and 
clinical data, providing a more accurate and robust model for predicting high-risk CS 
patients.

Radiomics, which extracts quantitative features from medical images, is widely used 
to assess microstructural changes in the lumbar spine and surrounding tissues. By ana-
lyzing image patterns and textures, it offers valuable insights into the disease process 
[9, 10]. Meanwhile, deep learning has been predominantly used in spinal imaging analy-
sis because of the advantages of three-dimensional convolutional neural networks (3D 
CNNs) in processing 3D data. Several studies have combined radiomics and machine 
learning techniques to improve medical efficiency in spinal diseases [11–14]. In this 
study, we hypothesize that a model integrating radiomic features, deep learning radiom-
ics features, and clinical data will provide more accurate predictions for high-risk CS 
after lumbar fusion surgery compared to the traditional methods. Our objective is to 
develop predictive models using clinical data, lumbar CT, and MRI from local medical 
centers, assess their performance in predicting CS. By constructing a combined model, 
we aim to identify patients at high risk of CS and improve clinical decision-making.

Results
Clinical baseline characteristics

This study included 305 patients following the inclusion and exclusion criteria. The 
patients were aged 36–90 years, consisting of 162 females and 143 males. According to 
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bone mineral density examination results, 143 patients were diagnosed with osteopo-
rosis. Among the included patients, 201, 90, and 14 underwent single-, two-, and three-
segment fusion surgeries, respectively. During the follow-up period, 75 patients were 
diagnosed with CS based on the imaging examination results. Table 1 summarizes the 
patients’ demographic and clinical characteristics. The p values show no significant age 
difference between the test and training groups, but significant differences exist between 
the test and validation groups and between the validation and training groups. Binary 
logistic regression analysis revealed that osteoporosis was significantly associated with 
CS occurrence (Additional file Table S1).

Radiomics feature selection and construction of the prediction model (radiology‑based)

We used the LASSO regression model for feature selection and dimensionality reduc-
tion after feature fusion, and the penalty coefficient was λ = 0.018 (Fig. 1a, b). Finally, 11 
radiomics features were retained after feature fusion (Fig. 1c).

We constructed a model based on the fused features and their corresponding regres-
sion coefficients using preoperative clinical imaging hand-crafted radiomics features 
to predict CS after lumbar fusion surgery. Among all the machine learning algorithms 
tested, AdaBoost proved to be the most effective for radiomics models. The AUC 
results for the training cohort, validation cohort, and test cohort were 0.872 (95%CI, 
0.826–0.923), 0.788 (95%CI, 0.673–0.927), and 0.851 (95%CI, 0.701–0.972), respectively 
(Fig. 1d–f).

Table 1  Clinical baseline characteristic of patients in the training cohort, validation cohort, and test 
cohort

*Indicates statistical significance at p <0.05

Characteristic Training cohort, 
(n = 214)

Validation 
cohort, (n = 61)

Test cohort, (n = 30) p

Sex, no (%) 0.993

 Female 114 (53.27) 29 (47.54) 14 (46.67)

 Male 100 (46.73) 32 (52.46) 16 (53.33)

Age (years) 0.004*

 Mean (range) 64.39 ± 9.11 60.00 ± 9.98 64.90 ± 8.13

Follow-up 0.816

 Mean (range) 9.82 ± 3.19 9.87 ± 3.00 9.17 ± 2.20

BMI 0.687

 Mean (range) 26.65 ± 3.86 26.46 ± 4.00 27.21 ± 4.27

Diagnosis, No (%)  < 0.001*

 Lumbar spinal stenosis 113 (52.80) 15 (24.59) 9 (30.00)

 Spondylolisthesis 58 (27.10) 16 (26.23) 11 (36.67)

 Lumbar disc herniation 43 (20.09) 30 (49.18) 10 (33.33)

Segment 0.035*

 1 131 (61.21) 46 (75.41) 24 (80.00)

 2 69 (32.24) 15 (24.59) 6 (20.00)

 3 14 (6.54)

Osteoporosis, no (%) 0.363

 Yes 108 (50.47) 36 (59.02) 12 (40.00)

 No 106 (49.53) 25 (40.98) 18 (60.00)
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Feature selection and construction of the prediction model (based on DL)

We used the LASSO regression model for feature selection and dimensionality reduc-
tion after combining the features, and the penalty coefficient was λ = 0.012 (Fig. 2a, b). 
Five DLR features were retained after feature selection (Fig. 2c).

Fig. 1  LASSO regression-based selection of radiomics features. The optimal λ value of 0.018 was selected. 
Performance of the machine learning model based on the AdaBoost algorithm. a Feature coefficients 
corresponding to the value of parameter λ. Each line represents the change trajectory of each independent 
variable. b The most valuable features were screened out by tuning λ using LASSO regression. The dotted 
vertical line represents the optimal log(λ) value determined through cross-validation. c Feature importance 
ranking based on the LASSO-selected radiomic features using AdaBoost. The y-axis indicates the selected 
radiomic features, and the x-axis represents their relative importance. d ROC curve. e Calibration curve. f 
Decision curve analysis
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We constructed a model based on the fused features and their corresponding 
regression coefficients using preoperative clinical imaging deep learning radiomics 
features to predict CS after lumbar fusion surgery. AdaBoost continues to demon-
strate its strong capability in optimizing model performance (Fig.  2d–f ). The AUCs 

Fig. 1  continued
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Fig. 2  LASSO regression-based selection of deep learning radiomics features. The optimal λ value of 0.012 
was selected. And performance of the machine learning model based on the AdaBoost algorithm. a Feature 
coefficients corresponding to the value of parameter λ. Each line represents the change trajectory of each 
independent variable. b The most valuable features were screened out by tuning λ using LASSO regression. 
The dotted vertical line represents the optimal log(λ) value determined through cross-validation. c Feature 
importance ranking based on the LASSO-selected radiomic features using AdaBoost. The y-axis indicates the 
selected deep learning radiomics features, and the x-axis represents their relative importance. d ROC curve. e 
Calibration curve. f Decision curve analysis
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for the training cohort, validation cohort, and test cohort were 0.821 (95%CI, 0.774–
0.874), 0.725 (95%CI, 0.540–0.871), and 0.807 (95%CI, 0.644–0.937), respectively.

Fig. 2  continued
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Combined model based on baseline clinical data, Rad‑sign, and DL‑sign

In the combined model, which integrates both Rad-sign and DL-sign alongside clini-
cal data, AdaBoost’s ability to enhance model accuracy becomes even more pro-
nounced. The AUCs for the training cohort, validation cohort, and test cohort were 
0.941 (95%CI, 0.911–0.969), 0.832 (95%CI, 0.702–0.941), and 0.935 (95%CI, 0.810–
0.99), respectively (Fig. 3a).

The feature importance bar chart indicates that the DL-sign, Rad-sign, and osteo-
porosis contribute the most to the prediction results when combining radiomics and 
deep learning prediction models with the clinical baseline features to construct a 
combined model (Fig. 3b). Compared with the previous two models based solely on 
radiomics features or DLR features, the combined model demonstrated a significant 
improved predictive performance of the validation and test cohorts. The DCA indi-
cated that the combined model provided higher net benefits to patients compared 
with the single-feature models (Fig.  3c, d). The DeLong test results reveal that the 
combined model demonstrates a statistically significant advantage over the single-
feature model (p < 0.05). The combined model outperformed the predictions made 
by two experienced spinal surgeons in terms of predictive accuracy. The compari-
son between the machine and clinicians revealed statistically significant differences 
(Table  2). This finding highlights the potential of machine learning-based models 
in providing more accurate and objective predictions, especially when considering 
the complexity and variability of spinal conditions. Clinicians may benefit from this 
model as a supportive tool for identifying high-risk patients for CS, potentially reduc-
ing the need for revision surgeries and improving patient outcomes. Therefore, this 
combined model is more intuitive and effective in identifying high-risk patients for 
CS.

Discussion
Imaging examinations during postoperative follow-up are predominantly used as an 
important method for diagnosing CS in clinical practice [15]. However, identifying 
high-risk patients during preoperative evaluation is crucial for improving patient 
prognosis, considering that CS occurrence increases the likelihood of patients return-
ing for additional treatment. In recent years, several studies have emphasized various 
risk factors for predicting the possibility of CS after spinal fusion surgery [16, 17]. Fac-
tors, such as age, higher BMI, and poor vertebral bone quality, have been determined 
as important CS predictors [7, 18]. Despite these advances, the current literature has 
largely overlooked the use of preoperative imaging algorithms for predicting CS, with 
reported models achieving an AUC of only 0.6–0.7, which is considerably lower than 
the performance of the model presented in this study. In this study, we used data-
sets from three hospitals to develop a combined predictive model that integrates deep 
learning radiomics and traditional radiomics based on CT and multi-sequence MRI, 
along with baseline clinical data, to determine patients at high risk of developing CS. 
This combined approach enabled the identification of patients at high risk for devel-
oping CS, offering significant potential for improving preoperative risk stratification 
and clinical decision-making. The superior performance of our model highlights its 
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Fig. 3  Performance of the machine learning model based on the AdaBoost algorithm. a ROC curve. b 
Feature importance ranking based on the LASSO-selected features using the AdaBoost. c Calibration curve. d 
Decision curve analysis
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clinical relevance in providing more accurate predictions, ultimately contributing to 
better patient outcomes and more targeted interventions.

CT and MRI are important diagnostic tools for diagnosing lumbar degenerative dis-
eases and are capable of detecting microenvironmental changes in the spine and sur-
rounding tissues. Based on a previous study [19], lumbar CT images of the vertebrae, 
sagittal MRI of the vertebrae and intervertebral discs, and axial MRI of the muscle tissue 
collectively provide comprehensive information related to the spine and its microenvi-
ronment. Therefore, in this study, we segmented and analyzed the vertebral bodies on 
CT images and the vertebral bodies and intervertebral discs on multi-sequence sagittal 
MRI (T1 and T2 sequences), as well as the quadratus lumborum, psoas major, and par-
aspinal muscles on axial images. Radiomics based on machine learning has been pre-
dominantly applied in the medical field in recent years. Some researchers have utilized 
machine learning algorithms, such as image segmentation, feature extraction and selec-
tion, and predictive modeling, to allow automated medical imaging analysis and offer 
intelligent diagnostic support to clinicians, thereby improving diagnostic accuracy and 
efficiency [20]. Some orthopedic scholars have used deep learning to process medical 
images, thereby developing an effective screening method for ASD based on deep learn-
ing and cervical MRI [21]. However, due to the poor interpretability of the deep learn-
ing models, this method has certain limitations in its clinical application. DLR has been 
proposed and has rapidly developed with the emergence of network architectures like 
ResNet to address these limitations [22, 23]. RadImageNet is an open-source medical 

Fig. 3  continued

Table 2  Comparison of performance metrics

Dataset Prediction Method Threshold ACC​ AUC​ Sensitivity Specificity NPV PPV F1

val Combined Model 0.52 0.79 0.83 0.73 0.80 0.90 0.55 0.63

Test Combined Model 0.52 0.93 0.93 0.86 0.96 0.96 0.86 0.86

val Surgeon – 0.62 0.76 0.27 0.74 0.76 0.25 0.26

test Surgeon – 0.53 0.53 0.43 0.57 0.76 0.23 0.30
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imaging dataset that is specifically designed for medical applications and theoretically 
outperforms ImageNet in medical tasks [24]. Successful transfer learning depends on 
the feature similarity between the source and target tasks [25]. Therefore, we conducted 
deep learning based on DTL using RadImageNet as the pretrained model. In this study, 
lumbar CT and MRI from local medical centers were conducted to construct DLR pre-
dictive models, and we compared the performance of these models in predicting CS 
after lumbar fusion surgery.

In this study, the optimal model with feature fusion retained 11 radiomics features, 5 
DLR features, and 1 clinical feature after final selection. First, the autocorrelation feature 
in the gray-level co-occurrence matrix (glcm) after applying log transformation with a 
sigma of 4.0  mm in the lumbar vertebrae MRI (centrum_t1_log_sigma_4_0_mm_3D_
glcm_Autocorrelation) revealed the highest correlation coefficient with the occurrence 
of CS. The T1_log_sigma_4.0mm_3D filter application aims to highlight texture varia-
tions at a specific scale (σ = 4.0 mm) by enhancing the texture features at that scale [26]. 
CS occurrence is closely related to vertebral bone strength and density changes; hence, 
filtering at this scale may effectively capture the detailed features associated with bone 
quality. The gray-level co-occurrence matrix (GLCM) captures the spatial gray-level 
associations between pixels, whereas the autocorrelation feature describes the similarity 
between adjacent pixel values in the image [27]. Autocorrelation reflects the uniform-
ity and consistency of the bone structures for bone imaging. These texture features are 
crucial in evaluating vertebral health, because a uniform bone structure is typically asso-
ciated with higher bone density and better mechanical properties, which are key fac-
tors in preventing CS. This finding may confirm that osteoporosis increases the risk of 
CS to a certain extent. Overall, the feature importance analysis reveals that the texture, 
morphology, and 3D structural features of the fused regions and their adjacent segments 
in preoperative clinical imaging play crucial roles in the model. These features collec-
tively indicate that the complex mechanical and biological states of the spine before 
fusion exerted multidimensional effects. Moreover, we revealed that the DLR features 
with the highest correlation coefficients all originated from the vertebral bodies on the 
T2-weighted sequence. This is because the T2 sequence improves the ability to capture 
water content and soft-tissue contrast while providing detailed information about bone 
composition and endplate integrity. Both factors are crucial for assessing the risk of CS. 
The interpretability of the current DLR features requires further investigation, but this 
does not prevent us from obtaining preliminary explanations of the lesion-specific fea-
tures by integrating them with the traditional radiomics features. Additionally, notably, 
the majority of radiomics features selected for the model and all the DLR features were 
derived from MRI. This indicates that MRI is more important than CT imaging in the 
preoperative imaging-based method proposed in this study for predicting patients at 
high risk of CS. Finally, our results indicate that osteoporosis significantly increases the 
risk of CS, which is consistent with the previous studies [28–31].

AdaBoost demonstrated superior performance across three modeling frameworks 
in our study, attributable to its algorithmic adaptability in addressing distinct chal-
lenges of radiomic analysis. In traditional radiomics, where high-dimensional features 
(e.g., texture metrics) frequently exhibit multicollinearity, AdaBoost iteratively opti-
mizes weak classifiers through feature importance weighting, effectively balancing 
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bias–variance tradeoffs to preserve predictive accuracy [32]. For deep learning-based 
models, while CNN-derived features encode complex imaging patterns susceptible to 
overfitting, AdaBoost’s sequential reinforcement of generalizable features counteracts 
data noise and sample size limitations inherent to medical imaging datasets [32]. Nota-
bly, the algorithm’s discriminative capacity extended to multimodal integration, adap-
tively reconciling clinical, radiomic, and deep learning features through domain-specific 
weight optimization—a critical advantage in CS prediction where heterogeneous data 
synergy determines clinical relevance [33]. This tripartite efficacy—resolving feature 
redundancy in conventional radiomics, regularizing deep feature overfitting, and har-
monizing multimodal inputs—positions AdaBoost as a computationally robust frame-
work. Its consistent outperformance over single-feature models stems from systematic 
complexity control and dynamic prioritization of cross-domain biomarkers. The algo-
rithm’s decision consistency and stability in handling intricate feature interactions sug-
gest translational potential for developing adaptive predictive systems in spinal disorder 
management. Future investigations should explore AdaBoost’s scalability in multicenter 
cohorts and its integration with emerging neural architectures.

This study has some limitations. First, despite our efforts to enhance the accuracy of 
manual MRI image annotations, manual labeling is inherently subjective and suscep-
tible to certain biases, which may lead to inconsistencies in results when compared to 
automated segmentation methods. Due to the current limitations in developing a highly 
accurate automatic soft-tissue segmentation algorithm for lumbar MRI, manual seg-
mentation was used for this study. However, to minimize potential bias, we performed 
an interobserver consistency evaluation. While this approach helps reduce error, it does 
not entirely eliminate it. Therefore, future research should aim to optimize automatic 
MRI image segmentation techniques and combine the strengths of automation with 
human expertise to achieve more efficient and precise assessments of spinal structures 
and pathological features. Second, despite being based on multicenter data, the exter-
nal sample size is limited due to inclusion criteria, and the small test cohort size and 
high feature-to-sample ratio may increase the risk of overfitting. Additionally, there 
is a lack of a rigorous assessment of inter-scanner variability among the CT and MRI 
datasets acquired from three different hospitals, which may have introduced potential 
biases. While standard preprocessing methods, including resampling and intensity nor-
malization, were deployed to mitigate scanner-related differences, these approaches may 
not fully compensate for the variability introduced by distinct acquisition protocols and 
scanning hardware configurations. In the meantime, both the CT and MRI parameters 
and patient characteristics of the test cohort were comparable to those of the training 
cohort, which may partly explain the superior performance of the model on the test 
cohort compared to the validation cohort. Future research needs to include data from 
more centers and larger sample sizes for prospective multicenter validation. Moreover, 
radiomics often faces criticism for limited feature interpretability and the time-consum-
ing nature of data annotation—challenges that our study also encounters. Nonetheless, 
as previously mentioned, similar to our work on automated segmentation of vertebral 
bodies in CT images, advancements in artificial intelligence and machine learning tech-
nologies offer the potential to enhance the application value of radiomics in both sci-
entific research and clinical practice. By refining tools and methodologies, improving 
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automatic image segmentation techniques, and integrating multiple data sources, we 
can overcome these obstacles and achieve more efficient and precise assessments.

Conclusion
In conclusion, this study developed a composite model by integrating radiomics, DLR, 
and clinical features. Compared with models that are based on single-modality features, 
this combined model significantly improved the identification performance for patients 
at high risk of CS, offering substantial value in assisting clinical decision-making.

Methods
Patients

This study was designed and reported in accordance with the TRIPOD reporting guide-
lines [34], utilizing medical imaging data from three hospitals in China. We collected 
the clinical baseline and imaging data of patients with lumbar degenerative diseases who 
underwent posterior lumbar interbody fusion (PLIF) from January 2016 to June 2023 
to establish training and validation cohorts as well as a testing cohort. Inclusion crite-
ria were (1) patients who underwent 1–3 segment PLIF at our hospital and two other 
research centers, (2) those with at least 6 months of complete medical records and post-
operative follow-up data, (3) patients with complete clinical data, and (4) patients with 
no history of spinal surgery. Exclusion criteria were (1) patients with lumbar diseases 
related to infection or tumors, (2) those with poor imaging quality or the presence of 
artifacts, and (3) patients with incomplete follow-up or medical records. Figure  4a 
illustrates a detailed flowchart of the case selection. The training, validation, and test 
cohorts were allocated from three centers’ data using stratified random sampling to 
ensure an even distribution of positive and negative samples. Stratification was based 
on the occurrence of CS. The allocation ratio of the training, validation, and test cohorts 
was 7:2:1. The study design and the deep learning radiomics (DLR) workflow (Fig. 4b, c) 
demonstrate the processes of case collection and grouping, image preprocessing, feature 
extraction, feature analysis, and model construction. The Ethics Committee of the three 
hospitals involved in the study approved this study (Approval No.2024-KE-346) which 
complies with the Declaration of Helsinki. The Ethics Committee waived the need for 
informed consent because of the retrospective design study.

Clinical baseline characteristics and medical imaging acquisition

All patients’ baseline data, including sex, age, number of surgical segments, body mass 
index (BMI), osteoporosis status, and diagnosis, were extracted from the clinical medical 
record system. Explanation Additional file S1 presents details of the CT and MRI equip-
ment and imaging parameters.

Cage subsidence in our study was radiographically defined based on at least one of 
the following criteria: (1) a reduction in intervertebral height exceeding 10% compared 
to immediate postoperative imaging; or (2) newly observed, significant endplate dam-
age associated with the fusion cage that was not evident on immediate postoperative 
imaging.
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Fig. 4  a Flowchart summarizing patient selection and allocation to the training cohort, validation cohort, 
and test cohort. b Flowchart of this study, the process of feature extraction, model development, and 
validation using radiomics, deep learning, and clinical data. c Workflow of deep learning radiomics. The 
procedure involves four essential steps: (1) Annotation and segmentation: Identifying and outlining areas of 
interest (ROIs) on medical images. (2) Feature extraction: Deep learning features were extracted using a Vision 
Transformer-based model. (3) Feature selection and modeling: Applying statistical and machine learning 
methods approaches to select significant predictive features and establish the model. (4) Model assessment: 
Evaluating predictive performance and clinical significance with methods, such as calibration curves, ROC 
analysis, and decision curves
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Image analysis and predictions

Two spinal surgeons (A and B) with 6 and 11 years of experience, respectively, indepen-
dently predicted whether or not patients would develop CS postoperatively based on the 
same clinical information utilized by the algorithm—the patients’ baseline data and clin-
ical images. An expert with over 20 years of experience in spinal surgery (C) served as 
an adjudicator in cases where the two surgeons’ predictions were inconsistent. Cohen’s 
Kappa coefficient was calculated to evaluate the predictive agreement between A and B 
(Additional file Table S2).

Image segmentation

Accurate tissue segmentation is the premise for subsequent image analysis. The verte-
bral body segmentation was divided into two parts. A 3D U-Net model was used to seg-
ment the vertebral bodies for the CT images, after preprocessing. The CT segmentation 

Fig. 5  Segmentation images based on lumbar CT (a–d) and multi-sequence MRI (e–l). e, f Vertebral body 
segmentation on sagittal MRI images. g, h Intervertebral disc segmentation on sagittal MRI images. i–l 
Muscle ROI on axial MRI images. ROI, region of interest. Separate segmentation of the intervertebral discs 
and vertebral bodies was carried out on both T1 and T2 MRI sequences to ensure that each structure was 
accurately delineated. Similarly, the surrounding paraspinal muscles, including the quadratus lumborum 
and psoas major, were segmented for the respective regions. To maintain the fidelity of each segmented 
structure, all images were saved as distinct NIfTI (.nii.gz) files
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results were then saved as mask files in the NIfTI format (Fig. 5a–d). Two spinal sur-
geons in this study independently performed manually MRI segmentation. First, the sur-
geons imported the MRI into the ITK-SNAP software (version 3.8.0, http://​www.​itksn​
ap.​org). The vertebral bodies and intervertebral discs were manually annotated for the 
sagittal T1 and T2 sequences. The borders of the psoas major, quadratus lumborum, and 
the entire paraspinal muscles were manually outlined and filled to ensure the inclusion 
of information on the spine and surrounding soft tissues for the axial sequences. The 
MRI segmentation results were then saved as mask files in the NIfTI format (Fig. 5e–i). 
After 1 month, 50 patients were randomly selected from the MRI dataset, and surgeons 
A and B independently performed the segmentation again. The intraclass correlation 
coefficient was utilized to evaluate the interobserver consistency of the vertebral seg-
mentation. This step was taken to assess the accuracy and consistency of manual seg-
mentation and reduce potential bias (Additional file Table S3).

Radiomics feature extraction

Feature extraction was performed on the vertebral bodies, intervertebral discs, and 
paraspinal muscles across all datasets to prevent data leakage. Feature selection, how-
ever, was performed only on the training cohort. Z-score normalization was applied to 
all images before feature extraction. The feature extraction algorithms were optimized 
based on the guidelines of the Image Biomarker Standardization Initiative, which helps 
standardize the processing of imaging data across institutions and minimizes inter-
institutional variability. Radiomic features were extracted with the open-source package 
Pyradiomics (http://​pypi.​org/​proje​ct/​pyrad​iomics/) based on Python 3.8. These charac-
teristics included first-order statistics, shape, gray-level co-occurrence matrix (GLCM), 
gray-level size zone matrix, gray-level run-length matrix, neighboring gray-tone differ-
ence matrix, and gray-level dependence matrix features. A detailed description of the 
radiomics features extracted in this study is found in the Pyradiomics documentation 
(http://​pyrad​iomics.​readt​hedocs.​io). Robust normalization was applied to standard-
ize all features by calculating the median and quartiles for each feature after extraction. 
Robust normalization was achieved by subtracting the median from each feature and 
then dividing by the interquartile range to reduce data discrepancies between different 
centers.

Deep transfer learning (DTL) feature extraction

The input images (preprocessed CT and MR images) were resized to 128 × 128 × 128 
dimensions using linear interpolation, and pixel intensities were normalized to a mean 
of 0 ± 1. These preprocessing steps are essential for harmonizing imaging data from dif-
ferent institutions and reducing potential biases caused by inter-institutional variabil-
ity. We used a DTL method in the deep learning library PyTorch based on Python 3.8, 
similar to that used in the previous studies [35]. We selected the vision transformer 3D 
(ViT-3D) [36] as the base model for this study and carefully adjusted the learning rate 
to improve transfer performance. The final learning rate was set to 2e−05, with the fol-
lowing hyperparameters: image_patch_size = 16, channels = 1, dim = 1024, depth = 6, 
heads = 8, and mlp_dim = 2048. The fundamental concept behind the ViT is to divide 
the image into small patches and input them into a neural network for processing. Each 

http://www.itksnap.org
http://www.itksnap.org
http://pypi.org/project/pyradiomics/
http://pyradiomics.readthedocs.io
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patch is independently processed, and its outputs are combined, enabling the network to 
learn the global structure and features of the image. In summary, the ViT decomposes 
clinical images into patches, processes each patch individually, and then pools the find-
ings through concatenation to generate an entire image representation. We used the out-
puts of the ViT to predict whether CS would occur by applying a binary classifier after 
processing the raw input data. The model learns the complex features associated with 
CS through the ViT, enabling accurate prediction in new images. The transfer features 
are extracted from the penultimate layer of the model (i.e., the average pooling layer that 
obtains a global image representation by averaging the features of all patches); thus, we 
divided the model parameters into two parts: the backbone and the task-specific part. 
The backbone parameters were initialized with the RadImageNet pretrained model [37], 
whereas the task-specific parameters were randomly initialized.

Feature selection

Early fusion, also known as feature-level fusion, was performed on the radiomics fea-
tures extracted from the vertebral bodies on CT images and from the vertebral bod-
ies, intervertebral discs, and paraspinal muscles on multi-sequence MRI. Specifically, 
the radiomics features from these anatomical structures were concatenated into a sin-
gle radiomics feature vector. We first conducted an independent-sample F test on the 
histogram of the co-occurrence matrix of regional features to select radiomics features 
with high repeatability and low redundancy, and features with p values of > 0.05 were 
removed. Second, Pearson correlation coefficients were calculated between features. 
One of the highly correlated features (correlation coefficient > 0.9) was retained. To max-
imize the representational capability of the features, a greedy recursive deletion strategy 
[38] was employed, where the feature with the highest correlation to others was removed 
at each step. We then used the least absolute shrinkage and selection operator (LASSO) 
algorithm to incorporate stable radiomic features into the analysis by constructing a 
penalty function λ that shrinks the regression coefficients to zero. Tenfold cross-vali-
dation was conducted based on the criterion of maximizing the mean cross-validation 
score to identify the optimal λ value. Radiomics parameters with non-zero coefficients 
and their weights were selected according to the model corresponding to the optimal λ. 
Finally, independent and stable radiomics features were determined.

Feature-level fusion was performed by concatenating them into a single-feature vector 
for the DLR features from the vertebral bodies, intervertebral discs, and paraspinal mus-
cles. Z-score normalization was applied to the DLR features by subtracting the mean 
of each feature column and dividing it by its standard deviation, converting them to a 
standard normal distribution, before principal component analysis (PCA) dimensional-
ity reduction. PCA was then utilized for dimensionality reduction to extract the princi-
pal components, which helps improve the model’s generalization ability and reduce the 
risk of overfitting. Finally, LASSO regression was used to perform feature selection on 
the DLR features, retaining important features with non-zero coefficients.

Model construction and validation

We used the scikit-learn machine learning library after feature selection to construct 
classification models, including logistic regression (LR); Naive Bayes, linear support 
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vector machines; polynomial, sigmoid, and radial basis function kernels; decision trees; 
random forests; extremely randomized trees; eXtreme gradient boosting; AdaBoost; 
light gradient boosting machine; multilayer perceptions; and gradient boosting machine. 
We employed grid search algorithms on the training cohort to tune the hyperparameters 
of all models, enabling the adjustment of commonly used parameters in each model. 
Tenfold cross-validation was utilized on the training cohort to compare the performance 
of different classification models and select the optimal hyperparameters.

Receiver-operating characteristic (ROC) curves were plotted, and the area under the 
curve (AUC), accuracy, sensitivity, F1 score, and specificity were calculated to assess the 
performance of the predictive models. We separately established hand-crafted radiomics 
and DLR models. The output probabilities of the optimal classifiers from the radiomics 
model were defined as the radiomics signature (Rad-sign), and the output probabilities 
from the deep learning model were defined as the deep learning signature (DL-sign).

Binary LR analysis was conducted to evaluate the baseline clinical variables, such as 
surgical segments, sex, age, diagnosis, BMI, and osteoporosis. Statistically significant 
clinical variables were combined with Rad-sign and DL-sign to construct a combined 
model with the machine learning algorithms described above. This was done to further 
evaluate the model’s effectiveness in determining high-risk patients for CS after lumbar 
fusion surgery. The modeling was performed with the PixelMed AI platform (https://​
github.​com/​41031​2774).

Statistical analysis

Python (version 3.8.2; https://​www.​python.​org) and SPSS version 21.0 were used for all 
statistical analyses. Continuous variables with a normal distribution were presented as 
means ± standard deviation, and between-group comparisons were performed using 
independent-sample t tests. Data were compared between three groups using analysis 
of variance. Continuous variables with a non-normal distribution were expressed as the 
median (interquartile range), and comparisons were performed using the Mann–Whit-
ney U test. Levene’s test was utilized to evaluate the homogeneity of variances before 
conducting t tests. Categorical variables were presented as counts (n) and percentages 
(%), and comparisons between groups were made using the Chi-square test or Fisher’s 
exact test. Concordance testing was performed using intraclass Correlation Coefficient 
(ICC). All statistical tests were two-sided, and statistical significance was set at p values 
of < 0.05. The performance of the classification models was assessed using ROC curves 
and the AUC. Decision curve analysis (DCA) was conducted by quantifying the net 
benefit at different threshold probabilities to evaluate the clinical value of the models. 
The DeLong test was conducted to compare differences in AUCs between the different 
models.

Clinical trial number
Not applicable.
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DLR	� Deep learning radiomics
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