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Abstract 

Background: Hands-and-knees crawling is a promising rehabilitation interven-
tion for infants with motor impairments, while research on assistive crawling devices 
for rehabilitation training was still in its early stages. In particular, precisely generat-
ing motion trajectories is a prerequisite to controlling exoskeleton assistive devices, 
and deep learning-based prediction algorithms, such as Long–Short-Term Memory 
(LSTM) networks, have proven effective in forecasting joint trajectories of gait. Despite 
this, no previous studies have focused on forecasting the more variable and complex 
trajectories of infant crawling. Therefore, this paper aims to explore the feasibility 
of using LSTM networks to predict crawling trajectories, thereby advancing our under-
standing of how to actively control crawling rehabilitation training robots.

Methods: We collected joint trajectory data from 20 healthy infants (11 males and 9 
females, aged 8–15 months) as they crawled on hands and knees. This study imple-
mented LSTM networks to forecast bilateral elbow and knee trajectories based on cor-
responding joint angles. The data set comprised 58, 782 time steps, each containing 
4 joint angles. We partitioned the data set into 70% for training and 30% for testing 
to evaluate predictive performance. We investigated a total of 24 combinations 
of input and output time-frames, with window sizes for input vectors ranging from 10, 
15, 20, 30, 40, 50, 70, and 100 time steps, and output vectors from 5, 10, and 15 steps. 
Evaluation metrics included Mean Absolute Error (MAE), Mean Squared Error (MSE), 
and Correlation Coefficient (CC) to assess prediction accuracy.

Results: The results indicate that across various input–output windows, the MAE 
for elbow joints ranged from 0.280 to 4.976°, MSE ranged from 0.203° to 59.186°, 
and CC ranged from 89.977% to 99.959%. For knee joints, MAE ranged from 0.277 
to 4.262°, MSE from 0.229 to 53.272°, and CC from 89.454% to 99.944%. Results 
also show that smaller output window sizes lead to lower prediction errors. As 
expected, the LSTM predicting 5 output time steps has the lowest average error, 
while the LSTM predicting 15 time steps has the highest average error. In addition, 
variations in input window size had a minimal impact on average error when the out-
put window size was fixed. Overall, the optimal performance for both elbow and knee 
joints was observed with input–output window sizes of 30 and 5 time steps, respec-
tively, yielding an MAE of 0.295°, MSE of 0.260°, and CC of 99.938%.
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Conclusions: This study demonstrates the feasibility of forecasting infant crawling 
trajectories using LSTM networks, which could potentially integrate with exoskeleton 
control systems. It experimentally explores how different input and output time-frames 
affect prediction accuracy and sets the stage for future research focused on optimiz-
ing models and developing effective control strategies to improve assistive crawling 
devices.
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Introduction
Before infants achieve independent walking, developmental milestones include rolling 
over, sitting, and crawling on hands and knees. Among these, crawling represents the 
first gross motor behavior involving the coordination of elbow and knee joints [1]. Spe-
cifically, research shows that increased frequency and duration of crawling help develop 
motor skills and support the acquisition of walking abilities [2, 3]. Conversely, insuffi-
cient crawling experience can lead to abnormal gait patterns [4]. It has been suggested 
that crawling training has been found to benefit motor function rehabilitation and cog-
nitive development, particularly in children with cerebral palsy and balance impairments 
related to stroke [5–7]. For example, crawling supports motor function development in 
infants with delays and enhances cerebellar motor stability [8]. Extended crawling prac-
tice also stimulates the neuromuscular system, aiding in the recovery and rebuilding of 
neuromuscular functions and improving overall rehabilitation outcomes [9]. Given its 
benefits, hands-and-knees crawling is gaining attention as a promising rehabilitation 
approach for infants with motor impairments, leading to increased interest in develop-
ing assistive devices for crawling training.

Several passive-guided exoskeleton devices have emerged to assist patients in crawling 
training. For instance, FITCRAWL in Australia has developed a crawling robot designed 
for physical exercise in healthy adults [10]. Ghazi et al. developed an assistive crawling 
device for children with cerebral palsy, using EEG-based neuroimaging and a custom 
wearable motion capture system to monitor development [11]. In addition, Jiang et al. 
focused on coordinating hand and knee movements in typical infant crawling to design 
a new rehabilitation aid for cerebral palsy, incorporating an assisted crawling training 
apparatus [12]. However, such methods that control based on predefined movement pat-
terns overlook the initiative and proactivity of infant crawling movement. They may lead 
to issues such as motion coordination problems and dragging of the wearer, hindering 
the recovery of the patient’s motor functions. Accurately predicting the future trajectory 
of infant crawling could improve the performance of rehabilitation devices by adding a 
feedforward control component. This would allow the device to better adapt to changes 
in crawling patterns, synchronize more smoothly with the user’s movements, and reduce 
disruptions when the user alters their motion. Therefore, forecasting crawling trajecto-
ries is essential for developing effective motion planners and high-level controllers for 
exoskeleton crawling devices.

Despite the potential benefits, research on predicting infant crawling trajectories is 
still limited. This study makes a significant contribution by being the first to apply deep 
learning techniques to predict crawling trajectories in infants. Specifically, long–short-
term memory (LSTM) networks [13], a recent advancement in time series prediction, 
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are well-suited for this task. Since trajectory data exhibit temporal correlations, LSTM 
networks are ideal for modeling the non-linear, dynamic behavior of movement pat-
terns, enabling accurate predictions of future positions based on past sequences [14–
16]. Accordingly, this paper aims to evaluate the feasibility of using LSTM networks to 
predict infant crawling trajectories with high accuracy.

Given that the elbow and knee dominate the rhythmical flexion and extension of 
limbs during crawling on hands and knees, three-dimensional trajectory data of these 
two joints and the corresponding joint angle were calculated when infants were crawl-
ing at their self-selected velocity. Then, an LSTM autoencoder model was used to pre-
dict the angle of elbow and knee motion variables, exploring the feasibility of accurately 
predicting infant crawling trajectories. In addition, we explored the influence of input 
and output window lengths on prediction accuracy and put forward technical recom-
mendations. The remainder of the paper is structured as follows: "Related works" sec-
tion reviews related work on trajectory prediction using deep learning methods, with a 
focus on LSTM networks. "Methods" section outlines the data collection protocol, data 
preprocessing, and implementation details of the deep learning model. "Results" section 
presents the results, while "Discussion" section discusses the implications, limitations, 
and future directions. Finally, "Conclusions" section concludes the paper.

Related works
Recent advances in time series prediction have highlighted the effectiveness of deep 
learning methods for forecasting movement trajectories. LSTMs are particularly 
advantageous due to their ability to learn from sequential data and maintain long-term 
dependencies, allowing them to use past motion patterns to make accurate predictions 
about future movements [17]. Several studies have applied LSTMs to predict gait tra-
jectories (an overview is provided in Table 1). For example, Liu et al. developed a deep 
spatiotemporal model consisting of LSTM units to forecast the next two time steps, 
smoothing predictions by averaging them [18]. Zaroug et  al. implemented an autoen-
coder LSTM to predict trajectories of linear acceleration and angular velocity [19]. They 
experimented with input time steps ranging from 5 to 40 time steps to predict future 
trajectories over 5 or 10 time steps (equivalent to 30 ms or 60 ms). Su et al. proposed an 
LSTM with a weighted discount loss function to predict angular velocities of the thigh, 
calf, and foot segments [20]. They used 10 or 30 time steps as input to predict future 
trajectories over 5 or 10 steps, corresponding to 100 ms and 200 ms, respectively. Her-
nandez et al. utilized a hybrid convolutional neural network (CNN) and LSTM neural 
network, DeepConvLSTM, to predict motion trajectories with an average Mean Abso-
lute Error (MAE) of 3.6◦ [21]. Jia et al. employed LSTM units combined with a feature 
fusion layer that integrates kinematic (joint angles) and physiological (electromyogra-
phy) data for trajectory prediction [22]. Zarough et  al. also compared vanilla LSTM, 
stacked LSTM, bidirectional LSTM, and autoencoder LSTM [23], while Zhu et al. used 
attention-based CNN–LSTM to forecast trajectories over the next 60  ms [24]. Other 
notable studies include Challa et al., who proposed an LSTM-based human gait trajec-
tory generator using data collected from Microsoft Kinect V2 [25], and Semwal et al., 
who introduced an LSTM–CNN sequential model capable of generating stable gait 
trajectories within a speed range of 0.49–1.76 m/s, achieving a high correlation of 0.98 
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between actual and predicted trajectories, along with an R-squared score of 0.94 [26]. In 
addition, Romero-Sorozábal et al. presented regression and LSTM models for predicting 
three-dimensional trajectories [27].

It is important to note that previous studies have focused on predicting limb move-
ment trajectories during human walking, achieving promising results using LSTM mod-
els. However, unlike walking, the limb trajectories during infant crawling exhibit greater 
variability, which complicates prediction and raises concerns about the feasibility of 
making accurate forecasts. Therefore, the main contributions of this paper are three-
folds. First, we provide a comprehensive theoretical overview of the significance of infant 
crawling, the rehabilitative benefits of crawling training devices, and the approach to 
actively controlling these devices using deep learning algorithms. Second, we assess the 
performance of the LSTM network in forecasting infant crawling trajectories, presenting 
detailed prediction results for the first time. Finally, we examine how the length of input 
and output windows impacts prediction accuracy and offer technical recommendations.

Table 1 Overview of recently related work about trajectory prediction using LSTM

Tasks Reference Methodology Results Publication date

Walking Zaroug et al. [19] Encoder–decoder 
LSTM

Correlation in the 
order of 0.98 between 
predicted and actual 
trajectory

2020

Walking Su et al. [20] LSTM A correlation of 0.98 
in the predicted trajec-
tory and 95% accuracy 
in phase prediction

2020

Walking & running Hernandez et al. [21] DeepConvLSTM MAE in range 2.2(0.9)–
5.1(2.7) degrees

2021

Walking Jia et al. [22] LSTM RMSE in rage 
0.348–0.713 degrees, 
correlation in the 
order of 0.99

2021

Walking Zarough et al. [23] LSTM NRMSE in range 
2.82–5.31%

2021

Walking Zhu et al. [24] Attention-based CNN–
LSTM

Within a predicted 
horizon of 60 ms, the 
prediction RMSE is as 
low as 0.317 degrees

2021

Walking Challa et al. [25] LSTM The gait trajectories 
obtained through 
the proposed model 
are also validated on 
the HOAP-2 robot 
simulator

2022

Walking Semwal et al. [26] LSTM–CNN A high correlation 
of 0.98 between the 
actual and the pre-
dicted trajectories, and 
an R-2 Score of 0.94 is 
obtained

2023

Walking Romero-Sorozábal, 
et al. [27]

LSTM & Regression RMSE of 13.40 mm 
and a correlation coef-
ficient of 0.92 for the 
regression model, and 
RMSE of 12.57 mm 
and a correlation of 
0.99 for the LSTM

2024
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Results
LSTM network performance for varying input and output window sizes

The LSTM model was trained using 24 combinations of input and output window 
sizes. Input window sizes ranged from 10, 15, 20, 30, 40, 50, 70, and 100 time steps, 
and output window sizes were 5, 10, and 15 time steps. The following results show 
the model’s performance in terms of mean absolute error (MAE), mean square error 
(MSE), and correlation coefficient (CC).

As shown in Fig. 1, when the output window was fixed at five time steps, the MAE 
for all four joints ranged from 0.295 to 0.382°, the MSE from 0.260 to 0.430°, and the 
CC from 99.915% to 99.941%. Taken together, the overall optimal performance was 
achieved with an input window size of 30 time steps (MAE = 0.295°, MSE = 0.260°, 
CC = 99.938%) when the output window was fixed at five time steps. This trend was 
also observed when the output window sizes were 10 or 15 time steps.

Figures 2, 3, 4 further show that the output window size has a notable impact on 
prediction accuracy, with smaller windows generally resulting in lower errors. Specif-
ically, the five-time-step output window produced the lowest average error, whereas 
the 15-time-step window resulted in the highest error. Accordingly, in the following 
section, we will analyze the performance of models across specific joints, examining 
varying input window sizes using a fixed output window of five time steps, as well 

Fig. 1 LSTM model’s performance was assessed using MAE, MSE, and CC across different input window 
sizes, ranging from 10 to 100 time steps. The output window sizes were set to 5 (a–c), 10 (d–f), and 15 time 
steps (g–j). The bar chart presents the average performance metrics for the bilateral elbow and knee joints, 
illustrating the effects of different input window sizes
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as models with different output window sizes using a fixed input window of 30 time 
steps.

The performance of models with a fixed output window of five time steps

We assessed the impact of eight different input window sizes—10, 15, 20, 30, 40, 50, 
70, and 100 time steps—on the model’s prediction accuracy, with the output window 
fixed at five time steps. Figure 5 illustrates how different input window sizes influence 
the model’s performance across specific joints, with smaller errors indicating higher 
accuracy. The performance metrics for the left elbow (LElbow), right elbow (RElbow), 
left knee (LKnee), and right knee (RKnee) are detailed in Fig.  11a–d. Our analysis 
indicates that the input window size of 30 time steps produced the most accurate pre-
dictions overall.

Fig. 2 LSTM model’s performance was evaluated using MAE across various output window sizes of 5, 10, 
and 15 time steps. Input window sizes ranged from 10 to 100 time steps, including 10, 15, 20, 30, 40, 50, 70, 
and 100. The bar chart displays the average performance metrics for the bilateral elbow and knee joints, 
highlighting the impact of different output window sizes

Fig. 3 LSTM model’s performance was evaluated using MSE across various output window sizes of 5, 10, 
and 15 time steps. Input window sizes ranged from 10 to 100 time steps, including 10, 15, 20, 30, 40, 50, 70, 
and 100. The bar chart displays the average performance metrics for the bilateral elbow and knee joints, 
highlighting the impact of different output window sizes
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The performance of models with a fixed input window of 30 time steps

We examined the impact of output window sizes set to 5, 10, and 15 time steps on the 
model’s performance, with the input window fixed at 30 time steps. Smaller prediction 
errors indicate better accuracy. The performance metrics for the left elbow (LElbow), 
right elbow (RElbow), left knee (LKnee), and right knee (RKnee) are detailed in Fig. 6a–
d, the results reveal that the model’s performance varied significantly with different 

Fig. 4 LSTM model’s performance was evaluated using CC across various output window sizes of 5, 10, 
and 15 time steps. Input window sizes ranged from 10 to 100 time steps, including 10, 15, 20, 30, 40, 50, 70, 
and 100. The bar chart displays the average performance metrics for the bilateral elbow and knee joints, 
highlighting the impact of different output window sizes

Fig. 5 With an output window fixed at five time steps, the model’s performance varies across different input 
window sizes. MAE is represented in black, and MSE in red. a Left elbow joint. b Right elbow joint. c Left knee 
joint. d Right knee joint
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output window sizes. Larger output windows were associated with higher prediction 
errors, which aligns with our previous findings.

The joint trajectories predicted with an input window of 30 time steps and an output 

window of 5 time steps

Figure  7 illustrates the optimal model’s predictions for four joints throughout a com-
plete cycle. The optimal model employs a sliding window with an input size of 30 time 
steps and an output size of 5 time steps. Performance metrics for the left elbow (LEl-
bow), right elbow (RElbow), left knee (LKnee), and right knee (RKnee) are summarized 
in Table 2. These results indicate that the LSTM model effectively forecasts joint trajec-
tories, achieving an average MAE of 0.295°, an average MSE of 0.260°, and an average CC 
of 99.938%. The best performance was observed with input and output window sizes of 
30 and 5 time steps, respectively.

Discussion
In this study, our objective was to develop and evaluate an LSTM autoencoder model 
to predict trajectories of 4 motion variables (Y1,Y2,Y3,Y4) , exploring the feasibility of 
accurately predicting infant crawling trajectories. To our knowledge, this research 
represents the first application of deep learning models to predict crawling trajecto-
ries in infants. LSTM, a type of gated recurrent network, was chosen for this task due 
to its proven success in handling sequential data [23]. The key advantage of LSTM is 

Fig. 6 With an input window fixed at 30 time steps, the model’s performance varies across different output 
window sizes. MAE is represented in black, and MSE in red. a Left elbow joint. b Right elbow joint. c Left knee 
joint. d Right knee joint
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its ability to account for the order of values in input sequences, enabling it to learn 
long-term dependencies [23]. Our results demonstrate that LSTM models can effec-
tively predict changes in elbow and knee joint angles (e.g., Fig. 7). The optimal per-
formance for both joints was achieved with input–output window sizes of 30 and 5 
time steps, respectively, resulting in an MAE of 0.295°, an MSE of 0.260°, and a cor-
relation coefficient (CC) of 99.938%. These findings suggest that incorporating LSTM-
based predictions into assistive device controllers could improve their functionality 
by adding a feedforward component, thus reducing dependence on feedback mecha-
nisms [28]. This integration would allow assistive devices to better adapt to changes 
in crawling patterns, enhancing alignment with the user’s intent and minimizing 
interruptions during movement transitions [29–32]. Furthermore, predicting future 

Fig. 7 Joint trajectories were predicted with an input window of 30 time steps and an output window of 5 
time steps. The figure displays predicted trajectories (in red) and actual trajectories (in black) for (a) left elbow 
joint angle, (b) right elbow joint angle, (c) left knee joint angle, and (d) right knee joint angle

Table 2 Model’s performance metrics across specific joints using an input window of 30 time steps 
and an output window of 5 time steps

Joints MAE (deg) MSE(deg) CC (%)

LElbow 0.332 0.273 99.935

RElbow 0.280 0.203 99.959

LKnee 0.280 0.229 99.935

RKnee 0.287 0.333 99.923

Average 0.295 0.260 99.938
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trajectories could help monitor the risk of imbalance and falls, facilitating early inter-
vention through remote alerts [33–37].

In assistive device control systems, it is essential to strike a balance between prediction 
accuracy and processing speed. The input window should be large enough to ensure reli-
able predictions but not so large that it slows down the system. While previous research 
by Banos et al. recommended a 1–2 s window for human activity recognition [38], no 
specific guidelines exist for predicting infant motion trajectories. To fill this gap, we 
tested various input window sizes to determine the optimal predictive model. Initially, 
we varied the input window between 10 and 100 time steps, keeping the output win-
dow fixed at 5 time steps. As shown in Fig.  5, the MAE for elbow joints ranged from 
0.295° (with a 30-time-step input window) to 0.382° (with a 70-time-step input window). 
Similarly, MSE ranged from 0.260° (30-time-step input window) to 0.430° (70-time-step 
input window), and the correlation coefficient (CC) ranged from 99.915% (70-time-step 
input window) to 99.941% (20-time-step input window). These results show that the 
input window size had minimal impact on LSTM model accuracy, with an optimal input 
window of around 30 time steps and a poorer performance observed with a 70-time-
step input window. This aligns with existing literature indicating that prediction errors 
increase when the input window exceeds 30 time steps [23]. Subsequently, as shown 
in Fig. 1, we further tested different output window sizes by varying the input window 
between 10 and 100 time steps while fixing the output window at 10 and 15 time steps. 
The results confirmed that the optimal input window remained 30 time steps, but a 
5-time-step output window provided better performance, as evidenced by lower MAE 
(0.295°), MSE (0.260°), and higher CC (99.941%) compared to the 10-time-step and 
15-time-step output windows. This contrasts with findings by Kolaghassi et  al., which 
suggested that longer input windows reduce prediction errors when the output window 
exceeds 12 time steps [39].

In addition, we assessed the impact of output window size on model accuracy. With a 
fixed input window of 30 time steps, varying the output window size from 5 to 15 time 
steps revealed a significant decline in performance as the output window increased, 
evidenced by a rise in MAE and MSE for both the elbow and knee joints (Fig. 6). We 
observed that model performance declined significantly as the output window increased, 
as evidenced by a marked rise in MAE and MSE for the bilateral elbow and knee joints. 
These results support our previous findings and suggest that output windows larger than 
five time steps may not be reliable for predicting crawling trajectories. To address this 
challenge, alternative deep learning models, such as bidirectional LSTM [40], or hybrid 
approaches could offer potential solutions for improving predictive accuracy over longer 
time frames.

Several limitations are acknowledged in this study. First, the differences between actual 
and predicted trajectories (particularly those shown in Fig. 7d) are more significant than 
the mean absolute error suggests. It is difficult to determine whether this discrepancy 
is due to the model’s inability to generalize certain crawling patterns or potential issues 
with the sample data, such as sensor inaccuracies or labeling errors. Data collection 
in infants is inherently challenging, leading to a limited data set. Although the current 
study includes 20 healthy infants, this small sample size may affect the generalizabil-
ity of the results. To improve the model’s reliability and applicability, we recommend 
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expanding the data set to include a more diverse population, especially infants with 
motor impairments. A larger and more varied data set would help ensure that the LSTM 
model generalizes well to a broader range of crawling behaviors, including both typically 
developing infants and those undergoing rehabilitation. Second, crawling patterns vary 
significantly among infants, particularly in those with motor impairments. This study 
primarily focuses on healthy infants, whose crawling trajectories may not fully reflect 
the complexity and variability seen in infants with developmental delays or physical 
disabilities. Future research should include a broader spectrum of crawling behaviors, 
particularly those affected by conditions, such as cerebral palsy or other motor impair-
ments. Expanding participant diversity would improve the model’s ability to predict tra-
jectories beyond five time steps, supported by a more comprehensive validation set. This 
approach would also help optimize training epochs and reduce the risk of overfitting 
[41]. Finally, while the use of LSTM networks for trajectory prediction in controlled set-
tings shows promise, several challenges remain when applying them to real-world sce-
narios, particularly in controlling assistive crawling devices. Real-world environments 
involve dynamic factors, such as uneven surfaces, obstacles, or external disturbances, 
which can significantly alter crawling patterns. In addition, changes in an infant’s pos-
ture, fatigue, or motivation during rehabilitation may further complicate prediction. To 
address these challenges, future research should focus on integrating real-time sensor 
data and adaptive algorithms to ensure that the system remains robust and responsive 
in real-world settings. Moreover, designing an assistive device that can adjust to fluctua-
tions in crawling behavior is essential for effective rehabilitation.

Conclusions
In summary, this study designed a framework for predicting infant crawling motion tra-
jectories using an LSTM network, confirming the feasibility of predicting joint motion 
trajectories during infant crawling. In addition, we explored various input and output 
window sizes to quantify how performance is influenced by input data volume and future 
horizon length. The experimental results show that the LSTM model can accurately pre-
dict the elbow and knee trajectory with an average mean square error (MAE = 0.295°, 
MSE = 0.260°, CC = 99.938%), while the optimal performance was observed with input–
output window sizes of 30 and 5 time steps, respectively. A potential application of our 
method is in the control of crawling rehabilitation devices, where predicted model tra-
jectories can serve as proxies for user intent. These intents can be integrated into the 
control hierarchy of exoskeletons, particularly in high-level control, which detects user 
intentions and passes them to lower levels to generate appropriate motion commands, 
potentially enhancing clinical rehabilitation outcomes for infants with conditions like 
cerebral palsy.

Methods
Participants

Twenty healthy infants (11 males and 9 females, aged 8–15 months) were recruited from 
local child health clinics. All participants were full-term births and had no reported neu-
rological impairments during the neonatal period, as confirmed by their parents [42]. 
Kinematic data were captured using a motion capture system (Raptor-E, Motion Analysis 
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Corporation, USA) with six high-speed digital cameras operating at 100 frames per second. 
During recordings, infants wore only diapers, and reflective markers were placed on spe-
cific anatomical landmarks: shoulders (lateral to the acromion), elbows (lateral epicondyle), 
wrists (ulnar styloid process), hips (posterior superior iliac spine), knees (lateral joint line), 
ankles (lateral malleolus), and trunk (shoulder blade).

Before data collection, infants had a warm-up period on a crawling mat measuring 
360 cm × 120 cm. They were encouraged to crawl toward toys or in response to their moth-
er’s calls (as shown in Fig. 8). A valid trial was defined as a continuous sequence of at least 
three complete and consecutive strides. Only straight crawling sequences without interrup-
tions or deviations were included in the analysis. The initial and final steps of each sequence 
were excluded. Crawling cycles were defined based on the landing time of the right wrist 
joint, resulting in 582 valid cycles. Each cycle was uniformly resampled to cover 0–100% of 
the crawling cycle, yielding a total of 58, 782 time steps for analysis.

The experiments were conducted at the Department of Rehabilitation Center, Children’s 
Hospital of Chongqing Medical University. The study was approved by the hospital’s Eth-
ics Committee (Approval number: 065/2011), and informed written consent was obtained 
from the parents or legal guardians of all participating infants.

Data processing

Given that the elbow and knee dominate the rhythmical flexion and extension of limbs 
during crawling on hands and knees, In the current study, joint angles of elbow and knee 
were calculated primarily using three-dimensional coordinate data of adjacent joints in 
space (displacement in x , y , and z directions). For instance, the elbow joint angle is the angle 
formed by the lines connecting the wrist, elbow, and shoulder joints. Similarly, the knee 
joint angle is determined by the lines connecting the hip, knee, and ankle joints.

As depicted in Fig. 9, we constructed spatial vectors to determine these angles. For the 
elbow joint, we used the coordinates of the shoulder joint ( Sx,Sy,Sz ), elbow joint ( Ex,Ey,Ez ), 
and wrist joint ( Wx,Wy,Wz ) to form vectors in the elbow–wrist direction ( ES) and elbow–
shoulder direction ( EW):

(1)ES = (Sx − Ex, Sy − Ey, Sz − Ez)

Fig. 8 Placement of the reflective markers and snapshot of data collection



Page 13 of 19Mo et al. BioMedical Engineering OnLine           (2025) 24:39  

Accordingly, the calculation of the elbow joint angle can be directly determined by the 
angle between the spatial vectors ES and EW  as follows:

Here, the coordinates ( Sx,Sy,Sz ) and ( Ex,Ey,Ez ) represent the positions of the shoulder 
and elbow joints in three-dimensional space, while ( Wx,Wy,Wz ) represent the wrist joint’s 
position. This approach ensures a precise determination of joint angles based on their 
spatial arrangement.

Time series transformation to a supervised learning problem

As we mentioned before, the crawling motion cycles were defined by computing the 
squared time derivative of the positions (squared of velocity) of the wrist [43], result-
ing in 582 valid crawling cycles. Each cycle was resampled into 0–100% of the crawling 
cycle, totaling 58, 782 time steps. Each time step included four joint angles, as shown in 
Fig. 10, leading to a data set with 58, 782 rows and 4 columns (Y1,Y2,Y3,Y4) . We divided 
the data set into two parts: 70% for training to optimize model parameters and 30% for 
testing to assess the model’s predictive performance.

The LSTM takes as input 4 parallel feature variables (crawling joint angles) and out-
puts predictions for the subsequent 4 parallel feature variables (crawling joint angles). As 
shown in Fig. 11, to accommodate the LSTM’s requirement for fixed-length sequences, 
we applied a sliding window approach to generate these sequences. This approach 
involves creating input and output windows of fixed length, with the input window pro-
viding the data for the model and the output window containing the future predictions. 

(2)EW = (Wx − Ex,Wy − Ey,Wz − Ez)

(3)cosθ =
ES · EW

| ES || EW |

(4)

θ = arccos
(Sx − Ex)× (Wx − Ex)+ (Sy − Ey)× (Wy − Ey)+ (Sz − Ez)× (Wz − Ez)

√

((Sx − Ex))
2 + (Sy − Ey)

2+(Sz − Ez)
2 ×

√

(Wx − Ex)
2 + (Wy − Ey)

2 + (Wz − Ez)
2
×

180

π

Fig. 9 Illustration of the calculation of elbow joint angles during infant crawling
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That is, the input window serves as the input data for the LSTM model, while the output 
window represents the LSTM model’s future prediction output. Each input window cor-
responds to an output window (the target label for training), forming one training sam-
ple. The sliding size, which denotes the distance from the start of one sample to the start 
of the next, always equals the step size of the output window.

In the current study, we used LSTM to forecast elbow and knee trajectories based on var-
ying input and output window sizes. Input window sizes for the LSTM were 10, 15, 20, 30, 
40, 50, 70, and 100 time steps (for data captured at a sampling frequency of 100 Hz, these 
durations correspond to 100, 150, 200, 300, 400, 500, 700, and 1000 ms). The reason for 

Fig. 10 Typical trajectories of the elbow and knee angles during a single crawling cycle

Fig. 11 Schematic diagram of current and past joint angle trajectories to predict future joint angles during 
infant crawling. The sliding window consists of an input window, an output window, and a sliding step. Both 
windows comprise a set number of time steps and features
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using input window sizes up to 1000 ms is the average length of a crawling cycle for a typi-
cally developing infant [42]. This means we trained deep learning models to make predic-
tions based on data from approximately one full crawling cycle, or lower. Output window 
sizes for the LSTM were 5, 10, and 15 time steps) (corresponding to 50, 100, and 150 ms), 
allowing us to forecast up to 15% of the crawling cycle.

LSTM neural network

LSTM (long–short-term memory) networks are a specialized type of recurrent neural net-
work designed to address some limitations of traditional models. While conventional recur-
rent neural networks are effective for processing sequential data, they often struggle with 
problems, such as gradient vanishing and exploding, which hinder their ability to capture 
long-term dependencies. LSTM networks enhance traditional models by incorporating a 
unique structure that includes a cell state and three gates: the forget gate, input gate, and 
output gate. These components work together to dynamically adjust the network’s weights, 
overcoming the issues of gradient vanishing and exploding. This design allows LSTMs to 
maintain both long-term and short-term memory effectively [44]. The structure of the 
LSTM model is illustrated in Fig. 12.

Below, we describe the structure of the three gates in the LSTM model [17].
Forget Gate: The forget gate examines the current time step’s input, denoted as xt , and the 

output from the previous time step, denoted as ht−1 . When ft = 0 , the gate discards the 
read information; conversely, when ft = 1 , it preserves the read information. The calcula-
tion formula is

In the equation, σ denotes the sigmoid activation function, Wf  represents the weight 
matrix of the forget gate, and bf  is the bias term.

Input Gate: The input gate determines which new input information to store in the neu-
ron. It starts by creating a candidate cell state ˜Ct , and then updates this state using the input 
gate it . Subsequently, new information is added to the cell state. The specific formula is as 
follows:

(5)ft = σ

(

Wf · [ht−1, xt ]+ bf
)

Fig. 12 Architecture of the LSTM network used in this study



Page 16 of 19Mo et al. BioMedical Engineering OnLine           (2025) 24:39 

In the equation above, Wc denotes the weight matrix of the cell state, bc represents the 
bias term of the cell state, Wi signifies the weight matrix of the input gate, and bi denotes 
the bias term of the input gate.

Output Gate: The output gate uses the cell state to determine the final output ht . It first 
processes the current input xt and the previous output ht−1 . Then, it multiplies these 
values by the cell state processed by the tanh layer to produce the ultimate output ht . The 
specific formula is as follows:

In this formula, Wo represents the weight matrix of the output gate, and bo denotes the 
bias term of the output gate.

Details of LSTM network implementation

This study employs an autoencoder LSTM model, which consists of an encoder and a 
decoder [31]. The encoder converts input vectors of variable length into fixed-length fea-
ture vectors that capture the essential attributes of the input. The decoder then recon-
structs these fixed-length vectors back into variable-length outputs (as shown in Fig. 13). 
The final layer consists of a fully connected layer for prediction output. At the end of 
each batch, the Adam optimization algorithm [45] is employed with mean absolute error 
(MAE) as the optimization criterion to update network weights and biases. Each batch 
contains 64 input/output windows, and ReLU activation functions are applied to all 
LSTM layers [46]. The LSTM autoencoder model was implemented using Python 3 with 
libraries including PyTorch, NumPy, Pandas, and Scikit-learn.

(6)˜Ct = tanh(Wc · [ht−1, xt ]+ bc)

(7)it = σ(Wi · [ht−1, xt ]+ bi)

(8)Ct = ft × Ct−1 + it × ˜Ct

(9)ot = σ(Wo · [ht−1, xt ]+ bo)

(10)ht = ot × tanh(Ct)

Fig. 13 General structure of the prediction algorithm using the LSTM model with exogenous inputs
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Evaluation metrics

To assess network quality, three parameters are considered to quantify the proximity 
between the predicted variable trajectories ŷ(Y1,Y2,Y3,Y4) and the actual variable tra-
jectories yj(Y1,Y2,Y3,Y4) across the n samples. These calculations are performed after 
de-standardizing the predicted trajectories (i.e., rescaling them back to their original 
range). The formula is as follows:

Mean absolute error (MAE):

Mean squared error (MSE):

The correlation coefficient (CC) is given as

where std() is the standard deviation and cov(y, ŷ) is the covariance between variables y 
and ŷ.

These metrics are used to evaluate and compare the performance of the network we 
implemented, and the results were presented in “Results” section.

Abbreviations
LSTM  Long–short-term memory
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∣

∣

(12)MSE =
1

n

∑n

j=1

(

yj − ŷj
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