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Abstract 

Objective: Using the phase synchronization of EEG signals, two different phases, PLI 
and PLV, were used to construct brain network analysis and graph convolutional neural 
network, respectively, to achieve automatic identification of Alzheimer’s disease (AD) 
and to assist in the early diagnosis of Alzheimer’s disease.

Methods: In this paper, we selected outpatients (16 AD subjects, 20 mild cognitive 
impairment (MCI) subjects and 21 healthy control (HC) subjects) from the outpa-
tient clinic of Yangpu Mental Health Center in Shanghai, China, from January 2023 
to December 2023, and collected resting-state EEG data. To collect resting-state 
EEG data, each patient was asked to sit down with eyes closed for 5 min. Firstly, 
the acquired EEG data were preprocessed to extract the data in the α-band at 8–13 Hz; 
secondly, the phase lag index (PLI) and phase-locked value (PLV) were used to con-
struct the brain functional network, and the brain functional connectivity map was vis-
ualized by brain functional connectivity analysis. Finally, the constructed PLI and PLV 
were input into the graph convolutional neural network (GCN) model as node features 
for training and classification, respectively.

Results: Healthy controls had relatively strong mean brain functional connectivity 
in the PLV brain network compared to AD and MCI patients. MCI patients showed 
lower mean brain functional connectivity in the brain network of PLI, while all three 
groups showed significant differences in brain functional connectivity between pari-
etal and occipital lobes. The GCN model improved classification accuracy by more 
than 10% compared to using a machine learning classifier. When PLV was used 
as the nodal feature in the GCN model, the model achieved an average classification 
accuracy of 77.80% for the three groups of AD, MCI and HC, which was an improve-
ment over the accuracy of choosing raw EEG data and PLI as the nodal feature. The 
performance of the model was further validated.

Conclusions: The experimental results show that the GCN model can effectively 
identify the graph structure compared with the traditional machine learning model, 
the GCN-PLV model can better classify AD patients, and the alpha band is proved to be 
more suitable for AD resting-state EEG by tenfold cross-validation. The brain network 
map constructed based on PLI and PLV can further capture the local features of EEG 
signals and the intrinsic functional relationships between brain regions, and the combi-
nation of these two models has certain reference value for the diagnosis of AD patients.
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Introduction
In this study, in order to solve the difficulty of early AD diagnosis, EEG phase synchroni-
zation is used through the combination of brain network and deep learning in order to 
achieve the purpose of assisted diagnosis. The following is the current status of research 
at home and abroad of the study: Alzheimer’s disease (AD) is a common neurodegenera-
tive disease in the elderly, currently affecting approximately 51.6 million people world-
wide [1]. This number is expected to reach 132 million by the middle of the twenty-first 
century [2]. With a 146.2% increase in mortality in the last decade [3], AD has become a 
major threat to the life and health of people over 65 years of age. At the same time, the 
global cost of treatment is $1 trillion and is expected to increase to $2 trillion by 2030 [4]. 
This imposes a huge overhead on both the patient’s family and the national treasury. In 
its early clinical stages, Alzheimer’s disease is referred to as mild cognitive impairment 
(MCI), progressing to AD, in which patients exhibit symptoms consistent with normal 
aging. In order to accurately diagnose the MCI stage, histologic analyses of the brain 
or other complex tests are required, which can be extremely difficult for older patients. 
Therefore, predicting the transition from MCI to AD is the focus of today’s research. 
Current methods for AD diagnosis include neuropsychological tests, brain imaging, and 
cerebrospinal fluid examination [5–7]. However, these observations and assessments can 
be subjective and imprecise and the price of imaging equipment is often expensive. All 
the above three have limitations in the diagnosis and screening of Alzheimer’s disease, 
while EEG has become a low-cost, non-invasive and usable tool, a real-time recording of 
the internal brain activity, which is widely used in the diagnosis of mental disorders, and 
provides a reference and reference for the early diagnosis of Alzheimer’s disease [8].

Brain network analysis is a technological advancement in the field of neuroscience that 
can provide richer information about the functional state of the brain by measuring the 
connectivity between different regions of the brain [9]. Functional brain networks are 
complex networks of brain regions that are interconnected and work together to per-
form different cognitive functions. These networks have been extensively studied in the 
field of neuroscience. In recent years, with the continuous advancement of technology, 
researchers can use techniques such as EEG or functional magnetic resonance imaging 
to study these networks [10]. Some important advances have been made in the study 
of functional brain networks, such as the discovery of many brain regions with differ-
ent cognitive functions and that the connections between these regions can predict an 
individual’s behavioral and cognitive performance [11]. Combining EEG and functional 
brain networks to diagnose AD is a more comprehensive approach, and by analyz-
ing both EEG signals and functional brain networks, researchers can more accurately 
identify a patient’s cognitive function and stage. Phase synchronization in the study of 
EEG signals can effectively deal with EEG signals affected by changes in synchroniza-
tion amplitude caused by activities such as eye movements; Handayani et al. [12] found 
that the brain synchronization of MCI patients was generally lower than that of healthy 
subjects using phase synchronization analysis. Jalili et  al. [13] revealed a specific syn-
chronization by whole-head mapping in the early stages of Alzheimer’s disease, which 
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was characterized by a decrease in phase synchronization in frontotemporal regions and 
an increase in synchronization in temporal parieto-occipital regions of the left hemi-
sphere. In addition, anterior–posterior cluster phase synchrony was correlated with 
Mini-Mental State Examination scores, linking cognitive decline in AD patients to 
regional EEG. Knyazeva et  al. [14] showed alterations in functional and effective EEG 
connectivity between the frontoparietal and frontotemporal lobes. The results suggest 
that resting-state EEG rhythms reflect abnormalities in cortical neural synchronization 
and coupling in both prodromal and dominant subjects with AD, possibly reflecting dys-
functional neuroplasticity of neurotransmission in remote cortical networks. Phase syn-
chronization in the study of EEG signals can effectively deal with EEG signals affected by 
synchronized amplitude changes caused by activities such as eye movements. And the 
application of phase synchronization principle in brain networks is mainly reflected in 
the study of brain network connectivity, neural oscillations, and the integration of brain 
networks during task execution. Through phase synchronization analysis, the func-
tional connectivity and network dynamics between different brain regions can be inves-
tigated, which is crucial for understanding how the brain coordinates different regions 
to support cognitive functions [15]. Zheng et  al. [16] analyzed resting-state EEG data 
from 36 AD patients and 29 healthy controls using time–frequency and band-pass fil-
tered FC metrics. These metrics were estimated by Pearson’s correlation, and PLI, and 
used as input features for support vector machines (SVM). The results showed a sig-
nificant decrease of functional connectivity in the frontal theta band and a significant 
increase of functional connectivity in the occipital beta band in AD patients. In addition, 
a decrease in FC in the central region of the theta band was observed only in AD, and 
SVM achieved 95% classification accuracy for AD and 86% for HC. Hasoon et al. [17] 
used PLI on 66 MCI and 25 AD cases to estimate functional connectivity as well as to 
analyze dominant frequency and relative band power. A network-based statistical toolkit 
was used to assess differences in network topology. Finally, the classification accuracy of 
AD by machine learning is 86%. It is clear from the above literature that brain network 
analysis and phase synchronization have been done separately by researchers. There are 
fewer studies related to combining the two through deep learning triple classification. 
In this paper, for the first time, the two studies are combined to triple classify AD, MCI, 
and HC through phase synchronicity using the GCN model. Based on phase synchroni-
zation, it can not only help us understand the exchange and integration of information 
between different regions of the brain, but also reveal changes in the activity of brain 
regions when the brain receives instructions. Moreover, phase changes in the oscillatory 
components of EEG signals at different frequencies can provide information about brain 
states and disease characteristics, leading to an understanding of the brain’s activity pat-
terns and functional connectivity in different states.

In summary, phase synchrony plays a key role in brain networks, which not only helps 
us to understand the activity patterns and functional connectivity of the brain in dif-
ferent states, but also provides an important tool for us to analyze how the brain coor-
dinates different regions to support cognitive functions. Currently, there are not many 
studies combining the GCN model with brain networks, so this study innovatively com-
bines the two with phase synchrony. Firstly, functional brain networks were constructed 
by EEG in terms of PLI and PLV, and the differences in functional connectivity among 
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the three groups were derived from statistical analysis of the functional connectivity 
under the same thresholds while locating to the specific electrodes. Secondly, based on 
the characteristics of graph convolutional neural network, the accuracy of GCN model 
was compared with machine learning classifiers, respectively; the classification accuracy 
under using PLI and PLV as well as raw EEG as the node features was compared in GCN 
model. Finally, tenfold cross-validation is used to verify the performance of the model 
under different frequency bands. A three-level classification of Alzheimer’s disease 
patients, mild cognitive impairment patients, and healthy controls is achieved, providing 
a new approach for early assisted diagnosis of AD.

Results
Visual brain network

In this study, functional connectivity matrices constructed based on the above two 
methods were visualized by using Matlab. The average PLI and PLV matrices of the 
three groups were used to generate brain network maps. As shown in Fig.  1, Brain-
net software was used to map the brain network of the three groups of people based 
on PLI, from which it can be seen that the threshold range of PLI is between 0.32 and 
0.39. Brain connectivity can be found to be generally higher from the AD group, espe-
cially in specific brain regions such as the parietal and occipital lobes, which may be 
related to the pathogenesis of AD. As shown in Fig. 2, Channels with significant PLI vari-
ability were extracted, in the comparison among the three groups (p < 0.05). As shown 
in Table 3, At the O1-P3 electrodes, the MCI group had fewer and sparser functional 
connections compared with the AD and HC groups. This indicated that the strength of 
functional connectivity was worse in MCI in the same threshold range, while both AD 
and HC groups were strongly correlated and they had more connections. Specifically, 
the HC group showed stronger connections between the parietal and occipital lobes. In 
contrast, the MCI groups exhibited a relative lack of strong connections between these 
brain regions.

As shown in Fig. 3, Brainnet software was used to map the brain network of the three 
groups of people based on PLV, from which it can be seen that the threshold range of 
PLV is between 0.63 and 0.89. Brain connectivity can be found to be generally higher 
from the HC group, especially in specific brain regions such as the parietal and occipital 
lobes. As shown in Fig. 4, Channels with significant PLV variability were extracted, when 

Fig. 1 PLI visual brain network of AD, MCI and HC groups
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comparing the three groups (p < 0.05). As shown in Table 5, At the FP2-CZ electrode, the 
HC group had more and denser functional connectivity compared to the AD and MCI 
groups. This suggests that in the same threshold range, the functional connectivity of 

Fig. 2 Channels with significant differences—PLI

Fig. 3 PLV visual brain network of AD, MCI and HC groups

Fig. 4 Channels with significant differences—PLV



Page 6 of 21Cao et al. BioMedical Engineering OnLine           (2025) 24:32 

HC was better in terms of strength, whereas the connectivity of AD and MCI groups was 
less and all of them were weakly correlated. Specifically, the HC group showed stronger 
connections between the parietal and frontal lobes. In contrast, the AD group showed a 
relative lack of connectivity between these brain regions. The MCI and HC groups were 
closer only in terms of a lack of relatively strong connectivity between brain regions. 
PLV and PLI brain network analyses were in agreement with the results.

Classification performance

We used the GCN model to categorize and recognize the three groups of AD, MCI and 
HC, and the framework structure is shown in Fig. 5. In this paper, we divided the data-
set into three subsets for training, validation and testing. The ratio of training set, test 
set, validation set division in the manuscript is 7:3:1. Specifically, 45 instances of data 
samples were randomly selected and assigned to the training set, while the remaining 
12 instances were assigned to the test set. In the training set, a further 5 instances of 
samples are separated as the validation dataset. This partitioning strategy ensures that 
the model can be trained on most of the data (40 instances), while also having a sepa-
rate validation set (5 instances) for monitoring the model performance and performing 
hyper-parameter tuning during training.

In this paper, we choose three common metrics: accuracy (ACC), sensitivity (SEN), 
F1-score, recall (REC) to evaluate the model key metrics. Accuracy reflects the ability of 
the model to correctly judge the overall samples, and the larger its value, the better the 
performance. Sensitivity reflects the ability of the classifier or model to correctly predict 
negative samples, the larger the value the better the performance; the same is true for the 
F1-score. It is defined as follows: (ACC = (TP + TN)/ (TP + FN + TN + FP), SEN = TP/ 
(TP + FN), F1-score = (2 × SEN × REC)/ (SEN + REC), and REC = TP/ (TP + FP) where 
TP, TN, FP, and FN are true positive, true negative, false positive, and false negative, 
respectively. Since EEG is a non-stationary random signal with low signal-to-noise ratio, 
and the use of different features can significantly affect the classification results. In this 
paper, we explore the changes in the results of brain networks for its classification under 
different phases. The raw EEG is added to the model as a comparison, raw EEG is here 
the pre-processed EEG. The results are shown in Table 1. When the original EEG signal 
is selected as the node feature, the classification accuracy of the GCN model is 72.00%, 
the sensitivity 69.70%, the F1-score 68.50%, and the recall 65.12%; when the PLI is 

Fig. 5 Structure diagram of convolutional network model applicable to three classifications
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selected as the node feature, the classification accuracy of the GCN model is 74.43%, the 
sensitivity 70.67%, the F1-score 72.78%, and the recall 63.88%; when the PLV is selected 
as the node feature, the classification accuracy is 77.80%, sensitivity 73.43%, F1-score 
74.64% and the recall 70.40%. It can be seen that the classification accuracy is highest 
when PLV is selected as the node feature, which further indicates that the selection of 
node features under the graph structure with phase synchronization has a significant 
impact on the network model accuracy.

The training loss for datasets is shown in Fig. 6. The training loss initially decreases 
rapidly, indicating that the model is effectively learning from the training data. After a 
certain number of iterations, the training loss plateaus, indicating that the model has 
reached a point of saturation.

Finally, we compare the classification accuracy of the GCN model with other machine 
learning models, and the results are shown in Fig. 7. From the figure, we can conclude 
that the classification accuracy, specificity, F1-score and recall of AD and MCI patients 
and healthy people under the GCN model are 77.80%, 73.43%, 70.40%, and 74.64%, 
respectively, which is more than 10% higher than that of the GCN model compared to 
classifying them with machine learning classifiers, respectively. It shows that the graph 
structure can better distinguish between phase-synchronous brain networks and better 
classify the three groups of people.

Table 1 Experimental results of the GCN model

Model ACC SEN REC F1-score

GCN-EEG 72.00% 69.70% 65.12% 68.50%

GCN-PLI 74.43% 70.67% 63.88% 72.78%

GCN-PLV 77.80% 73.43% 70.40% 74.64%

Fig. 6 GCN training loss function
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Cross-validation model evaluation

In order to validate the performance of the model and at the same time reduce the influ-
ence of chance error and experimental error on the results, this study conducted a ten-
fold cross-validation and confusion matrix to evaluate the model. In this paper, tenfold 
cross-validation was first selected to analyze the stability of the model. In order to bet-
ter understand the properties of EEG signals in different frequency bands, we further 
subdivided the preprocessed EEG signals into four sub-bands, namely, Delta (0.5-4Hz), 
Theta (4-8Hz), Alpha (8-13Hz) and Beta (13-30Hz). The whole dataset was randomly 
divided into 10 copies, 9 copies were used in the training phase of each model and the 
rest were used for testing. Each band represents the activity of EEG signals at different 
frequencies, which is an important reference for the diagnosis of AD. In order to visual-
ize the performance of the model on each band, as shown in Fig. 8, the EEG signals are 
frequency-divided by a Butterworth filter after each segmentation of the dataset, and 

Fig. 7 Comparison of GCN and machine learning classification accuracy

Fig. 8 Tenfold cross-validation plots in different frequency bands
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the training tests are performed separately while keeping the parameters of the model 
unchanged. From the figure, it can be seen that, among them, Alpha has the best perfor-
mance in the sub-band, with an average classification accuracy of 76.80%, which proves 
that the Alpha band is the best for distinguishing the AD in the resting state. This is con-
sistent with the GCN model classification above.

Secondly, the confusion matrix is used to evaluate the model performance. The final 
results consisted of the number of correct predictions, with 0 indicating AD, 1 indicat-
ing MCI, and 2 indicating HC. Due to the fact that the EEG of 2 MCI patients was not 
able to reach the signal quality required for use even after pre-processing, only 18 MCI 
patients were used here, participating in the evaluation of the confusion matrix. The 
results showed that 16 cases of AD, 18 cases of MCI, and 21 cases of HC were used 
in the confusion matrix. It is clear from the classification of AD that of the 16 cases of 
the patients, 12 patients were correctly classified, 3 cases were predicted as MCI, and 
1 was predicted to be HC. From the classification of HC it is clear that of the 21 cases, 
19 patients were correctly classified, 1 patient was predicted to be MCI, and 1 patient 
was predicted to be HC. Since only 18 patients with MCI were used, of the 18 patients, 
14 patients were correctly classified, 3 patients were predicted to be AD, and 1 patient 
was predicted to be HC. So the confusion matrix correctly classified with the number of 
people remained consistent. The model confusion matrix is shown in Fig. 9. Due to the 
uneven proportions of AD, MCI, and HC subjects in the sample, which may have had 
some impact on the results, although there were a certain number of outliers for each 
indicator, the results of multiple runs of the model performed excellently, and the model 
runs yielded high levels of realism in the results.

Fig. 9 The confusion matrix obtained in the GCN model
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Discussion
In this study, we investigated the effects of brain network features under phase synchro-
nization on the classification of cognitive impairment in three groups of people based 
on resting-state EEG data. Firstly, the EEG data were preprocessed to obtain purer EEG 
data. Secondly, the neighborhood matrix was obtained by calculating based on the phase 
features PLI and PLV, and the brain network was constructed, and through statistical 
analysis we found that the brain networks of the three groups differed significantly in the 
memory function of specific brain regions, and this brain network variability was sig-
nificantly correlated with the reduction of cognitive function. In PLV, the average brain 
function connectivity was stronger in HC group. In PLI, the MCI group exhibited lower 
mean brain functional connectivity. And the differences in brain functional connectivity 
among the three groups were mainly between the parietal and occipital lobes. Brain net-
works can be mined for cognitive memory features from the information flow, topology, 
and local features of the orientated brain network [18], reflecting both the connectivity 
relationship between nodes and the degree of interaction between nodes [19], so as to 
explore the effects of different populations on brain networks under resting tasks for the 
difference analysis of AD, MCI, and HC brain networks [14]. Last, the brain network 
performance of the three populations was classified and evaluated using GCN, which 
unlike previous studies, classified AD, MCI, and HC into three sets of classes, and the 
GCN model increased the triple classification accuracy by more than 10% compared to 
using machine learning classifiers. Meanwhile, the original data, PLI and PLV were used 
as inputs for the node features of the model, respectively, and when PLV was used as a 
node feature in the GCN model, the model achieved an average classification accuracy 
of 77.80% for the triple groups of AD, MCI and HC, which was an improvement over 
the accuracy of choosing the original EEG data and PLI as node features. Finally, ten-
fold cross-validation was performed on different frequency bands, respectively, and the 
results showed that the accuracy rate of α-band was the highest. The performance of the 
model was further validated. It shows that our research programme is feasible.

Some of the early relevant studies are listed below: Khazaee et al. [20] performed 
multivariate Granger causality analysis by using machine learning on resting-state 
data from 34 cases of AD, 89 cases of MCI, and 45 cases of HC to calculate each 
directed graph measure. A classification accuracy of 73.3% was achieved for AD, MCI 
and HC using optimal features and Bayesian classifier Parisot et al. [21]. In this paper, 
we present a comprehensive evaluation of a generalized framework that can be used 
for brain analysis of large populations. The framework utilizes graph convolutional 
networks, and represents the population as a sparse graph where its nodes are associ-
ated with imaging-based feature vectors and phenotypic information is pooled into 
edge weights. The performance of the framework was tested on two large datasets 
(ABIDE and ADNI) with different underlying data, and the classification accuracies 
on ABIDE and ADNI were 70.4% and 80.0%, respectively. Recent studies have shown 
that: Zhang et al. [22] calculated EEG power spectra, spectral entropy, and phase syn-
chronization index characteristics of left/right frontal, temporal, central, and occipital 
brain regions by using two groups. In most of the brain regions, significant differences 
were found in the AD group compared to the NC group. Zhou et al. [23] classified AD 
as a graph classification task using brain point data. Second, a local attention layer is 
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designed to capture and aggregate the interaction information between node neigh-
bors. And a global attention layer is introduced to capture the contribution of each 
node to the graph representation. Compared with the classical models, the experi-
mental results show that our model outperforms six classical models. Sun et al. [24] 
human study utilized EEG signals, genotypes and polygenic risk scores as features of 
machine learning models. Statistical analysis showed significant correlation between 
EEG signals and clinical presentation. Puri et al. [25] study proposed a new bi-orthog-
onal wavelet filter bank for decomposing EEG signals from HC subjects, MCI and AD 
patients into desired EEG signal bands. New design methods are proposed to reduce 
the complexity of current dual orthogonal wavelet filter banks. Three different fea-
tures are computed from each EEG signal sub-band to obtain higher accuracy. This is 
consistent with the findings of previous studies [26–31]. It can be seen from the early 
studies and the current stage that the early researchers usually use machine learn-
ing and simple GCN models for classification, while the current stage researchers pay 
more attention to mining relevant features from patients’ brain regions, so as to bet-
ter localize the specific brain regions for classification.

However, this paper still has limitations: firstly, the sample size is small; only 16 
patients with AD, 20 patients with MCI and 21 healthy controls were collected in this 
paper, totalling 57 cases. In the future, the sample data will continue to expand, and 
controlled experiments will add credibility. The second is the lack of generalizability. 
In this paper, PLI/PLV in the same step was chosen as the differentiation criterion 
between AD and MCI, but due to the large scope of the same step. Its generalizabil-
ity needs to be verified in more aspects. Subsequently, it will continue to dig deeper 
into the weighting properties in the phase synchronization characteristics and incor-
porate the model to obtain better results which are applicable to a wide range of 
generalization.

Now, some researchers are combining several indicators: Roster et  al. [32] Con-
nections between brain regions form a matrix of connections (MC). To construct the 
MC, different metrics such as Granger causality test, Pearson correlation and Spear-
man correlation metrics were used to quantify the strength of connections between 
two brain regions. Then, the generated MC was put into a convolutional neural net-
work for EEG signal classification. You et  al. [33] utilized the sequence features of 
EEG and human gait features to classify AD, MCI, and HC with a classification accu-
racy of 91.70%. This attention-based spatio-temporal graph convolutional network 
can automatically extract the features of EEG and gait data, which reduces human 
intervention and achieves better classification results. Mammone et al. [34] extracted 
the power spectral density features of EEG from 63 patients with AD, 63 patients with 
MCI, and 63 healthy controls and classified them by convolutional neural network, 
and the results showed that the accuracy of the triple classification was up to 83.3%, 
which led to the conclusion that the power spectral density can also be used as a data 
to characterize the information of cognitive impairment.

The quantification of study metrics by the above researchers in conjunction with 
the characteristics of clinical features provides us with innovative ideas for the future. 
In this paper, AD, MCI and HC were effectively identified by combining phase fea-
tures. It is important to note that our own small amount of data and discrepancies 
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between data still have their limitations. Secondly, the EEG in this paper only used 
the resting state, and lacked the task-state experimental paradigm for further com-
parison. In the future, we will continue to increase the amount of data, explore new 
task-state paradigms, combine the clinical scale features of the three groups, enrich 
the interpretability by multimodal fusion, and adjust the model parameters to include 
the attention mechanism, in order to achieve higher classification accuracy and better 
assist in the diagnosis of Alzheimer’s disease.

Conclusion
In this study, we performed brain network analysis on resting-state EEG data of AD 
patients, MCI patients and healthy controls. Two different phases based on PLI and PLV 
in the alpha frequency band were extracted to construct brain functional connectivity 
maps, and the functional connectivity analysis study revealed that the different func-
tional connectivity variability among parietal, frontal, and occipital lobes in the AD, 
MCI, and HC groups in the resting state in the three populations indicated that there 
were different degrees of differences and impairments in this brain region. Meanwhile, 
we proposed a graph convolutional neural network classification model incorporating 
phase synchronization, when PLI is used as the connectivity matrix and PLV is used 
as the node features, and verified the good performance of the model cross-validation 
and using confusion matrix on our own dataset. The experimental results show that the 
GCN model can effectively identify AD patients and achieve automatic classification 
of cognitively impaired patients, and it is better than the traditional machine learning 
model GCN. The alpha band has the highest accuracy in cross-validation, proving that 
the alpha band is more suitable for the resting-state experimental paradigm. The method 
proposed in this study has potential applications as an AD aid diagnostic tool in the clin-
ical setting, and with future improvements, it is expected to be a new means of clinical 
diagnosis of AD, with great promise for clinical applications.

Materials and methods
Research design

The research process of brain functional network analysis usually includes 3 parts: col-
lecting data, constructing brain functional networks and analyzing network proper-
ties. The overall process of this study is shown in Fig.  10. Firstly, the EEG signals are 
preprocessed to obtain pure signals. Second, the frequency domain features of the 
EEG signals were extracted, and the connection matrix was constructed based on the 

Fig. 10 Overall flowchart
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phase synchronization using both the phase lag index and the phase-locked value. Sub-
sequently, the brain network maps of three groups of people under the two methods 
were constructed by the connection matrix, and the brain network maps were visualized 
and the brain area variability was analyzed by comparison with the statistical analysis of 
functional connectivity. Finally, PLV/PLI were added to GCN as node features for clas-
sification assessment, respectively, while comparing machine learning classifiers, using 
tenfold cross-validation and confusion matrix under different frequency bands to assess 
the model.

Participants

This study was ethically reviewed by the Yangpu Mental Health Center. In this study, 
three groups of participants were evaluated for AD, MCI and HC as shown in Table 2. 
Participants were recruited from outpatients of Yangpu Mental Health Center and com-
munity centers in Shanghai. At the same time, an informed consent form is signed with 
the patient. Inclusion criteria: Han Chinese, age 60 years or older, meeting ICD-10 diag-
nostic criteria, no history of alcoholism, cerebrovascular disease, traumatic brain injury, 
intracranial tumors, intracranial infections, epilepsy, or other serious mental illnesses. 
Exclusion criteria: those who were unable to cooperate and complete the examination, 
exclusion of other mental disorders, somatic diseases, and memory disorders due to 
substance abuse, and a GDS score > 4. At least 8th grade education and fluent speech. 
Those who met the criteria were statistically evaluated by specialized physicians on 
neuropsychological test scales, including the Mini-Mental State Examination (MMSE), 
Montreal Cognitive Assessment (MoCA), Clinical Dementia Rating Clinical Dementia 
Rating (CDR). Specialized psychiatrists diagnosed AD according to the diagnostic crite-
ria of the scales and assessed the severity of AD symptoms using the scales, which were 
recorded in a quiet, closed room.

Table 2 Demographic and clinical information of the studied subjects from dataset

Diagnosis Number Age Education MMSE MoCA CDR

AD 16 77.5 ± 8.9 11.1 ± 3.6 20.5 ± 2.5 17.1 ± 3.2 0.8 ± 0.8

MCI 20 70.1 ± 7.0 11.3 ± 3.8 26.9 ± 1.8 21.7 ± 3.4 0.4 ± 0.1

HC 21 71.1 ± 6.7 12.2 ± 4.1 28.0 ± 2.0 24.9 ± 2.9 0.1 ± 0.0

Fig. 11 Schematic diagram of resting-state paradigm
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Experimental paradigm

We used Eprime 2.0 software for experimental design and editing, and designed a rest-
ing-state EEG acquisition method as shown in Fig. 11. Each patient needs to be seated 
with eyes closed for 5 min, during which no speech, fidgeting, falling asleep and other 
behaviors are allowed, and repeated twice to take the best EEG recording state. The EEG 
signals were recorded with a NeuroScan SynAmps2 amplifier at a sampling rate of 1000 
Hz, and the impedance of each electrode was kept below 10 kΩ, and the electrodes were 
placed on the scalp according to the international 10–20 system. All experimental data 
were recorded in a quiet, closed room with no bright light and moderate temperature 
and humidity. Before participating in the experiment, all participants read and signed 
the informed consent form.

EEG data set

The data used in this study were collected by myself at the Shanghai Yangpu Mental 
Health Center, and the dataset consisted of EEGs from 57 subjects, including 16 AD 
subjects, 20 MCI subjects, and 21 HC subjects. Since human cognitive abilities natu-
rally deteriorate with age [35], this study ensured that the age of AD and MCI and HC 
subjects needed to be greater than 60 years old to exclude the effect of age on the clas-
sification results. In addition, this study considered the effect of subject gender, but a 
two-sided test proved that gender differences were not statistically significant in relation 
to clinical status [36]. Subject details are shown in Table 1. Nineteen electrode positions 
(Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2) were 
selected on the scalp according to the international 10–20 system, and the closed-eye 
resting-state EEG was acquired for 300s using earlobe electrode landmark unipolar con-
nections with a sampling frequency of 1000 Hz.

In order to minimize the artifacts, the EEG signals were preprocessed. First, the 
EEGLAB toolbox in Matlab was used to band-pass filter the 19-channel EEG signals 
from 0.1 to 30 Hz. When performing high pass filtering in EEGLAB, we set the lower 
threshold frequency of 0.1Hz, and the components below the frequency will be filtered 
out. For low-pass filtering, we set an upper limit frequency of 30 Hz. Finally, trap fil-
tering is used to eliminate frequency-specific interference, which can accurately remove 
fixed-frequency noise and improve the purity of the signal. After all the filtering is done, 
we check the data of each channel to make sure that the high and low frequency noise 
has been effectively removed. Next, artifacts in the EEG signals were removed using 
the independent principal component analysis (ICA) method in the EEGLAB toolbox, 
where ICA decomposes the filtered EEG data to identify and separate the independ-
ent components. After that, the components related to the EEG activity are retained as 
needed, while the components representing interference are eliminated for the purpose 
of removing artifacts. Finally, the EEG signals were downsampled to 500Hz and A1 and 
A2 were selected as the reference electrodes, the invalid electrodes were removed and 
feature extraction was performed in the range of 60s ~ 120s, with each segment averaged 
at 2s.
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Adjacency matrix

Phase synchronization analysis is an effective method to infer brain function and neu-
ral activity based on EEG signals. In this study, we extracted the phase synchronization 
degree between two EEG signals by calculating the PLI and PLV, and thus constructed 
the neighboring matrix to build a brain network model, which consists of network nodes 
and edges between nodes, and there are three steps to build a brain network: ① define 
the network nodes: electrodes are usually selected as the nodes of the network, and dif-
ferent nodes represent different brain regions. ② Define the edges of the network: the 
edges of the network are the connectivity between the nodes, representing the connec-
tion between different brain regions. The neighbor matrix is obtained by quantifying the 
relationship between the nodes, and the weights of the edges represent the connections 
between the brain regions. ③ Selection of threshold value: by selecting a suitable thresh-
old value will be the adjacency matrix, the matrix is the brain network model obtained 
from the construction, this study by selecting two kinds of coefficients to construct dif-
ferent brain networks for better comparative analysis.

(1) Phase Lag Index (PLI) was used to quantify the functional connectivity between 
each EEG channel pair with the following equation:

PLI captures the asymmetry in the distribution of phase difference between two sig-
nals and is calculated based on the relative phase difference between the two signals. 
Where E is the expected value, where i, j are integers, sign is the sign function, φx and φy 
are the phases of the two time series x, y. The PLI varies between 0 and 1. When the PLI 
is 0, there is no phase synchronization of the two time series; when the PLI is 1, the two 
time series are perfectly synchronized with each other. According to the above equa-
tion, a 19 × 19 PLI function connectivity matrix can be obtained at each time–frequency 
point.

The neighboring matrix constructed based on the PLI method for the average of the 
three populations is shown in Fig. 12:

(2) The phase locking value (PLV) phase–amplitude coupling method analyzes the 
mutual modulation interaction between the signals of each channel [37]. Assuming 2 
different signals x(t) and y(t), their corresponding PLVs are shown in equation:

(1)PLI = |E
[

sign (φy
(

j�t
)

)
]

|.

Fig. 12 The adjacency matrix of three groups of people is constructed based on PLI method
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where i denotes the imaginary unit; φxy is the instantaneous phase difference between x 
(t) and y (t) resolved signals; φx (t) and φy (t) are the instantaneous phases of x (t) and y 
(t) resolved signals, respectively. PLV takes the value in the range of [0, 1], and there is no 
phase synchronization of the two signals when PLV = 0. When PLV = 1, the two signals 
have a stable phase difference, i.e., they are synchronized with the phase. The neighbor 
matrix of the three population averages constructed based on the PLV method is shown 
in Fig. 13.

PLI functional connection analysis

In this study, we extracted the preprocessed EEG after the onset of resting and a fre-
quency range of 8 ~ 13Hz (α band) to obtain the weighted functional adjacency matrix of 
resting correlation for each subject, as shown in Fig. 12 above. The horizontal and verti-
cal coordinates in the figure are all 19 channels, and the matrix value is the association 
strength of EEG signals between the corresponding two channels, with lighter colors 
representing larger values and stronger association strength. The PLI brain functional 
connectivity map was drawn according to the brain functional neighboring matrix, as 
shown in Fig. 14. It can be seen that the differences in PLI brain functional connectivity 
between healthy people and MCI patients are small, while the differences in AD patients 

(2)
PLV

∣

∣

∣
e
iφxy(t)
t

∣

∣

∣
=

√

cosφxy(t)
2
t + sin φxy(t)

2
t

φxy(t) = φx(t)− φy(t),

Fig. 13 The adjacency matrix of three groups of people is constructed based on PLV method

Fig. 14 PLI functional connection diagram
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are obviously weaker in the association strength between the channels at the parietal 
and occipital lobes. Among them, different color bars indicate the connection strength. 
It can be seen that the brain network established based on PLI has greater differences in 
AD patients compared to healthy people. Then, the Fisher score was used for analysis, 
and the first two features with higher scores were selected for comparison [38], as shown 
in Table  3. Statistical analysis of functional connectivity yielded that all three groups 
were statistically different, as shown in Table 4. In the PLI’s functional connectivity sta-
tistical analysis, we extracted the preprocessed EEG, quantified its 19-channel values, 
and subjected them to independent samples t-test and one-way ANOVA, respectively. 
The results showed that quantifying the 19-channel values of the three populations, the 
significance result of the independent samples t-test was P-value < 0.05 due to the fulfil-
ment of variance Chi-square, thus statistically significant, indicating a significant differ-
ence in PLI. The ANOVA result of the one-sample ANOVA test was P-value < 0.05 due 
to the fulfilment of variance Chi-square, thus statistically significant, indicating a signifi-
cant difference between the different populations.

PLV functional connection analysis

In this study, we extracted the preprocessed EEG after the onset of resting and a fre-
quency range of 8-13Hz (α-band) to obtain the weighted functional adjacency matrix 

Table 3 Comparison of PLI functional connectivity among three groups of people

Electrodes AD MCI HC P-value

O1-P3 0.3682 ± 0.009 0.3535 ± 0.012 0.3565 ± 0.019  < 0.01

C4-P4 0.3981 ± 0.010 0.3485 ± 0.015 0.3620 ± 0.022  < 0.01

F3-T5 0.3754 ± 0.007 0.3641 ± 0.011 0.3693 ± 0.018  < 0.01

Table 4 Statistical analysis results under the PLI-19 channel

PLI-19-channel Test Variance test P-value-test P-value-Var

AD 0.043 0.042 0.009 0.046

MCI 0.068 0.078 0.006 0.033

HC 0.032 0.009 0.005 0.011

Fig. 15 PLV functional connection diagram
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of resting correlation for each subject, as shown in Fig.  13. The horizontal and verti-
cal coordinates in the figure are all 19 channels, and the matrix value is the association 
strength of EEG signals between the corresponding two channels, with lighter colors 
representing larger values and stronger association strength. The PLV brain functional 
connectivity map was drawn according to the brain functional neighboring matrix, as 
shown in Fig. 15. It can be seen that the differences in PLV brain functional connectiv-
ity between AD patients and MCI patients are small, and both are significantly differ-
ent from HC, mainly concentrated between the frontal and parietal lobes. Among them, 
different color bars indicate the connection strength. It can be seen that the brain net-
work established based on PLV AD patients have larger differences compared to healthy 
people. Then, the Fisher score was used for analysis, and the first three features with 
higher scores were selected for comparison, as shown in Table 5. Statistical analysis of 
functional connectivity yielded that all three groups were statistically different, as shown 
in Table  6. In the functional connectivity statistical analysis of PLV, we also extracted 
the preprocessed EEG, quantified its 19-channel values, and performed independent 
samples t-test and one-way ANOVA on it, respectively. The results showed that quanti-
fying the 19-channel values of the three populations, the significance result of the inde-
pendent samples t-test was P-value < 0.05 due to the fulfilment of variance Chi-square, 
thus statistically significant, indicating that there was a significant difference in PLV. The 
ANOVA result of the one-way ANOVA test was P-value < 0.05 due to the fulfilment of 
variance Chi-square, thus statistically significant, indicating that there was a significant 
difference between the different populations.

Deep learning model

Because of their powerful graph representation, graph neural networks are widely used 
in various graph tasks, including graph classification [39], prediction [40] and node clas-
sification [41], and our brain network analysis deals with node classification. A graph 
is a complex nonlinear data structure that is generally used to describe the situation 
where there are one-to-many relationships in the data [42]. In EEG analysis the con-
nection strength between channels is considered to be directionless, so it is generally 

Table 5 Comparison of PLV functional connectivity among three groups of people

Electrodes AD MCI HC P-value

C3-C4 0.6078 ± 0.005 0.6493 ± 0.014 0.6721 ± 0.024  < 0.01

FP2-CZ 0.6370 ± 0.007 0.7011 ± 0.018 0.7163 ± 0.020  < 0.01

F4-CZ 0.7547 ± 0.002 0.8088 ± 0.010 0.8209 ± 0.028  < 0.01

Table 6 Statistical analysis results under the PLV-19 channel

PLV-19-channel Test Variance test P-value-test P-value-Var

AD 0.022 0.045 0.005 0.031

MCI 0.014 0.026 0.006 0.030

HC 0.006 0.012 0.003 0.011
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represented by an undirected graph G = (V, E), where V = {v1,  v2, ……,  vn} and E denotes 
the set of vertices and the set of edges, respectively. In the graph, A is defined as the con-
nection matrix of the graph G. Each element in A corresponds to the case of an edge 
between two nodes, i.e.:

where  xi and  xj denote the eigenvectors of nodes  vi and  vj, respectively. After calculating 
the connection matrix, the corresponding graph Laplacian matrix L can be created:

where  Lsym is the new graph Laplacian matrix after completing the symmetric normali-
zation, and I is the unit matrix. According to the above, referring to the research of Hong 
et al. [43] and based on the properties of Fourier transform and inverse transform, the 
calculation method of graph convolution can be written as follows:

In this study, the GCN model was used to extract the brain network variability of 
the three populations based on PLI/PLV feature vectors and node features, respec-
tively, for the two phasing methods. Since the convolutional layer of GNN can effec-
tively extract the features from the input data, it has been widely and successfully 
applied in the fields of signal recognition, natural language processing, etc. Here, in 
order to study phase synchronization, PLI and PLV features are selected as edges and 
nodes, respectively. The representation hv of each node v of the GCN, and the rep-
resentation of each node is computed from the features xv of that node, the features 
xco[v] of the edges connected to that node, and also, the representation hne[v] of the 
neighbors of that node, and the features xne[v] of its neighboring nodes [44]:

GCN is a kind of the most basic GNN model transformed from the generalized 
domain [45]. If the graph data has N nodes, and each node has its own features, 
assuming that the features of these nodes form an N × D dimensional matrix X, and 
the relationship between each node will also form an N × N dimensional matrix A, 
also known as the adjacency matrix, at this time X and A are the inputs to the GCN 
model. Its core formula is as follows:

where I is the unit matrix, D ̃ is the degree matrix of A ̃, H is the feature of each layer, 
which for the input layer is X, and σ is the nonlinear activation function ReLU.

(3)Aij = exp(xi, xj),

(4)L = D − A,

(5)Lsym = D−1/2LD−1/2 = I − D−1/2AD−1/2,

(6)G[f ⊗ gθ ] = UgθU
T f .

(7)hv = f
(

x[v′]xco[v′] hne[v]′xne[v]
)

.

(8)H (I+1) = σ

(

˜̃
D− 1

2 ÃD̃− 1
2H (I)W (I)

)

,
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