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Abstract 

Background: There is a growing interest in exploring industrial‑grade collaborative 
robots (cobots) for rehabilitation. This review explores their application for motor reha‑
bilitation of the upper and lower extremities after a stroke and spinal cord injury (SCI). 
The article highlights the inherent safety features of cobots, emphasizing their design 
advantages over custom‑built or traditional rehabilitation robots in terms of potential 
safety and time efficiency.

Methods: Database searches and reference list screening were conducted to iden‑
tify studies relating to the use of cobots for upper and lower extremity rehabilita‑
tion among individuals with stroke and SCI. These articles were then reviewed 
and summarized.

Results: Thirty‑three studies were included in this review. The findings sug‑
gest that the use of cobots in motor rehabilitation is still in the early stages. Some 
of the cobots used were equipped with sensors to detect and respond to the move‑
ment of the extremities and minimize the risk of injury. This safety aspect is cru‑
cial for patients with motor impairments. Most training protocols implemented 
with the cobots engaged users in repetitive task‑based exercises with an overall 
positive user experience. Thus far, these devices have been primarily evaluated 
in individuals with stroke and SCI that affect the lower extremities, with no study 
addressing upper extremity impairments. This initial focus serves as a preliminary step 
toward assessing their applicability for individuals with stroke and SCI.

Conclusions: Cobots may have the capacity to transform therapy and support health‑
care professionals in delivering more personalized and effective rehabilitation. However, 
there is limited evidence on their use to support upper and lower extremity rehabilitation 
among individuals with stroke and SCI. Further research and development are needed 
to refine these technologies and broaden their applications in rehabilitation settings 
to enhance functional recovery and overall quality of life for individuals with stroke and SCI.
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Introduction
Stroke and spinal cord injury (SCI) are leading causes of disability world-
wide. Over 101 million people have experienced a stroke, and more than 
15 million people are currently living with SCI [1, 2]. These conditions 
often result in motor impairments, such as muscle weakness in the arms, 
hands, trunk, or legs, and loss of balance and coordination. These impair-
ments can negatively impact an individual’s ability to perform activities 
of daily living (ADLs), such as walking, eating, and personal care, high-
lighting the need for effective rehabilitation [3–5].

Robotic rehabilitation has emerged as a promising intervention for 
addressing motor impairments in individuals with stroke and SCI. Optimal 
recovery often requires high doses of therapy; however, current reha-
bilitation programs frequently fall short of this goal due to heavy case-
loads burdening therapists [6, 7]. Systematic reviews suggest that robotic 
rehabilitation effectively improves motor function, including gross motor 
skills, muscle strength, coordination, and motor control of the upper and 
lower extremities [6–9]. These devices can deliver intensive therapy char-
acterized by varying levels of resistance, high repetition, and task-ori-
ented rehabilitation. Often, these systems reduce the physical burden on 
therapists and are sometimes augmented with different techniques, such 
as virtual reality (VR), to engage patients in therapeutic activities [10, 11].

Robotic devices used in rehabilitation can be classified as exoskeletons 
or end-effector robots. End-effector robots make physical contact with 
patients at a single distal point, such as a handle or platform, to focus 
on specific movements [12]. End-effector robots target fine motor skills, 
muscle strengthening, balance and coordination. Examples include the 
MIT-MANUS/InMotion2 [13] and MIME [14] for upper extremity rehabili-
tation, and Gait Trainer [15] and HapticWalker [16] for gait rehabilitation. 
Exoskeletons are non-invasive wearable devices typically worn over multi-
ple joints. They provide mechanical support and assistance by mimicking 
natural limb movements [17]. These robots support body weight, improve 
muscle strength, reduce spasticity, enhance motor control, and increase 
mobility [18–20]. Examples include the ARMin [21, 22] and Armeo Spring 
[23] for upper extremity rehabilitation, and Lokomat [24] and ReWalk [25] 
for lower extremity rehabilitation.

Rehabilitation robots can provide different modes of assistance, rang-
ing from fully assisted motions to entirely patient-initiated movements, 
tailored according to the patient’s severity level and recovery stage. These 
modes include active, passive, active-assistive, and resistive exercises, all 
used to optimize rehabilitation outcomes [12]. In the active mode, patients 
voluntarily move their extremities. Conversely, in the passive mode, the 
robot performs the movement regardless of the patient’s capability or 
intention. The active-assistive mode involves patients actively performing 
movements, with the robot intervening if the patient’s movements are 
inadequate in terms of speed, timing, or force. Finally, in the resistive 
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mode, the robot exerts force in the opposite direction of the patient’s 
movement, thereby increasing the difficulty of the exercise [26, 27].

Most rehabilitation robots are custom-made, but some upper extremity 
rehabilitation robots are adapted from industrial robot manipulators. For 
example, the Mitsubishi Pa10-7 robot platform uses a 7-degrees-of-free-
dom (DOFs) robot [28], the MIME uses a 6-DOF Puma-560 robot [14, 29], 
and the REHAROB uses the IRB 140 and IRB 1400 H robots from ABB Ltd. 
[30]. Amid the ongoing advancements in robotic rehabilitation, there has 
been notable interest in the potential of collaborative robots (cobots) for 
upper and lower extremity rehabilitation [31, 32].

Cobots origin and usage

Cobots are commercially available industrial-grade robotic arms (Fig. 1) 
with built-in safety features that allow them to work safely alongside 
humans in the same workspace without physical barriers [33]. These 
devices originated in 1996 as passive systems, lacking actuators for 
autonomous movement and relied entirely on human input for guid-
ance. Despite this, they were considered robotic due to their mechanical 
structures and precision mechanisms, which enhanced human capabilities 
in tasks requiring precision or strength [34, 35]. Today, cobots are fully 
actuated robotic systems that are sometimes indistinguishable from con-
ventional industrial robots. Like industrial robots, cobots have essential 
components such as a control unit, a teach pendant, and an emergency 
stop mechanism, as shown in (Fig. 2), which makes it possible to program 
the robot and deal with emergencies. However, cobots are distinct due 
to their advanced safety features, which include low operational veloci-
ties, lightweight design, and force-feedback sensors, which allow for safe 
human–robot interaction. These features, combined with their ease of 
programming and flexibility, make cobots highly adaptable for various 
applications, such as assembly line customization in manufacturing and 
pick-and-place operations in logistics and warehousing [36].

Cobots in rehabilitation

As cobots evolve, their applications are expanding into healthcare, par-
ticularly rehabilitation. Their adaptability and precision make them suita-
ble for assisting in physical therapy and rehabilitation exercises, offering 
consistent and repeatable movements tailored to individual patient needs. 
The safety features and ease of programming that make cobots attrac-
tive in industrial settings also benefit rehabilitation potentially improving 
patient outcomes and reducing therapist workload.

For use in rehabilitation, the cobots’ last joint, known as the tool flange, 
serves as the mounting point for various tools and attachments, such as 
grippers or custom-made handles for ankle or arm supports. This flexibil-
ity allows cobots to perform specific rehabilitation tasks, ranging from 
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fine motor skill activities to gait training [31, 32, 38]. Cobots meet rigor-
ous safety standards, providing an advantage over custom-built robotic 
rehabilitation devices, which require separate safety modules and addi-
tional development time and cost [13, 21].

Building on these advantages, the overall aim of this systematic nar-
rative review of the literature is to explore the use of cobots in motor 
rehabilitation of the upper and lower extremities after a stroke or SCI. 
The objectives of this review are 

1. To explore the characteristics of cobots and how they are adapted to deliver motor 
rehabilitation of the upper and lower extremities after stroke or SCI.

2. To review the training protocols used by cobots to deliver motor rehabilitation to the 
upper and lower extremities after stroke or SCI.

3. To determine the outcomes of motor rehabilitation of the upper and lower extremi-
ties after stroke or SCI, delivered by cobots.

Methods
Search strategy

An extensive search of electronic databases was conducted by JB seeking 
to identify suitable publications. The search was first developed in MED-
LINE ALL (Ovid) and subsequently translated to the following databases: 
Embase (Ovid), Cochrane Central Register of Controlled Trials (CENTRAL, 
Ovid), IEEE Xplore, ACM Digital Library, Compendex (Engineering Village), 
INSPEC (Engineering Village), Scopus, Dissertations and Theses (Proquest), 
and the Web of Science Core Collection. The search strategy consists of 
multiple concepts, including cobots, rehabilitation, stroke, SCI, Upper 
Extremities and Lower Extremities, combined with Boolean operators and 
using keywords and database-controlled vocabulary (e.g. MeSH, Emtree). 
See Appendix A for further details on the strategy, including synonyms 
for each concept. Searches were limited to English language publica-
tions when possible. Searches were originally conducted in February 2023 
and updated in November 2024. In addition to comprehensive database 

Fig. 2 An illustration of the UR5e cobot
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searching, the reference lists of the papers included were reviewed to 
identify additional papers.

Eligibility criteria

Studies were selected for inclusion based on the following criteria: (a) 
publications in peer-reviewed journals; (b) research focusing on upper or 
lower extremity rehabilitation following stroke or SCI, including research 
with healthy participants to determine how a cobot was intended to be 
used with people with stroke or SCI; and (c) access to abstracts and full 
papers. We excluded articles that focused on conditions other than stroke 
or SCI, involved using cobots for anything other than rehabilitation, par-
ticipants were under the age of 18, were conducted in any language other 
than English, or had previous reviews or meta-analyses.

Analysis

The narrative review examined the name of authors and date of publica-
tion, the aim of the study, the specific cobot used, participants popula-
tion, including the targeted extremities, modifications made to the cobot, 
methods used, and key intervention outcomes.

Fig. 3 PRISMA flow diagram of the results from the database searches
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Results
Search and selection

We identified 17,585 studies in our search, 7,171 of which were duplicates. 
Two authors, AR and UG, independently screened the deduplicated search 
results and evaluated the titles and abstracts. AR retrieved the full papers 
of potentially eligible references, and then both AR and UG assessed the 
eligibility of these articles. Figure 3 shows the PRISMA flow diagram of 
the database search and screening results.

After screening titles and abstracts, we excluded 9,316 articles and 
examined the full text for the remaining studies. Two additional publica-
tions were found through manual searches of the reference list of the 
included studies.

Characteristics of the included articles

The final result included 33 studies published from 2013 to 2024. The 
cobots identified in these studies include the Franka Emika Panda 
(Franka Robotics� , Germany), ABB YuMi (ABB� , Switzerland), Kuka 
LBR (KUKA� , Germany), Sawyer (The HAHN Group� , Germany), Agile 
robotic (Agile Robots� , Germany), Kinova (Kinova� , Canada), and Uni-
versal Robots (UR) series (Universal Robots� , Denmark). As shown in 
Fig. 4, the distribution of studies by cobot manufacturer and reha-
bilitation type highlights that the Universal Robots (UR) series was 
prominently featured, with 12 articles reported [31, 39–49]. Kuka LBR 
cobots were also predominatly featured in 13 articles [32, 38, 50–60], 
four articles used the Franka Emika Panda [61–64], while Sawyer [65], 
Agile robot [66], Kinova [67], and ABB YuMi [68] were used in fewer 
articles.

Twenty-five articles used the cobots to implement various robotic 
rehabilitation exercises for the upper extremity [31, 39–47, 49–55, 

Fig. 4 Studies by cobot manufacturer and rehabilitation type
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61–68], while eight focused on the the lower extremity [32, 38, 48, 
56–60] rehabilitation. Geographically, 17 of the studies were conducted 
in Europe [31, 32, 38–40, 46, 48–51, 53, 56–59, 63, 68], 10 in Asia [47, 
52, 54, 55, 60–62, 64–66], 1 in South America [41], 3 in North America 
[42, 45, 67], and 2 in Oceania [43, 44].

Description of the cobots found in the included studies

The characteristics of the cobots found in the studies included in this 
review are displayed in Table 1. The key specifications of these cobots 
are as follows:

• Weight: total weight of the robot, which affects its stability and portability.
• Payload: maximum load that the robot can handle safely.
• Pose repeatability: The robot’s precision to return to a specific position.
• Robot reach: Maximum working range from the base to the end of the arm or 

tool.

Most studies focusing on lower extremity rehabilitation have utilized 
ROBERT� , a portable robotic rehabilitation device based on the KUKA 
cobot platform developed by Life Science Robotics for both upper and 
lower extremity therapy [69]. Equipped with seven degrees of freedom, 
the system delivers active resistive and assistive mobilization, thereby 
facilitating early patient movement and promoting neuroplasticity. 
ROBERT� is classified as a Class IIa medical device and is duly registered 
with both the FDA and MHRA.

Figure 5 shows how cobots are used in motor rehabilitation while Table 2 
summarizes the devices used, modifications, and findings of the studies 
included in this review.

Fig. 5 Examples of how cobots are used for (a) upper extremity, ©2023 by Chiriatti et al. Licensee MDPI, 
Basel, Switzerland [46] and (b) lower extremity rehabilitation, ©2024 by Leerskov et al. Published by Elsevier 
Ltd. [57]. These images are licensed under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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Upper extremity rehabilitation

Unilateral Upper Extremity Rehabilitation

Cobot Control with Force Sensor and Internal Safety Configurations The use of the 
UR5 cobot for robotic rehabilitation was evaluated in a feasibility study 
[31]. To enhance safety, the cobot was fitted with an external force/torque 
sensor, and limits were set to stop the robot automatically if exceeded. 
Simulated ADL tasks such as reaching and drinking were used to evaluate 
the cobot’s safety and efficacy. The cobot operated in assistive and resistive 
modes. Although testing was not conducted with a patient population, the 
results suggested that the UR5 could effectively support stroke rehabilita-
tion with proper safety and control strategies.

In a different study, a UR5 cobot was equipped with a 1-degree-of-free-
dom force sensor and a customized handle [40]. The modification aimed to 
simulate traditional rehabilitation devices like the ‘curl’ and ‘rope’ by pro-
gramming the cobot to move the arm along a predefined path, mimick-
ing real-world rehabilitation exercises with resistive training assistance. A 
qualitative comparison of the cobot’s performance against specific devices 
was conducted without human subjects. The findings highlighted the UR5’s 
ability to replicate the functionality of various training devices, demon-
strating its potential use in rehabilitation settings.

Another study used the ABB IRB 14000 YuMi cobot, equipped with a 
custom arm support and handle, compensated for gravity and guided 
users along predefined trajectories [68]. It offered passive and active-assis-
tive rehabilitation modes with adjustable force sensitivity for different 
patient needs. Testing with healthy participants showed the cobot’s feasi-
bility for upper extremity rehabilitation, highlighting its precision and 
adaptability in delivering targeted exercises.

The UR robotic arm was designed to be used for in-home upper 
extremity therapy for individuals with motor disabilities [47]. Equipped 
with a custom forearm-mounted holder, a gripper, sEMG, force/torque 
sensors, RGB-depth cameras, and an emergency stop activated if the 
force exceeded 45N, the system used imitation learning to adapt thera-
pist-recorded trajectories to the user’s capabilities. Five healthy partici-
pants performed passive and assistive fine and gross motor exercises in 
a remote adaptive setup, with exercise trajectories simulated in Gazebo 
and OpenSim for safety. sEMG analysis indicated significant muscle acti-
vation during robot-guided exercises compared to therapist-assisted 
training. Participants also reported high satisfaction with system safety 
and performance.

Another study explored impedance-based control in a Kinova MICO Gen 
2 cobot for upper extremity rehabilitation [67]. The system, equipped 
with a custom-designed hand support and operating without external 
force sensors, dynamically adjusted compliance and support based on 
user performance and recovery stage while following predefined trajec-
tories. One healthy participant performed passive shoulder extensions, 
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resistive tasks, and ADL, with the cobot providing appropriate assis-
tance in response to deviations. System performance, evaluated through 
response time, overshoot, and position error, demonstrated effective 
compliance adjustments. These findings suggest that this approach could 
improve rehabilitation accessibility for people with stroke and reduce 
caregiver burden.

A real-time movement intention recognition system was integrated 
with an Agile cobot for upper extremity rehabilitation [66]. The user’s 
hand was strapped to the robot, allowing the system to interpret the 
force magnitude and direction exerted by the palm to control robot 
movements. An algorithm analyzed the angle between the resultant 
force at the robot’s tool center point (TCP) and the tangent direction 
of the position point to determine movement intention. Experimental 
results demonstrated the system’s ability to detect force magnitude and 
direction, stopping the arm when forces exceeded a predefined thresh-
old. This offers a promising solution to improve patient engagement and 
trajectory control in rehabilitation.

Cobot Control with  Assist‑As‑Needed (AAN) Strategy A study evaluated the 
KUKA LBR iiwa 14 cobot for implementing the AAN principle using 
impedance control [53]. The system adapts upper extremity therapy by 
adjusting support based on position, velocity, and force. Physiotherapists 
initially guided users in performing ADLs, which were later completed 
independently with robotic assistance. Ten healthy subjects performed 
wiping and hand-to-head movements under three adaptation strategies 
with varying personal effort levels (0%, 50%, and 100%). Although the 
movement quality, comfort, and trajectory were maintained, movement 
smoothness improved with increased personal effort. The system shows 
promise for stroke rehabilitation but requires further clinical validation.

Another study developed an AAN robotic rehabilitation system using 
a Franka Emika cobot to enhance patient engagement and training 
effectiveness [64]. The cobot, equipped with a customized hand brace, 
was used to monitor interaction forces and estimate user intention, a 
display screen for path trajectory, and an AAN control algorithm to 
dynamically adjust assistance. Four healthy participants performed pas-
sive, active trajectory-following, and resistive exercises. Results showed 
enhanced patient engagement with the system, which supports active, 
passive, and resistance-based modes.

An upper extremity rehabilitation system was developed using two 
KUKA LBR iiwa 14 cobots equipped with custom handles, display screens, 
cameras, and a body structure module [54]. The system, controlled by 
an AAN controller, activates the cobot based on the affected extremity 
and provides assistance only when deviations exceeded a defined virtual 
channel. One healthy subject performed a circular trajectory task under 
three conditions: no assistance, force-based, and AAN-based. Results 
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show improved trajectory adherence and controlled interaction forces 
with AAN, though further clinical validation is necessary to confirm its 
efficacy for rehabilitation.

In a follow-up study, the authors developed and validated an AAN con-
troller for the two KUKA LBR cobots, extending its capabilities to pas-
sive, active, assistive, and resistive upper extremity training modes [55]. 
A custom end-effector handle allowed users to attach their hand directly 
to the cobot, enabling movement within a predefined fault-region. Outside 
this region, the robot provided assistance tailored to individual abilities 
by adjusting stiffness and assistance parameters. A preliminary evaluation 
with one healthy participant involved performing circular trajectories 
displayed on a screen with varying assistance levels. The results demon-
strated that the AAN controller effectively facilitated guided task com-
pletion, promoted active engagement, and improved motion performance, 
suggesting its potential to enhance motor recovery in individuals with 
upper extremity impairments.

Cobot Control with  Electrophysiological Data Several studies have explored 
cobots for surface electromyography (sEMG)-based therapy using sensors 
like inertial measurement units (IMUs) [42, 45, 62, 63]. A study used a UR5 
cobot with a force sensor, gripper, and ergonomic knob to assist users 
during arm movements while recording muscle activity via sEMG [42]. 
Although this study involved only five healthy participants performing 
exercises with and without robotic assistance, the results showed a sig-
nificant correlation between muscle activity and robotic force. Despite the 
small sample size, these findings are valuable as they suggest that cobots can 
effectively support motor rehabilitation by providing real-time feedback 
on muscle engagement and force application through sEMG, highlighting 
their potential for integration into personalized rehabilitation therapies.

In a different study, the authors showed that the UR5 cobot can enhance 
upper extremity muscle recruitment without introducing force or stiff-
ness challenges to the patients [45]. Using sEMG and IMUs to monitor 
muscle fatigue, five healthy participants performed predefined circular 
arm movements in task-based exercises. The results showed a strong cor-
relation between force exertion and muscle activity, suggesting that pre-
cise force adjustments by the cobot could significantly improve muscle 
engagement and the effectiveness of rehabilitation exercises.

Another study used the Franka Emika Panda cobot with a custom han-
dle and eye-tracker to develop a gaze-based interface for unilateral upper 
extremity rehabilitation [63]. The system used sEMG signals and eye 
tracking to guide the robot’s movements, reducing the need for assis-
tance. Ten healthy participants performed gaze-guided reaching tasks, 
highlighting the system’s ability to facilitate intuitive and accurate task 
performance, reduce physical effort, and improve repetitive task training 
during rehabilitation.
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Cobot Control with  Gamification and  Virtual Reality Some studies integrated 
cobots with virtual reality (VR), sEMG sensors, and IMUs [49, 51, 62]. The 
Franka Emika Panda cobot, paired with sEMG sensors, was used to study 
how target difficulty and haptic feedback affect muscle activation [62]. An 
orthosis and an electro-holding magnet were used to restrict wrist move-
ment, and an elbow support was used to reduce arm fatigue. A healthy 
participant performed reaching tasks in a virtual environment with and 
without haptic feedback. The results showed that target difficulty and hap-
tic feedback significantly influenced muscle activation, highlighting the 
importance of task complexity in rehabilitation.

Similarly, the Kuka LWR 4+ cobot was used to develop a 3D bio-coop-
erative robotic platform with a motorized arm-weight support [51]. The 
system used the cobot, EMG sensors, and magneto-inertial measurement 
units (M-IMUs) to track arm movements, evaluate fatigue, and adjust assis-
tance in real-time. Ten healthy participants controlled a VR hand avatar 
for 2D and 3D exercises. The study showed that the platform significantly 
reduced muscular fatigue without affecting motor patterns, suggesting 
its potential for personalized therapy.

A study developed an augmented reality (AR) application for a UR 
cobot—real or simulated—to enhance upper extremity rehabilitation 
through gamification and interactive experiences [49]. Built using the 
Unity� game engine, the system integrated with the HoloLens headset 
to enable virtual object visualization, head movement tracking, and trans-
lation into the virtual environment. Therapists defined and customized 
therapeutic trajectories based on patient needs, with the robot as an assis-
tive tool. A usability evaluation with 31 healthy participants assessed the 
system’s functionality using questionnaires. Results highlight the ease 
of use and motivational potential, with positive therapist feedback high-
lighting its customizability for therapy.

Cobot Control with  Other Forms of  Feedback Various techniques, including 
dynamic movement primitives (DMPs), computational modeling, and self-
learning methods, have also been used to control and adapt cobots for 
therapeutic purposes.

A study used a UR5 cobot with a force sensor, wrist support, custom 
handle, and force feedback to enhance training exercises [39]. The cobot 
used DMPs to learn exercise trajectories from demonstrations provided 
by therapists and personalized them based on force feedback. Simulated 
experiments showed the UR5’s potential for personalized rehabilitation.

A UR3 cobot, equipped with a 3D-printed cone-shaped tool and a force 
sensor, was programmed for real-time monitoring and intelligent self-
learning control [41]. During the experiment, the cobot applied consistent 
resistive forces across various axes to enhance muscle engagement in a 
healthy participant. The results highlighted the system’s ability to adapt 
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to varying user forces, suggesting its potential to improve rehabilitation 
outcomes.

A different study used the Franka Emika Panda cobot to generate refer-
ence paths by analyzing users’ motions [61]. With a custom-made handle, 
it learned and imitated user trajectories via an attention-based model, cre-
ating adaptive paths for ADL tasks. During tests with 10 healthy partici-
pants, the cobot adjusted in real-time to match user motions, suggesting 
the model could potentially enhance rehabilitation outcomes through indi-
vidualized, assist-as-needed mode of assistance.

In another study, the authors proposed a teleoperation framework for 
remotely controlling a Sawyer robot in passive and active rehabilitation 
training for individuals with upper extremity hemiplegia [65]. Using a 
haptic device for therapist control, the system incorporated autonomous 
and interactive modes with improved DMPs, virtual fixtures, and a hybrid 
control strategy driven by sEMG-based forearm muscle activation. Two 
experiments validated the framework: in the first, a therapist remotely 
controlled the robot to collect demonstration trajectory data, while in 
the second, the robot autonomously followed a circular trajectory to test 
the motion model and control strategy. Results showed smooth trajectory 
reproduction without abrupt stops and effective generation of guiding 
virtual forces. These findings highlight the potential benefits of cobot-
assisted rehabilitation.

An uncertainty compensated high-order adaptive iteration learning 
control (UCHAILC) method was developed to improve the tracking per-
formance of a KUKA LBR iiwa R700 cobot during upper extremity reha-
bilitation for individuals with stroke [52]. The cobot was configured to 
provide assistance during ADLs. Hand movements during a drinking task 
were recorded from healthy participants using motion capture to gener-
ate end-effector trajectories. The results showed improved tracking accu-
racy, enabling more accurate and personalized assistance. This approach 
may improve rehabilitation outcomes by offering task-specific, repetitive 
training aligned with individual patient needs.

Another study used the Kuka LWR 4+ cobot and M-IMUs to develop 
an adaptive control system for patient rehabilitation [50]. This system, 
comprised of wrist support with a magnet and two M-IMU sensors, 
tracked arm movements and adjusted stiffness accordingly. Two healthy 
participants performed 2D and 3D point-to-point movements, replicating 
healthy behaviors and simulating post-stroke-like movements/behavior, 
such as failing to extend the elbow, moving in the wrong direction, or 
pausing during execution, with visual feedback in the form of pictures 
illustrating the tasks to be performed. The findings suggest that the 
system can safely adjust to individual needs and enhance patient engage-
ment and therapy outcomes, thus indicating its potential for personalized 
rehabilitation.
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In the article by Chiriatti et al. [46], the authors presented a framework 
using a UR5e cobot to assist users in executing specific 3D trajectories. A 
specialized handle, designed for individuals with limited grip, facilitated 
user interaction, while the developed algorithm applied elastic corrective 
forces to ensure linear movement and prevent deviations. The experimen-
tal procedure involves caregiver-defined start and end points, with the 
endpoint tracked by a camera and exercises initiated by sufficient user-
applied force. Preliminary tests with healthy participants indicated that 
the system is intuitive and user-friendly. Safety measures, including 
speed limitation and seating outside the cobot’s reach, were implemented. 
Further trials with individuals with stroke will evaluate its efficacy.

Bilateral Upper Extremity Rehabilitation

Simultaneous use of cobots, specifically the UR5 and UR10 models, have 
been explored for bilateral upper extremity rehabilitation. A three-stage 
trajectory generation method was developed and assessed using these 
cobots [44]. The three stages are (1) workspace analysis of the intersec-
tion between the user and robot hands, (2) generation of personalized tra-
jectories within the user-specific workspace, and (3) interference analysis 
to ensure training safety. Custom handles were used to facilitate train-
ing, and seven healthy participants completed eight predefined trajectory 
training sessions, demonstrating the method’s effectiveness for safe and 
individualized rehabilitation.

The system used in the article by Miao et al. [44] was further enhanced 
with force sensors, custom handlebars, and a Velcro�-secured hand and 
wrist support [43]. The UR10 functioned as the master and the UR5 as the 
slave, employing a patient-cooperative control strategy for passive, active, 
and self-training assistance. Ten healthy participants performed shoulder 
flexion, extension, adduction, abduction, self-mimic, and self-cooperative 
exercises, showing that the cobots could provide a reliable bilateral train-
ing environment suitable for clinical use.

Lower extremity rehabilitation

Cobot Control with Electrophysiological Data

A study developed a hybrid robotic rehabilitation system that integrated 
a ROBERT� with sEMG-triggered functional electrical stimulation (FES) 
for lower extremity rehabilitation [38]. The cobot (Kuka LBR), equipped 
with a leg brace and electrodes placed on the knee and foot extensor mus-
cles, guided participants through predefined leg press and dorsiflexion 
trajectories. Ten healthy participants performed 40 repetitions at two 
sEMG thresholds, with FES triggered when sEMG signals exceeded preset 
thresholds and stopped at the trajectory endpoint. Results showed high 
success rates in exercise repetitions and force generation, suggesting that 
combining sEMG-triggered FES with robotic assistance may enhance reha-
bilitation outcomes.
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Similarly, Leerskov et al. [59] developed a hybrid system combin-
ing ROBERT� with FES for lower extremity rehabilitation. The system 
included a custom-made brace, stimulation electrodes placed over the knee 
flexor and extensor muscles, and EMG electrodes to monitor muscle activ-
ity. The robot adjusted resistive forces and stimulation intensity based 
on individual needs, with FES administered by an experimenter, which 
automatically stopped at 80% of the trajectory. Eight participants com-
pleted 50 FES-assisted leg-press repetitions and showed variability in out-
comes—half exhibited potentiation (increased velocity and force), and half 
experienced fatigue. These findings underscore the need for adaptive reha-
bilitation systems that can address the diverse patient responses.

The feasibility of a UR10e cobot for lower extremity rehabilitation was 
evaluated, with its performance compared to that of a physiotherapist 
[48]. The cobot was equipped with a custom-designed brace attached to 
its final joint, securely fastened to the user’s lower extremity for thera-
peutic movements. It was programmed to perform repetitive movements 
based on Proprioceptive Neuromuscular Facilitation techniques, customized 
to the user’s leg positioning. Inertia measurement unit sensors tracked 
pelvic and lower leg movements during passive and assistive training 
modes. The results showed the cobot’s effectiveness in performing repeat-
able exercises, though accuracy depended on the trajectory program-
ming. These findings highlight the potential cost and efficiency benefits of 
cobot-assisted rehabilitation.

Cobot Control with Assist‑As‑Needed (AAN) Strategy

Leerskov et al. improved the system in [59] by integrating ROBERT� 
with FES and an AAN strategy for lower extremity stroke rehabilita-
tion [58]. A foot brace with EMG and stimulation electrodes placed on the 
thigh and the tibialis anterior allowed adaptive support for ankle dorsi-
flexion and knee extension based on user capabilities. Assistance modes, 
including no support, FES, mechanical assistance, or both, were dynami-
cally adjusted using EMG signals to detect voluntary effort and trigger 
the AAN system. Tests with 10 healthy participants showed over 96% 
accuracy in detecting user behavior and adjusting assistance levels. Clinical 
feasibility with two individuals post-stroke indicated enhanced engage-
ment, voluntary effort, and potential for motor learning. These findings 
suggest promise for personalized stroke rehabilitation, although further 
clinical trials are needed.

Building upon their previous work described in [58], the authors in [57] 
assessed the feasibility of combining ROBERT� and FES with an AAN 
approach to support actively initiated leg movements in individuals with 
stroke. Using the previously described cobot in [58], assistance levels were 
categorized from the patient’s perspective as no assistance or assistance, 
with the latter further subdivided into FES alone or combined FES with 
mechanical support. Nine individuals with subacute stroke performed 
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repetitive ankle dorsiflexion and knee extension movements, with and 
without assistance. The results showed that assistance was required in 
44% of ankle dorsiflexion repetitions and 5% of knee extension repeti-
tions, and median fatigue scores indicated mild-to-moderate perceived 
fatigue. The findings suggest that integrating robotics and FES within 
an AAN approach is feasible for supporting leg movements in stroke 
rehabilitation.

Cobot Control with Other Forms of Feedback

The Kuka LBR iiwa was investigated for ankle rehabilitation using a cus-
tom 3D-printed leg-constraining and sole plates for secure engagement 
during therapy [32]. Five healthy participants performed 20-min pre-
defined movements. The results highlight the cobot for effective ankle 
rehabilitation, but further development is needed to enhance movement 
control and monitoring.

Similarly, another study evaluated the feasibility of a large-scale trial 
to assess ROBERT� ’s effectiveness in improving hip flexor strength after 
SCI [56]. A leg brace attached to robot’s end effector provided guidance 
or active assistance depending on participant’s muscle strength grades. 
Four participants with subacute SCI and hip flexor muscle strength grades 
between 1 and 3 performed 60 hip flexion repetitions on one leg three 
times weekly for 4 weeks, while the other leg served as a control. Results 
demonstrated 92% training adherence, no adverse events, and positive 
feedback, suggesting that ROBERT� is acceptable and potentially effec-
tive. These findings indicate that cobot-assisted training is feasible for 
enhancing hip flexor strength, although further research is needed to 
improve the system.

Another study analyzed the cost-effectiveness of the ROBERT� device 
for lower extremity therapy compared to physiotherapist-led sessions 
[60]. With an average cost below USD $25 per hour, ROBERT� demon-
strated the potential to reduce hospital stays, readmission rates, and over-
all healthcare expenses. Despite its high initial capital cost, the system’s 
operating expenses were only one-tenth that of a specialty outpatient ses-
sion in Hong Kong hospitals. This suggests that ROBERT� offers a cost-
effective solution for optimizing rehabilitation costs in clinical settings.

Discussion
This systematic narrative review explored the use of industrial-grade 
cobots for upper and lower extremity motor rehabilitation among indi-
viduals with stroke and SCI. Cobots offer unique advantages such as 
advanced safety features, compliant actuators, and real-time adaptabil-
ity, which allow safe and interactive human–robot collaboration with-
out physical barriers. These characteristics make cobots a promising tool 
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for rehabilitation, addressing some limitations of traditional robots that 
often lack flexibility and require external force-sensing modules.

Few studies included individuals with stroke or SCI, primarily focusing 
on lower extremity rehabilitation using the ROBERT� system. Robotic 
assistance with or without AAN strategies and/or FES demonstrated 
improvements in patient engagement, voluntary effort, and task-specific 
motor recovery [56–58]. One study reported that participants achieved 
381 repetitions with AAN activated compared to 35 without it, highlight-
ing the system’s capacity to enhance engagement and rehabilitation dose 
through increased repetition [57].

Voluntary effort was further emphasized in trials involving the ROB-
ERT� device, as participants actively contributed to their movements, 
supporting guided assistance in motor learning [58]. Participants expressed 
higher motivation and perceived robotic assistance as more challenging 
than conventional physiotherapy, suggesting that cobot-assisted rehabili-
tation may foster involvement and effort [56].

Repetitive movement practice may facilitate task-specific motor recov-
ery by targeting muscle activation and functional improvement. The AAN 
algorithm dynamically adjusted support, encouraging patients to perform 
more tasks independently, leveraging residual motor capacity and pro-
moting neuroplasticity [58].

Despite these promising outcomes, the absence of research on cobots for 
upper extremity rehabilitation in stroke and SCI populations highlights 
a critical gap. Expanding studies to upper extremity rehabilitation will 
be fundamental to exploring the full therapeutic potential of cobots for 
diverse motor impairments.

The collaborative design of cobots makes them well-suited for clinical 
settings, as they enable the delivery of repetitive, task-specific exercises, 
which are essential for motor recovery among individuals with stroke and 
SCI. Unlike exoskeletons that require precise alignment and often involve 
complex setup procedures, or end-effector robots that are limited to pla-
nar movements, cobots can adapt to various therapeutic interventions and 
can support complex, three-dimensional exercises with customizable tools. 
Their adaptability in reach (ranging from 500 mm to 1300 mm) and pay-
load capabilities (ranging from 0.5 kg to 10 kg) allow them to meet the 
diverse needs of patients for upper extremity rehabilitation. However, 
for lower extremity rehabilitation, cobots are limited to mobilization 
exercises usually performed in the supine position, which, unlike exoskel-
etons or foot-plate-based end effector robots, do not provide functional 
training necessary for standing or walking. This distinction highlights 
the supplementary role cobots play in lower extremity rehabilitation.

Cobots show potential for enhancing patient engagement in rehabilita-
tion through strategies such as gamification, virtual reality, and task-
specific exercises [58]. Studies in this review integrated technologies like 
virtual reality, sEMG monitoring, and adjustable trajectories to create 
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interactive and motivating therapy experiences. These approaches not 
only align with conventional rehabilitation objectives but also introduce 
novel ways to improve adherence. By tailoring assistance levels to indi-
vidual requirements, cobots offer personalized therapy comparable to con-
ventional methods. Several studies implemented AAN control strategies to 
dynamically adjust robotic assistance based on user effort. Assist-as-needed 
systems can promote active participation, improve movement smoothness, 
and enhance motor recovery by providing personalized support. Although 
promising, further clinical studies are required to validate their efficacy 
across diverse patient populations with motor impairments.

Cost-effectiveness is a key consideration for implementing cobots in 
rehabilitation settings. Although this narrative review did not address the 
cost-effectiveness of cobots in rehabilitation settings, preliminary studies 
suggest that systems, such as ROBERT� , used for lower extremity ther-
apy, may reduce healthcare costs by decreasing hospital stays and read-
mission rates [48, 60]. However, high initial investment and variability in 
operational expenses highlight the need for more comprehensive research 
to determine long-term cost-effectiveness compared to conventional ther-
apy. Future studies should address this gap to inform the implementation 
and scalability of cobots in clinical practice.

Despite these promising findings, several challenges remain in current 
research. Successful integration into clinical practice requires continuous 
training and support for therapists to operate and maximize the benefits 
of these technologies [70, 71].

Furthermore, there are inconsistencies in the definitions of cobots and 
traditional industrial robots, creating ambiguity in the field. Many studies 
focus on methodologies, lack sufficient details about the cobot character-
istics, and have limited information regarding the technical specifications 
of the cobots used. Additionally, the low payload of some cobots may 
restrict their ability to provide personalized exercises requiring gravity 
compensation. Addressing these gaps is crucial to advancing cobot’s appli-
cability in rehabilitation.

Conclusion
This review highlights the emerging potential of cobots in motor reha-
bilitation after a stroke or SCI. While cobots present significant potential 
for motor rehabilitation of the upper and lower extremities among indi-
viduals with stroke or SCI, further research is needed to optimize their 
integration in rehabilitation settings. Standardizing definitions, improving 
research methodologies, and conducting studies involving more stroke and 
SCI populations will enhance the generalizability of the results. Addressing 
these challenges may further refine the effectiveness of cobots in reha-
bilitation and support their sustainable integration into clinical practice. 
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AAN  Assist‑as‑needed
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M‑IMU  Magneto‑inertial measurement units
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