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Abstract

Background: There is a growing interest in exploring industrial-grade collaborative
robots (cobots) for rehabilitation. This review explores their application for motor reha-
bilitation of the upper and lower extremities after a stroke and spinal cord injury (SCI).
The article highlights the inherent safety features of cobots, emphasizing their design
advantages over custom-built or traditional rehabilitation robots in terms of potential
safety and time efficiency.

Methods: Database searches and reference list screening were conducted to iden-
tify studies relating to the use of cobots for upper and lower extremity rehabilita-
tion among individuals with stroke and SCI. These articles were then reviewed

and summarized.

Results: Thirty-three studies were included in this review. The findings sug-

gest that the use of cobots in motor rehabilitation is still in the early stages. Some

of the cobots used were equipped with sensors to detect and respond to the move-
ment of the extremities and minimize the risk of injury. This safety aspect is cru-

cial for patients with motor impairments. Most training protocols implemented

with the cobots engaged users in repetitive task-based exercises with an overall
positive user experience. Thus far, these devices have been primarily evaluated

in individuals with stroke and SCI that affect the lower extremities, with no study
addressing upper extremity impairments. This initial focus serves as a preliminary step
toward assessing their applicability for individuals with stroke and SCI.

Conclusions: Cobots may have the capacity to transform therapy and support health-
care professionals in delivering more personalized and effective rehabilitation. However,
there is limited evidence on their use to support upper and lower extremity rehabilitation
among individuals with stroke and SCI. Further research and development are needed

to refine these technologies and broaden their applications in rehabilitation settings

to enhance functional recovery and overall quality of life for individuals with stroke and SCI.

Keywords: Collaborative robot (cobot), Robotic rehabilitation, Stroke, Rehabilitation,
Spinal cord injury, Upper extremity, Lower extremity
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Introduction

Stroke and spinal cord injury (SCI) are leading causes of disability world-
wide. Over 101 million people have experienced a stroke, and more than
15 million people are currently living with SCI [1, 2]. These conditions
often result in motor impairments, such as muscle weakness in the arms,
hands, trunk, or legs, and loss of balance and coordination. These impair-
ments can negatively impact an individual’s ability to perform activities
of daily living (ADLs), such as walking, eating, and personal care, high-
lighting the need for effective rehabilitation [3—5].

Robotic rehabilitation has emerged as a promising intervention for
addressing motor impairments in individuals with stroke and SCI. Optimal
recovery often requires high doses of therapy: however, current reha-
bilitation programs frequently fall short of this goal due to heavy case-
loads burdening therapists [6, 7]. Systematic reviews suggest that robotic
rehabilitation effectively improves motor function, including gross motor
skills, muscle strength, coordination, and motor control of the upper and
lower extremities [6—9]. These devices can deliver intensive therapy char-
acterized by varying levels of resistance, high repetition, and task-ori-
ented rehabilitation. Often, these systems reduce the physical burden on
therapists and are sometimes augmented with different techniques, such
as virtual reality (VR), to engage patients in therapeutic activities [10, 11].

Robotic devices used in rehabilitation can be classified as exoskeletons
or end-effector robots. End-effector robots make physical contact with
patients at a single distal point, such as a handle or platform, to focus
on specific movements [12]. End-effector robots target fine motor skills,
muscle strengthening, balance and coordination. Examples include the
MIT-MANUS/InMotion2 [13] and MIME [14] for upper extremity rehabili-
tation, and Gait Trainer [15] and HapticWalker [16] for gait rehabilitation.
Exoskeletons are non-invasive wearable devices typically worn over multi-
ple joints. They provide mechanical support and assistance by mimicking
natural limb movements [17]. These robots support body weight, improve
muscle strength, reduce spasticity, enhance motor control, and increase
mobility [18—20]. Examples include the ARMin [21, 22] and Armeo Spring
[23] for upper extremity rehabilitation, and Lokomat [24] and ReWalk [25]
for lower extremity rehabilitation.

Rehabilitation robots can provide different modes of assistance, rang-
ing from fully assisted motions to entirely patient-initiated movements,
tailored according to the patient’s severity level and recovery stage. These
modes include active, passive, active-assistive, and resistive exercises, all
used to optimize rehabilitation outcomes [12]. In the active mode, patients
voluntarily move their extremities. Conversely, in the passive mode, the
robot performs the movement regardless of the patient’s capability or
intention. The active-assistive mode involves patients actively performing
movements, with the robot intervening if the patient’s movements are

inadequate in terms of speed, timing, or force. Finally, in the resistive
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mode, the robot exerts force in the opposite direction of the patient’s
movement, thereby increasing the difficulty of the exercise [26, 27].

Most rehabilitation robots are custom-made, but some upper extremity
rehabilitation robots are adapted from industrial robot manipulators. For
example, the Mitsubishi Pal0-7 robot platform uses a 7-degrees-of-free-
dom (DOFs) robot [28], the MIME uses a 6-DOF Puma-560 robot [14, 29],
and the REHAROB uses the IRB 140 and IRB 1400 H robots from ABB Ltd.
[30]. Amid the ongoing advancements in robotic rehabilitation, there has
been notable interest in the potential of collaborative robots (cobots) for

upper and lower extremity rehabilitation [31, 32].

Cobots origin and usage

Cobots are commercially available industrial-grade robotic arms (Fig. 1)
with built-in safety features that allow them to work safely alongside
humans in the same workspace without physical barriers [33]. These
devices originated in 1996 as passive systems, lacking actuators for
autonomous movement and relied entirely on human input for guid-
ance. Despite this, they were considered robotic due to their mechanical
structures and precision mechanisms, which enhanced human capabilities
in tasks requiring precision or strength [34, 35]. Today, cobots are fully
actuated robotic systems that are sometimes indistinguishable from con-
ventional industrial robots. Like industrial robots, cobots have essential
components such as a control unit, a teach pendant, and an emergency
stop mechanism, as shown in (Fig. 2), which makes it possible to program
the robot and deal with emergencies. However, cobots are distinct due
to their advanced safety features, which include low operational veloci-
ties, lightweight design, and force-feedback sensors, which allow for safe
human—robot interaction. These features, combined with their ease of
programming and flexibility, make cobots highly adaptable for various
applications, such as assembly line customization in manufacturing and

pick-and-place operations in logistics and warehousing [36].

Cobots in rehabilitation

As cobots evolve, their applications are expanding into healthcare, par-
ticularly rehabilitation. Their adaptability and precision make them suita-
ble for assisting in physical therapy and rehabilitation exercises, offering
consistent and repeatable movements tailored to individual patient needs.
The safety features and ease of programming that make cobots attrac-
tive in industrial settings also benefit rehabilitation potentially improving
patient outcomes and reducing therapist workload.

For use in rehabilitation, the cobots’ last joint, known as the tool flange,
serves as the mounting point for various tools and attachments, such as
grippers or custom-made handles for ankle or arm supports. This flexibil-
ity allows cobots to perform specific rehabilitation tasks, ranging from
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Teach pendant with
emergency stop button

Fig. 2 Anillustration of the UR5e cobot

fine motor skill activities to gait training [31, 32, 38]. Cobots meet rigor-
ous safety standards, providing an advantage over custom-built robotic
rehabilitation devices, which require separate safety modules and addi-
tional development time and cost [13, 21].

Building on these advantages, the overall aim of this systematic nar-
rative review of the literature is to explore the use of cobots in motor
rehabilitation of the upper and lower extremities after a stroke or SCIL
The objectives of this review are

1. To explore the characteristics of cobots and how they are adapted to deliver motor
rehabilitation of the upper and lower extremities after stroke or SCI.

2. To review the training protocols used by cobots to deliver motor rehabilitation to the
upper and lower extremities after stroke or SCL

3. To determine the outcomes of motor rehabilitation of the upper and lower extremi-
ties after stroke or SCI, delivered by cobots.

Methods

Search strategy

An extensive search of electronic databases was conducted by JB seeking
to identify suitable publications. The search was first developed in MED-
LINE ALL (Ovid) and subsequently translated to the following databases:
Embase (Ovid), Cochrane Central Register of Controlled Trials (CENTRAL,
Ovid), IEEE Xplore, ACM Digital Library, Compendex (Engineering Village),
INSPEC (Engineering Village), Scopus, Dissertations and Theses (Proquest),
and the Web of Science Core Collection. The search strategy consists of
multiple concepts, including cobots, rehabilitation, stroke, SCI, Upper
Extremities and Lower Extremities, combined with Boolean operators and
using keywords and database-controlled vocabulary (e.g. MeSH, Emtree).
See Appendix A for further details on the strategy, including synonyms
for each concept. Searches were limited to English language publica-
tions when possible. Searches were originally conducted in February 2023

and updated in November 2024. In addition to comprehensive database
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searching, the reference lists of the papers included were reviewed to

identify additional papers.

Eligibility criteria

Studies were selected for inclusion based on the following criteria: (a)
publications in peer-reviewed journals; (b) research focusing on upper or
lower extremity rehabilitation following stroke or SCI, including research
with healthy participants to determine how a cobot was intended to be
used with people with stroke or SCL and (c) access to abstracts and full
papers. We excluded articles that focused on conditions other than stroke
or SCI, involved using cobots for anything other than rehabilitation, par-
ticipants were under the age of 18, were conducted in any language other
than English, or had previous reviews or meta-analyses.

Analysis

The narrative review examined the name of authors and date of publica-
tion, the aim of the study, the specific cobot used, participants popula-
tion, including the targeted extremities, modifications made to the cobot,

methods used, and key intervention outcomes.

Records identified
through database search
(n=17,585)
v
Records after duplicates Additional records identified from
removed other sources
(n =9,395) (n=2)
Records screened by title and Records excluded
abstract > (n=9,316)
(n=9,397)
y
Full-text articles assessed for Full text articles excluded, with
eligibility > reasons
(n=281) e Wrong population (n = 5)
e Wrongrobot (n=30)
l e Wrongintervention (n =13)
(n=48)
Studies included in the review
(n=33)

Fig. 3 PRISMA flow diagram of the results from the database searches
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Number of Studies by Cobot Manufacturer and Rehabilitation Type

BN Upper Extremity
Lower Extremity

a £ ®

Number of Studies

Kuka Universal Robots ABB Group Franka Robotics  Agile Robotics Kinova ReThink
Cobot Manufacturer

Fig. 4 Studies by cobot manufacturer and rehabilitation type

Results
Search and selection
We identified 17,585 studies in our search, 7,171 of which were duplicates.
Two authors, AR and UG, independently screened the deduplicated search
results and evaluated the titles and abstracts. AR retrieved the full papers
of potentially eligible references, and then both AR and UG assessed the
eligibility of these articles. Figure 3 shows the PRISMA flow diagram of
the database search and screening results.

After screening titles and abstracts, we excluded 9,316 articles and
examined the full text for the remaining studies. Two additional publica-
tions were found through manual searches of the reference list of the

included studies.

Characteristics of the included articles
The final result included 33 studies published from 2013 to 2024. The
cobots identified in these studies include the Franka Emika Panda
(Franka Robotics®, Germany), ABB YuMi (ABB®, Switzerland), Kuka
LBR (KUKA®, Germany), Sawyer (The HAHN Group®, Germany), Agile
robotic (Agile Robots®, Germany), Kinova (Kinova®, Canada), and Uni-
versal Robots (UR) series (Universal Robots®, Denmark). As shown in
Fig. 4, the distribution of studies by cobot manufacturer and reha-
bilitation type highlights that the Universal Robots (UR) series was
prominently featured, with 12 articles reported [31, 39—49]. Kuka LBR
cobots were also predominatly featured in 13 articles [32, 38, 50—60],
four articles used the Franka Emika Panda [61—64], while Sawyer [65],
Agile robot [66], Kinova [67], and ABB YuMi [68] were used in fewer
articles.

Twenty-five articles used the cobots to implement various robotic

rehabilitation exercises for the upper extremity [31, 39—47, 49—55,
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Fig. 5 Examples of how cobots are used for (a) upper extremity, ©2023 by Chiriatti et al. Licensee MDP,
Basel, Switzerland [46] and (b) lower extremity rehabilitation, ©2024 by Leerskov et al. Published by Elsevier
Ltd. [57]. These images are licensed under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

61—68], while eight focused on the the lower extremity [32, 38, 48,
56—60] rehabilitation. Geographically, 17 of the studies were conducted
in Europe [31, 32, 38—40, 46, 48—51, 53, 56—59, 63, 68], 10 in Asia [47,
52, 54, 55, 60—62, 64—66], 1 in South America [41], 3 in North America
[42, 45, 67], and 2 in Oceania [43, 44].

Description of the cobots found in the included studies
The characteristics of the cobots found in the studies included in this
review are displayed in Table 1. The key specifications of these cobots

are as follows:

+ Weight: total weight of the robot, which affects its stability and portability.

+ Payload: maximum load that the robot can handle safely.

+ DPose repeatability: The robot’s precision to return to a specific position.

+ Robot reach: Maximum working range from the base to the end of the arm or

tool.

Most studies focusing on lower extremity rehabilitation have utilized
ROBERT®), a portable robotic rehabilitation device based on the KUKA
cobot platform developed by Life Science Robotics for both upper and
lower extremity therapy [69]. Equipped with seven degrees of freedom,
the system delivers active resistive and assistive mobilization, thereby
facilitating early patient movement and promoting neuroplasticity.
ROBERT®) is classified as a Class Ila medical device and is duly registered
with both the FDA and MHRA.

Figure 3 shows how cobots are used in motor rehabilitation while Table 2
summarizes the devices used, modifications, and findings of the studies

included in this review.
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Upper extremity rehabilitation

Unilateral Upper Extremity Rehabilitation

Cobot Control with Force Sensor and Internal Safety Configurations The use of the
URS cobot for robotic rehabilitation was evaluated in a feasibility study
[31]. To enhance safety, the cobot was fitted with an external force/torque
sensor, and limits were set to stop the robot automatically if exceeded.
Simulated ADL tasks such as reaching and drinking were used to evaluate
the cobot’s safety and efficacy. The cobot operated in assistive and resistive
modes. Although testing was not conducted with a patient population, the
results suggested that the URS could effectively support stroke rehabilita-
tion with proper safety and control strategies.

In a different study, a URS cobot was equipped with a 1-degree-of-free-
dom force sensor and a customized handle [40]. The modification aimed to
simulate traditional rehabilitation devices like the ‘curl’ and ‘rope’ by pro-
gramming the cobot to move the arm along a predefined path, mimick-
ing real-world rehabilitation exercises with resistive training assistance. A
qualitative comparison of the cobot’s performance against specific devices
was conducted without human subjects. The findings highlighted the URS5’s
ability to replicate the functionality of various training devices, demon-
strating its potential use in rehabilitation settings.

Another study used the ABB IRB 14000 YuMi cobot, equipped with a
custom arm support and handle, compensated for gravity and guided
users along predefined trajectories [68]. It offered passive and active-assis-
tive rehabilitation modes with adjustable force sensitivity for different
patient needs. Testing with healthy participants showed the cobot’s feasi-
bility for upper extremity rehabilitation, highlighting its precision and
adaptability in delivering targeted exercises.

The UR robotic arm was designed to be used for in-home upper
extremity therapy for individuals with motor disabilities [47]. Equipped
with a custom forearm-mounted holder, a gripper, sEMG, force/torque
sensors, RGB-depth cameras, and an emergency stop activated if the
force exceeded 43N, the system used imitation learning to adapt thera-
pist-recorded trajectories to the user’s capabilities. Five healthy partici-
pants performed passive and assistive fine and gross motor exercises in
a remote adaptive setup, with exercise trajectories simulated in Gazebo
and OpenSim for safety. sEMG analysis indicated significant muscle acti-
vation during robot-guided exercises compared to therapist-assisted
training. Participants also reported high satisfaction with system safety
and performance.

Another study explored impedance-based control in a Kinova MICO Gen
2 cobot for upper extremity rehabilitation [67]. The system, equipped
with a custom-designed hand support and operating without external
force sensors, dynamically adjusted compliance and support based on
user performance and recovery stage while following predefined trajec-
tories. One healthy participant performed passive shoulder extensions,
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resistive tasks, and ADL, with the cobot providing appropriate assis-
tance in response to deviations. System performance, evaluated through
response time, overshoot, and position error, demonstrated effective
compliance adjustments. These findings suggest that this approach could
improve rehabilitation accessibility for people with stroke and reduce
caregiver burden.

A real-time movement intention recognition system was integrated
with an Agile cobot for upper extremity rehabilitation [66]. The user’s
hand was strapped to the robot, allowing the system to interpret the
force magnitude and direction exerted by the palm to control robot
movements. An algorithm analyzed the angle between the resultant
force at the robot’s tool center point (TCP) and the tangent direction
of the position point to determine movement intention. Experimental
results demonstrated the system’s ability to detect force magnitude and
direction, stopping the arm when forces exceeded a predefined thresh-
old. This offers a promising solution to improve patient engagement and

trajectory control in rehabilitation.

Cobot Control with Assist-As-Needed (AAN) Strategy A study evaluated the
KUKA LBR iiwa 14 cobot for implementing the AAN principle using
impedance control [53]. The system adapts upper extremity therapy by
adjusting support based on position, velocity, and force. Physiotherapists
initially guided users in performing ADLs, which were later completed
independently with robotic assistance. Ten healthy subjects performed
wiping and hand-to-head movements under three adaptation strategies
with varying personal effort levels (0%, 50%, and 100%). Although the
movement quality, comfort, and trajectory were maintained, movement
smoothness improved with increased personal effort. The system shows
promise for stroke rehabilitation but requires further clinical validation.

Another study developed an AAN robotic rehabilitation system using
a Franka Emika cobot to enhance patient engagement and training
effectiveness [64]. The cobot, equipped with a customized hand brace,
was used to monitor interaction forces and estimate user intention, a
display screen for path trajectory, and an AAN control algorithm to
dynamically adjust assistance. Four healthy participants performed pas-
sive, active trajectory-following, and resistive exercises. Results showed
enhanced patient engagement with the system, which supports active,
passive, and resistance-based modes.

An upper extremity rehabilitation system was developed using two
KUKA LBR iiwa 14 cobots equipped with custom handles, display screens,
cameras, and a body structure module [54]. The system, controlled by
an AAN controller, activates the cobot based on the affected extremity
and provides assistance only when deviations exceeded a defined virtual
channel. One healthy subject performed a circular trajectory task under

three conditions: no assistance, force-based, and AAN-based. Results



Raji et al. BioMedical Engineering OnLine (2025) 24:50 Page 17 of 28

show improved trajectory adherence and controlled interaction forces
with AAN, though further clinical validation is necessary to confirm its
efficacy for rehabilitation.

In a follow-up study, the authors developed and validated an AAN con-
troller for the two KUKA LBR cobots, extending its capabilities to pas-
sive, active, assistive, and resistive upper extremity training modes [55].
A custom end-effector handle allowed users to attach their hand directly
to the cobot, enabling movement within a predefined fault-region. Outside
this region, the robot provided assistance tailored to individual abilities
by adjusting stiffness and assistance parameters. A preliminary evaluation
with one healthy participant involved performing circular trajectories
displayed on a screen with varying assistance levels. The results demon-
strated that the AAN controller effectively facilitated guided task com-
pletion, promoted active engagement, and improved motion performance,
suggesting its potential to enhance motor recovery in individuals with

upper extremity impairments.

Cobot Control with Electrophysiological Data Several studies have explored
cobots for surface electromyography (sEMG)-based therapy using sensors
like inertial measurement units (IMUs) [42, 45, 62, 63]. A study used a URS
cobot with a force sensor, gripper, and ergonomic knob to assist users
during arm movements while recording muscle activity via sEMG [42].
Although this study involved only five healthy participants performing
exercises with and without robotic assistance, the results showed a sig-
nificant correlation between muscle activity and robotic force. Despite the
small sample size, these findings are valuable as they suggest that cobots can
effectively support motor rehabilitation by providing real-time feedback
on muscle engagement and force application through sEMG, highlighting
their potential for integration into personalized rehabilitation therapies.

In a different study, the authors showed that the URS cobot can enhance
upper extremity muscle recruitment without introducing force or stiff-
ness challenges to the patients [45]. Using sEMG and IMUs to monitor
muscle fatigue, five healthy participants performed predefined circular
arm movements in task-based exercises. The results showed a strong cor-
relation between force exertion and muscle activity, suggesting that pre-
cise force adjustments by the cobot could significantly improve muscle
engagement and the effectiveness of rehabilitation exercises.

Another study used the Franka Emika Panda cobot with a custom han-
dle and eye-tracker to develop a gaze-based interface for unilateral upper
extremity rehabilitation [63]. The system used sEMG signals and eye
tracking to guide the robot’s movements, reducing the need for assis-
tance. Ten healthy participants performed gaze-guided reaching tasks,
highlighting the system’s ability to facilitate intuitive and accurate task
performance, reduce physical effort, and improve repetitive task training

during rehabilitation.
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Cobot Control with Gamification and Virtual Reality Some studies integrated
cobots with virtual reality (VR), sEMG sensors, and IMUs [49, 51, 62]. The
Franka Emika Panda cobot, paired with sEMG sensors, was used to study
how target difficulty and haptic feedback affect muscle activation [62]. An
orthosis and an electro-holding magnet were used to restrict wrist move-
ment, and an elbow support was used to reduce arm fatigue. A healthy
participant performed reaching tasks in a virtual environment with and
without haptic feedback. The results showed that target difficulty and hap-
tic feedback significantly influenced muscle activation, highlighting the
importance of task complexity in rehabilitation.

Similarly, the Kuka LWR 44 cobot was used to develop a 3D bio-coop-
erative robotic platform with a motorized arm-weight support [51]. The
system used the cobot, EMG sensors, and magneto-inertial measurement
units (M-IMUs) to track arm movements, evaluate fatigue, and adjust assis-
tance in real-time. Ten healthy participants controlled a VR hand avatar
for 2D and 3D exercises. The study showed that the platform significantly
reduced muscular fatigue without affecting motor patterns, suggesting
its potential for personalized therapy.

A study developed an augmented reality (AR) application for a UR
cobot—real or simulated—to enhance upper extremity rehabilitation
through gamification and interactive experiences [49]. Built using the
Unity® game engine, the system integrated with the HoloLens headset
to enable virtual object visualization, head movement tracking, and trans-
lation into the virtual environment. Therapists defined and customized
therapeutic trajectories based on patient needs, with the robot as an assis-
tive tool. A usability evaluation with 31 healthy participants assessed the
system’s functionality using questionnaires. Results highlight the ease
of use and motivational potential, with positive therapist feedback high-
lighting its customizability for therapy.

Cobot Control with Other Forms of Feedback Various techniques, including
dynamic movement primitives (DMPs), computational modeling, and self-
learning methods, have also been used to control and adapt cobots for
therapeutic purposes.

A study used a URS cobot with a force sensor, wrist support, custom
handle, and force feedback to enhance training exercises [39]. The cobot
used DMPs to learn exercise trajectories from demonstrations provided
by therapists and personalized them based on force feedback. Simulated
experiments showed the UR5’s potential for personalized rehabilitation.

A URS3 cobot, equipped with a 3D-printed cone-shaped tool and a force
sensor, was programmed for real-time monitoring and intelligent self-
learning control [41]. During the experiment, the cobot applied consistent
resistive forces across various axes to enhance muscle engagement in a

healthy participant. The results highlighted the system’s ability to adapt
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to varying user forces, suggesting its potential to improve rehabilitation
outcomes.

A different study used the Franka Emika Panda cobot to generate refer-
ence paths by analyzing users’ motions [61]. With a custom-made handle,
it learned and imitated user trajectories via an attention-based model, cre-
ating adaptive paths for ADL tasks. During tests with 10 healthy partici-
pants, the cobot adjusted in real-time to match user motions, suggesting
the model could potentially enhance rehabilitation outcomes through indi-
vidualized, assist-as-needed mode of assistance.

In another study, the authors proposed a teleoperation framework for
remotely controlling a Sawyer robot in passive and active rehabilitation
training for individuals with upper extremity hemiplegia [65]. Using a
haptic device for therapist control, the system incorporated autonomous
and interactive modes with improved DMPs, virtual fixtures, and a hybrid
control strategy driven by sEMG-based forearm muscle activation. Two
experiments validated the framework: in the first, a therapist remotely
controlled the robot to collect demonstration trajectory data, while in
the second, the robot autonomously followed a circular trajectory to test
the motion model and control strategy. Results showed smooth trajectory
reproduction without abrupt stops and effective generation of guiding
virtual forces. These findings highlight the potential benefits of cobot-
assisted rehabilitation.

An uncertainty compensated high-order adaptive iteration learning
control (UCHAILC) method was developed to improve the tracking per-
formance of a KUKA LBR iiwa R700 cobot during upper extremity reha-
bilitation for individuals with stroke [52]. The cobot was configured to
provide assistance during ADLs. Hand movements during a drinking task
were recorded from healthy participants using motion capture to gener-
ate end-effector trajectories. The results showed improved tracking accu-
racy, enabling more accurate and personalized assistance. This approach
may improve rehabilitation outcomes by offering task-specific, repetitive
training aligned with individual patient needs.

Another study used the Kuka LWR 44 cobot and M-IMUs to develop
an adaptive control system for patient rehabilitation [50]. This system,
comprised of wrist support with a magnet and two M-IMU sensors,
tracked arm movements and adjusted stiffness accordingly. Two healthy
participants performed 2D and 3D point-to-point movements, replicating
healthy behaviors and simulating post-stroke-like movements/behavior,
such as failing to extend the elbow, moving in the wrong direction, or
pausing during execution, with visual feedback in the form of pictures
illustrating the tasks to be performed. The findings suggest that the
system can safely adjust to individual needs and enhance patient engage-
ment and therapy outcomes, thus indicating its potential for personalized

rehabilitation.
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In the article by Chiriatti et al. [46], the authors presented a framework
using a UR3e cobot to assist users in executing specific 3D trajectories. A
specialized handle, designed for individuals with limited grip, facilitated
user interaction, while the developed algorithm applied elastic corrective
forces to ensure linear movement and prevent deviations. The experimen-
tal procedure involves caregiver-defined start and end points, with the
endpoint tracked by a camera and exercises initiated by sufficient user-
applied force. Preliminary tests with healthy participants indicated that
the system is intuitive and user-friendly. Safety measures, including
speed limitation and seating outside the cobot’s reach, were implemented.
Further trials with individuals with stroke will evaluate its efficacy.

Bilateral Upper Extremity Rehabilitation

Simultaneous use of cobots, specifically the UR5 and UR10 models, have
been explored for bilateral upper extremity rehabilitation. A three-stage
trajectory generation method was developed and assessed using these
cobots [44]. The three stages are (1) workspace analysis of the intersec-
tion between the user and robot hands, (2) generation of personalized tra-
jectories within the user-specific workspace, and (3) interference analysis
to ensure training safety. Custom handles were used to facilitate train-
ing, and seven healthy participants completed eight predefined trajectory
training sessions, demonstrating the method’s effectiveness for safe and
individualized rehabilitation.

The system used in the article by Miao et al. [44] was further enhanced
with force sensors, custom handlebars, and a Velecro®-secured hand and
wrist support [43]. The UR10 functioned as the master and the URS5 as the
slave, employing a patient-cooperative control strategy for passive, active,
and self-training assistance. Ten healthy participants performed shoulder
flexion, extension, adduction, abduction, self-mimic, and self-cooperative
exercises, showing that the cobots could provide a reliable bilateral train-

ing environment suitable for clinical use.

Lower extremity rehabilitation

Cobot Control with Electrophysiological Data

A study developed a hybrid robotic rehabilitation system that integrated
a ROBERT® with sEMG-triggered functional electrical stimulation (FES)
for lower extremity rehabilitation [38]. The cobot (Kuka LBR), equipped
with a leg brace and electrodes placed on the knee and foot extensor mus-
cles, guided participants through predefined leg press and dorsiflexion
trajectories. Ten healthy participants performed 40 repetitions at two
sEMG thresholds, with FES triggered when sEMG signals exceeded preset
thresholds and stopped at the trajectory endpoint. Results showed high
success rates in exercise repetitions and force generation, suggesting that
combining sEMG-triggered FES with robotic assistance may enhance reha-

bilitation outcomes.
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Similarly, Leerskov et al. [59] developed a hybrid system combin-
ing ROBERT® with FES for lower extremity rehabilitation. The system
included a custom-made brace, stimulation electrodes placed over the knee
flexor and extensor muscles, and EMG electrodes to monitor muscle activ-
ity. The robot adjusted resistive forces and stimulation intensity based
on individual needs, with FES administered by an experimenter, which
automatically stopped at 80% of the trajectory. Eight participants com-
pleted 50 FES-assisted leg-press repetitions and showed variability in out-
comes—half exhibited potentiation (increased velocity and force), and half
experienced fatigue. These findings underscore the need for adaptive reha-
bilitation systems that can address the diverse patient responses.

The feasibility of a UR10e cobot for lower extremity rehabilitation was
evaluated, with its performance compared to that of a physiotherapist
[48]. The cobot was equipped with a custom-designed brace attached to
its final joint, securely fastened to the user’s lower extremity for thera-
peutic movements. It was programmed to perform repetitive movements
based on Proprioceptive Neuromuscular Facilitation techniques, customized
to the user’s leg positioning. Inertia measurement unit sensors tracked
pelvic and lower leg movements during passive and assistive training
modes. The results showed the cobot’s effectiveness in performing repeat-
able exercises, though accuracy depended on the trajectory program-
ming. These findings highlight the potential cost and efficiency benefits of

cobot-assisted rehabilitation.

Cobot Control with Assist-As-Needed (AAN) Strategy

Leerskov et al. improved the system in [59] by integrating ROBERT®
with FES and an AAN strategy for lower extremity stroke rehabilita-
tion [58]. A foot brace with EMG and stimulation electrodes placed on the
thigh and the tibialis anterior allowed adaptive support for ankle dorsi-
flexion and knee extension based on user capabilities. Assistance modes,
including no support, FES, mechanical assistance, or both, were dynami-
cally adjusted using EMG signals to detect voluntary effort and trigger
the AAN system. Tests with 10 healthy participants showed over 96%
accuracy in detecting user behavior and adjusting assistance levels. Clinical
feasibility with two individuals post-stroke indicated enhanced engage-
ment, voluntary effort, and potential for motor learning. These findings
suggest promise for personalized stroke rehabilitation, although further
clinical trials are needed.

Building upon their previous work described in [58], the authors in [57]
assessed the feasibility of combining ROBERT® and FES with an AAN
approach to support actively initiated leg movements in individuals with
stroke. Using the previously described cobot in [58], assistance levels were
categorized from the patient’s perspective as no assistance or assistance,
with the latter further subdivided into FES alone or combined FES with

mechanical support. Nine individuals with subacute stroke performed
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repetitive ankle dorsiflexion and knee extension movements, with and
without assistance. The results showed that assistance was required in
44% of ankle dorsiflexion repetitions and 5% of knee extension repeti-
tions, and median fatigue scores indicated mild-to-moderate perceived
fatigue. The findings suggest that integrating robotics and FES within
an AAN approach is feasible for supporting leg movements in stroke

rehabilitation.

Cobot Control with Other Forms of Feedback

The Kuka LBR iiwa was investigated for ankle rehabilitation using a cus-
tom 3D-printed leg-constraining and sole plates for secure engagement
during therapy [32]. Five healthy participants performed 20-min pre-
defined movements. The results highlight the cobot for effective ankle
rehabilitation, but further development is needed to enhance movement
control and monitoring.

Similarly, another study evaluated the feasibility of a large-scale trial
to assess ROBERT®'’s effectiveness in improving hip flexor strength after
SCI [56]. A leg brace attached to robot’s end effector provided guidance
or active assistance depending on participant’s muscle strength grades.
Four participants with subacute SCI and hip flexor muscle strength grades
between 1 and 3 performed 60 hip flexion repetitions on one leg three
times weekly for 4 weeks, while the other leg served as a control. Results
demonstrated 92% training adherence, no adverse events, and positive
feedback, suggesting that ROBERT® is acceptable and potentially effec-
tive. These findings indicate that cobot-assisted training is feasible for
enhancing hip flexor strength, although further research is needed to
improve the system.

Another study analyzed the cost-effectiveness of the ROBERT® device
for lower extremity therapy compared to physiotherapist-led sessions
[60]. With an average cost below USD $25 per hour, ROBERT® demon-
strated the potential to reduce hospital stays, readmission rates, and over-
all healthcare expenses. Despite its high initial capital cost, the system’s
operating expenses were only one-tenth that of a specialty outpatient ses-
sion in Hong Kong hospitals. This suggests that ROBERT® offers a cost-

effective solution for optimizing rehabilitation costs in clinical settings.

Discussion

This systematic narrative review explored the use of industrial-grade
cobots for upper and lower extremity motor rehabilitation among indi-
viduals with stroke and SCI. Cobots offer unique advantages such as
advanced safety features, compliant actuators, and real-time adaptabil-
ity, which allow safe and interactive human—robot collaboration with-

out physical barriers. These characteristics make cobots a promising tool
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for rehabilitation, addressing some limitations of traditional robots that
often lack flexibility and require external force-sensing modules.

Few studies included individuals with stroke or SCI, primarily focusing
on lower extremity rehabilitation using the ROBERT® system. Robotic
assistance with or without AAN strategies and/or FES demonstrated
improvements in patient engagement, voluntary effort, and task-specific
motor recovery [56—58]. One study reported that participants achieved
381 repetitions with AAN activated compared to 35 without it, highlight-
ing the system’s capacity to enhance engagement and rehabilitation dose
through increased repetition [57].

Voluntary effort was further emphasized in trials involving the ROB-
ERT® device, as participants actively contributed to their movements,
supporting guided assistance in motor learning [58]. Participants expressed
higher motivation and perceived robotic assistance as more challenging
than conventional physiotherapy, suggesting that cobot-assisted rehabili-
tation may foster involvement and effort [56].

Repetitive movement practice may facilitate task-specific motor recov-
ery by targeting muscle activation and functional improvement. The AAN
algorithm dynamically adjusted support, encouraging patients to perform
more tasks independently, leveraging residual motor capacity and pro-
moting neuroplasticity [58].

Despite these promising outcomes, the absence of research on cobots for
upper extremity rehabilitation in stroke and SCI populations highlights
a critical gap. Expanding studies to upper extremity rehabilitation will
be fundamental to exploring the full therapeutic potential of cobots for
diverse motor impairments.

The collaborative design of cobots makes them well-suited for clinical
settings, as they enable the delivery of repetitive, task-specific exercises,
which are essential for motor recovery among individuals with stroke and
SCI. Unlike exoskeletons that require precise alignment and often involve
complex setup procedures, or end-effector robots that are limited to pla-
nar movements, cobots can adapt to various therapeutic interventions and
can support complex, three-dimensional exercises with customizable tools.
Their adaptability in reach (ranging from 500 mm to 1300 mm) and pay-
load capabilities (ranging from 0.5 kg to 10 kg) allow them to meet the
diverse needs of patients for upper extremity rehabilitation. However,
for lower extremity rehabilitation, cobots are limited to mobilization
exercises usually performed in the supine position, which, unlike exoskel-
etons or foot-plate-based end effector robots, do not provide functional
training necessary for standing or walking. This distinction highlights
the supplementary role cobots play in lower extremity rehabilitation.

Cobots show potential for enhancing patient engagement in rehabilita-
tion through strategies such as gamification, virtual reality, and task-
specific exercises [58]. Studies in this review integrated technologies like

virtual reality, sEMG monitoring, and adjustable trajectories to create
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interactive and motivating therapy experiences. These approaches not
only align with conventional rehabilitation objectives but also introduce
novel ways to improve adherence. By tailoring assistance levels to indi-
vidual requirements, cobots offer personalized therapy comparable to con-
ventional methods. Several studies implemented AAN control strategies to
dynamically adjust robotic assistance based on user effort. Assist-as-needed
systems can promote active participation, improve movement smoothness,
and enhance motor recovery by providing personalized support. Although
promising, further clinical studies are required to validate their efficacy
across diverse patient populations with motor impairments.

Cost-effectiveness is a key consideration for implementing cobots in
rehabilitation settings. Although this narrative review did not address the
cost-effectiveness of cobots in rehabilitation settings, preliminary studies
suggest that systems, such as ROBERT®), used for lower extremity ther-
apy, may reduce healthcare costs by decreasing hospital stays and read-
mission rates [48, 60]. However, high initial investment and variability in
operational expenses highlight the need for more comprehensive research
to determine long-term cost-effectiveness compared to conventional ther-
apy. Future studies should address this gap to inform the implementation
and scalability of cobots in clinical practice.

Despite these promising findings, several challenges remain in current
research. Successful integration into clinical practice requires continuous
training and support for therapists to operate and maximize the benefits
of these technologies [70, 71].

Furthermore, there are inconsistencies in the definitions of cobots and
traditional industrial robots, creating ambiguity in the field. Many studies
focus on methodologies, lack sufficient details about the cobot character-
istics, and have limited information regarding the technical specifications
of the cobots used. Additionally, the low payload of some cobots may
restrict their ability to provide personalized exercises requiring gravity
compensation. Addressing these gaps is crucial to advancing cobot’s appli-

cability in rehabilitation.

Conclusion

This review highlights the emerging potential of cobots in motor reha-
bilitation after a stroke or SCI. While cobots present significant potential
for motor rehabilitation of the upper and lower extremities among indi-
viduals with stroke or SCI, further research is needed to optimize their
integration in rehabilitation settings. Standardizing definitions, improving
research methodologies, and conducting studies involving more stroke and
SCI populations will enhance the generalizability of the results. Addressing
these challenges may further refine the effectiveness of cobots in reha-
bilitation and support their sustainable integration into clinical practice.
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Abbreviations

AAN Assist-as-needed

ADLs Activities of daily living

Cobots  Collaborative robots

DMPs Dynamic movement primitives
DOFs Degrees of freedom

IMU Inertial measurement unit

M-IMU  Magneto-inertial measurement units
MIME Mirror Image movement enabler

Scl Spinal cord injury

SEMG Surface electromyography
UR Universal Robots

VR Virtual reality
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