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Abstract 

Smoking has been widely identified for its detrimental effects on human health, 
particularly on the cardiovascular health. The prediction of these effects can be 
anticipated by monitoring the dynamic changes in vital signs and other physiologi-
cal signals or parameters such as heart rate, blood pressure (BP), Electrocardiogram 
(ECG), and Photoplethysmogram (PPG), which subtly encode smoking-related effects. 
We investigated the influence of different smoking habits—normal cigarettes (NC), 
electronic cigarettes (EC), and shisha (SH)—on BP through analysis of ECG and PPG sig-
nals. The measurements of these physiological signals were taken across three distinct 
smoking phases: "before", "during", and "after" smoking. The study assessed changes 
in heart rate, as well as morphological and statistical characteristics of ECG and PPG 
signals, induced by smoking. A machine learning (ML) model was developed to predict 
BP values with different smoking habits and smoking phases, while also evaluating 
the temporal effects of smoking phases. Results show that smoking markedly alters 
PPG features in such it significantly affects systolic time, heart rate, peak pulse interval 
variability, and augmentation index. BP variations were evident across all smoking 
habits and phases. The ML model demonstrated strong accuracy in estimating systolic 
blood pressure (SBP) and diastolic blood pressure (DBP) during and post-smoking, 
with a mean error of 0.01 ± 0.29 mmHg and a root mean square error (RMSE) of 0.2924 
mmHg for DBP and RMSE of 0.0082 mmHg for SBP. Such a study underscores the pro-
nounced effect of smoking on BP and its potential role in cardiovascular system altera-
tions, offering insights into the development of related diseases.

Keywords:  Smoking habits, Blood pressure, e-Smoking, Photoplethysmogram, 
Statistical analysis, Cardiovascular disease

Introduction
Smoking is considered one of the leading causes of preventable mortality worldwide and 
leads to different cancers, cardiovascular and respiratory diseases. It is associated with 
numerous adverse effects on the cardiovascular system, including narrowing of blood 
vessels, coronary heart diseases, stroke, peripheral arterial disease (PAD), and abdomi-
nal aortic aneurysm (AAA). It stems from the addiction to different smoking habits and 
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products, such as nicotine, which results in releasing dopamine [1]. Examples of these 
smoking habits are normal cigarettes (NC), electronic cigarettes (EC), and shisha (SH).

To date, only a few studies investigated blood pressure (BP) behavior over short time 
intervals with different smoking habits utilizing biosignals. Most of the research per-
formed in the literature has considered the chronic effect of smoking on BP based on 
cross-sectional, long-term, and previously collected data [2, 3]. The studies on the cor-
relations between smoking behavior and BP have produced diverse results. It is usually 
reported that smoking causes BP elevation [4–8], although different studies reported 
lower or comparable BP levels in smokers compared to nonsmokers [3, 9–11]. With a 
total of 14,000 subjects Al-Safi reported a significant elevation in BP and heart rate for 
smokers compared to nonsmokers [5]. He attributed the reason for this elevation to the 
activation of nicotine receptors and thereby the increase in noradrenaline release and 
the rise of BP. Additionally, he reported a higher BP for both smokers and nonsmokers 
with inherited hypertension in their family, indicating a high risk of the development 
of cardiovascular diseases, especially for smokers. By contrast, Green et  al. concluded 
a lower BP among smokers compared to nonsmokers [12]. The same observation was 
reported by other studies where nonsmokers exhibit higher BP values [3, 13]. In con-
trast, in the Framingham Study Gordon found that there is no noticeable difference in 
BP among smokers and nonsmokers [14]. Primatesta et  al. considered the long-term 
level of BP for smokers and nonsmokers utilizing the statistics of the Health Survey for 
England (HSE) [2]. They observed that there were no significant differences in BP values 
between smokers and nonsmokers. However, they advised smokers with elevated BP to 
stop smoking because of the risk of coronary heart disease, as the study did not include 
BP monitoring during and immediately after the smoking event.

In the literature, there have been various studies highlighting the negative effect of 
smoking on different biosignals such as the electrocardiogram (ECG) and the photop-
lethysmogram (PPG). Generally, ECG and PPG are sensitive to smoking, as it can lead 
to alterations in blood flow, increased heart rate, and changes in heart rate variability. 
These effects can be projected to cardiovascular health conditions and may be reflected 
in the features of biosignals. With the early detection of these effects, many cardiovascu-
lar diseases associated with smoking can have a better prognosis.

Numerous studies have revealed a connection between different types of smoking 
habits and several health conditions, including vascular risk factors, pulmonary dis-
eases, and vascular diseases [15–17]. Consequently, there has been significant attention 
on the analysis of ECG signal characteristics to investigate the impact of smoking. The 
general aim of these studies is to encourage smoking cessation among smokers (particu-
larly patients who smoke) and to discourage nonsmokers from initiating smoking habits. 
Yadav et al. investigated the impact of smoking on ECG morphology by analyzing inter-
vals and waves [18]. They observed a decrease in the duration of various ECG waves, 
such as the P-R interval and QRS complex. Their study suggested that among smok-
ers, there is an increased likelihood of developing cardiovascular disease. Devi and col-
leagues performed a comparative study related to the effect of smoking on ECG signal 
utilizing eighty-eight subjects, where the morphology of the ECG signal was investigated 
[19]. The effect is summarized by shorter ECG intervals (e.g., QTc) while widened other 
intervals (e.g., QRS) with noticeable variations in the amplitudes and durations of ECG 
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waves caused by smoking. Furthermore, Yıldırım et  al. discussed smoking effects (i.e., 
narghile) on ECG signal and carboxyhemoglobin (COHB) levels [20]. After 30 min post-
ing the smoking session, the ECG signals and the COHB level were measured for each 
subject under investigation. The results showed a significant increase in the median of 
the COHB value as well as an increase in the duration of the ECG waves (e.g., QT, QTc). 
Chatterjee et al. investigated the effect of chronic smoking on the ECG signals with 232 
male non-smokers and 224 male smokers [21]. The ECG wave amplitudes (e.g., R, S, and 
T waves) and durations (e.g., P-R, QRS, and QTc) were considered. It was observed that 
smokers have lower wave amplitudes compared to non-smokers.

On the contrary, there have been limited studies in the literature exploring the effect 
of smoking utilizing PPG signals, where the majority were focused on the smoking 
classification. Korkmaz et al. utilized the PPG signal features to identify smoking hab-
its [22]. They measured the PPG signals from 46 subjects and incorporated statistical 
features (e.g. skewness, kurtosis) with other features. They found that the accuracy in 
classification smoking was 73.7% while considering different factors such as gender and 
nutritional status. Another group analyzed the PPG signals to classify smokers and non-
smokers utilizing a Poincare plot with twenty subjects [23]. They found that the param-
eters of the Poincare plot could significantly differentiate between both groups. The 
effect of smoking on the autonomic nervous system (ANS) was reported utilizing the 
PPG signals by several researchers. Shi et al. conducted a pilot study to investigate the 
relationship between cigarette smoking and heart rate variability (HRV), as it is deter-
mined from the pulse-to-pulse (PPI) interval [24]. They utilized lagged Poincare plots 
and spectral power indices for distinguishing between various cardiovascular diseases. 
Qananwah et al. investigated different smoking habits, including normal cigarettes (NC), 
electronic cigarettes (EC), and shisha (SH), and then statistically analyzed the smoking 
effect on the morphological features of the PPG signals [25]. The morphology of the sig-
nals gives a deep insight into the blood dynamics in the vessels. They came to the result 
that shisha smoking is the worst among all investigated smoking habits.

It can be concluded from all the previous studies that although PPG is a simple and 
effective technique (since it directly reflects the blood volume in the arteries); there is a 
lack of studies investigating the induced changes and the immediate effects of smoking 
on BP utilizing biosignals with different smoking habits. To the best of our knowledge, 
the only study related to the effect of smoking habits using PPG signal was reported in 
the literature by Qananwah et al. [25]. Various analyses were performed for the effect of 
smoking on PPG features. However, they did not discuss the effect of smoking on BP. 
To obtain conclusive information on these issues, this study examines the association 
between systolic and diastolic BP of smokers with different smoking habits during and 
immediately after the smoking session with short intervals.

This work can be considered one of the first studies to identify the possible correla-
tion between smoking habits and BP on a short-time basis before, during, and after the 
smoking session, benefiting from biosignals (i.e. PPG). Our study employs a dynamic 
approach by analyzing ECG and PPG biosignals across three distinct phases—"before", 
"during", and "after" smoking—combined with machine learning (ML) to estimate BP, 
unlike previous studies, such as Primatesta et al. [2], which relied on statistical surveys 
and self-reported data without real-time BP monitoring during or immediately after 
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smoking. While most prior research, e.g., Yadav et al. [18] and Devi et al. [19], focused 
solely on ECG morphology, our inclusion of PPG signals together with the ECG signals 
provides deeper insights into blood volume dynamics. To our knowledge, this is the 
first study that simultaneously investigates smoking normal cigarettes (NC), electronic 
cigarettes (EC), and shisha (SH), offering a comparative analysis of their acute effects. 
Furthermore, our extended observation periods (up to 40 min post-smoking) reveal per-
sistent physiological changes—unlike shorter, less structured intervals in studies as in 
Al-Safi [5] or Green et al. [12]—highlighting the prolonged impact of even a single smok-
ing session. The objectives of this study are to identify the substantial and immediate 
possible risks and medical implications of smoking, as reflected by PPG signal features, 
to encourage smokers to cease smoking, and to encourage nonsmokers not to initiate a 
smoking behavior.

Results and discussion
The results can be divided into two groups. The first group relates to the results obtained 
from direct visual observation of the signal behavior and patterns for the "before", "dur-
ing", and "after" smoking phases. The second deals with the results obtained from the 
computation and evaluation of the signal features.

Observations

When analyzing the PPG signals measured at the "before" and "during" smoking phases 
for the same subject, fluctuations in the signal amplitude were observed. The ampli-
tude of the PPG signal exhibits a consistent pattern of increase and decrease. This can 
imply vasoconstriction within the blood vessels, as well as the presence of nicotine [26, 
27]. The behavior was common across all types of smoking habits, but it was more pro-
nounced in medium and heavy smokers compared to light or acute smokers. Figure 1 
shows an example of PPG signals at the "before" and "during" phases of EC smoking, 
with noticeable variations in signal amplitude.

Another finding observed from the signal morphologies was the fluctuations in the 
pulse rate (PR), as shown in Fig. 1. For EC smoking, the PR increases from 44 pulses in 
a 30-s interval (~ 88 bpm) to 50 pulses per 30 s (~ 100 bpm). Similar trends were also 
noticed for the "during" smoking phase with the other smoking habits (i.e., NC and SH).

From the morphology of some PPG signals, a relocation of the notch has been 
observed among some subjects, as shown in Fig. 2. This trend has also been observed in 
a significant proportion of subjects with different smoking habits.

Figure 3 illustrates that the PPG signal amplitude exhibits significant variations across 
the "before", "during", and "after" phases of smoking, with measurements extending up 
to 40 min post-smoking for NC and EC. Specifically, the amplitude displays clear fluc-
tuations—increasing or decreasing in both magnitude and duration—throughout the 
measurement period, a trend consistently observed across all smoking types (NC, EC, 
and SH). For instance, NC exhibits the largest amplitude increase during smoking, fol-
lowed by SH, while EC shows a relatively milder response, with effects persisting up to 
40 min. Additionally, AC drifting is evident in all smoking types: NC demonstrates the 
most pronounced shift, SH shows a moderate shift, and EC displays the least notice-
able shift, indicating differing extents of sustained impact on the PPG signal. These 
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findings highlight the need to determine the duration over which smoking-induced 
effects remain significant. Such insights reveal potential dynamic alterations in blood 
flow behavior within the "before" smoking phase, which may contribute to unexpected 
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Fig. 1  The PPG signal measured at the "before" and "during" EC smoking session

Fig. 2  The PPG signal measured at the "before" and "during" EC smoking session while showing the 
relocation of the notch
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Fig. 3  The PPG signals for different smoking habits (a) NC, (b) EC, and (c) SH at the "before", "during", and 
"after" smoking phases
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complications with prolonged smoking. Moreover, as the consumption of tobacco prod-
ucts gets higher the impact of this consumption could find its way to complications in 
the healthcare and an increase in cardiovascular diseases.

Feature‑dependent results

Data interpolation

In the present study, the PPG and ECG signals were measured on 84 subjects who par-
ticipated in this research. The measurements are processed using the MATLAB soft-
ware environment. Firstly, sixty-five PPG and PPG-ECG features were identified and 
extracted to be used for further data processing and building an ML model. Since the 
number of features is large and the dimensionality of the dataset is high then, an inter-
polation process was carried out to expand the sample size to 870 instead of 84 utilizing 
interpolation. This step will improve the significance of the study outcomes because the 
estimation of BP utilizing ML techniques depends solely on the availability of sufficient 
data to provide reliable conclusions [28]. Subsequently, 65 features are extracted and 
reduced to 12 via Principal Component Analysis (PCA) [29–31], which are then used to 
train the Gaussian Process Regression (GPR) model for BP estimation [32]. This reduc-
tion eliminates redundancy and noise while preserving essential information for model 
development. Figure 4 illustrates the subsequent steps of signal analysis applied to the 
PPG and ECG signals.

The PCA results were analyzed, and the twelve most important features were selected 
to construct a machine-learning model that predicts BP using the GPR method. Figure 5 
presents a plot of the cumulative explained variance for BP prediction, demonstrating 
how varying the number of PCA-selected features impacts the performance of the ML 

Fig. 4  A block diagram representing the data analysis steps performed on the PPG and ECG signals

Fig. 5  The cumulative explained variance plot for PCA performance
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model. With this metric, each additional component contributes to this cumulative total 
variance and the target is to select several components that account for a large portion of 
the total variance (e.g. more than 95%) while keeping the number of components mini-
mal, leading to a simpler model.

The resulting PCA features are Inflection_Point_Area_ kurtosis, average_systolic_
to_diastolic_ratio, Heart_Rate_kurtosis, PTT_f_kur, Inflection_Point_Area_Mean, 
PTT_P_kur, pulse_interval_kurtosis, systolic_time_kurtosis, peak_to_peak_interval 
_kurtusis, pulse_rate_kurtosis, Heart_Rate__deviation, Augmentation_Index_kurtosis, 
and systolic_amplitude _kurtosis. The twelve PCA-selected features (e.g., Inflection_
Point_Area_kurtosis, Heart_Rate_kurtosis, Augmentation_Index_kurtosis, systolic_
time_kurtosis) reflect cardiovascular dynamics altered by smoking. For example, the 
Augmentation Index (AI) relates to arterial stiffness and wave reflections, influenced by 
smoking-induced vasoconstriction, while systolic_time_kurtosis and Heart_Rate_kur-
tosis capture pulse-timing irregularities that are altered by nicotine’s effect on heart 
rate and vessel tone and tied to BP shifts. These physiological connections underpin 
the model’s ability to estimate systolic and diastolic BP accurately. Model performance 
was assessed using two metrics: mean error (indicating overall accuracy) and root mean 
square (RMS) error (reflecting deviation magnitude). These metrics ensured a robust 
evaluation of accuracy and stability. Performance analysis showed that reducing features 
below twelve increased mean and RMS errors due to insufficient data representation, 
while exceeding twelve offered minimal gains, balancing accuracy and complexity at 
twelve features with a mean error of 0.01 ± 0.29 mmHg and RMSE of 0.2924 mmHg for 
the diastolic blood pressure (DBP).

Gaussian process regression (GPR)

Gaussian process regression is a robust technique within ML that relies on the relation-
ship between predictors (Xi) and predictors (Yi), utilizing a joint Gaussian distribution. 
The selection of the kernel function plays a critical role in Gaussian process regression. 
This function determines the characteristics and continuity of the functions that the 
Gaussian process can produce. The commonly used kernel functions include the Radial 
Basis Function (RBF), also known as the Gaussian kernel, the Matérn kernel, and the lin-
ear kernel, among others [33, 34]. In this study, the exponential kernel function for dias-
tolic prediction employed a sigma of 0.0807 to smooth transitions between data points. 
The systolic model used the Matérn 5/2 kernel (a common covariance function balanc-
ing smoothness and flexibility [35]) with a sigma of 0.1367. The sigma values (0.0807 
for diastolic prediction and 0.1367 for systolic prediction) of the exponential kernel in 
the GPR model were determined via Bayesian hyperparameter optimization using a grid 
search (sigma range: 0.01–0.5) and fivefold cross-validation to minimize the predic-
tion error [35]. The smaller sigma for DBP reflects shorter-range correlations, while the 
larger sigma for systolic blood pressure (SBP) accommodates its broader variability, opti-
mizing prediction accuracy. In this study, the dataset was split into 85% training and 15% 
testing samples, where the total number of samples was 870 samples. Figure 6 shows the 
training results of the DBP for the "before" smoking phase. The results indicate that the 
prediction of the DBP is accurate and reliable.
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The performance of the developed DBP ML model was evaluated through the analysis 
of the test samples. The results demonstrated a strong correlation between the actual 
and the estimated DBP. Figure 7 illustrates the testing results of the DBP for the "before" 
smoking phase, which indicates a mean error of 0.01 ± 0.29 mmHg and a root mean 
square error of 0.2924 mmHg.

To analyze the effect of smoking on BP, predictions for BP were performed for the 
"during" smoking phase and the "after" smoking phase at intervals of 5, 10, 20, and 30 
min after the smoking session. Although the model was initially developed based on the 
DBP dataset from the "before" smoking phase, it was applied to estimate the DBP in the 
subsequent smoking phases. Figure 8 illustrates the predicted DBP for each subject at 
different time slots relative to the smoking session, specifically the "before", "during", and 
"after" smoking phases, with time intervals of 5, 10, 20, and 30 min.

The results demonstrate variation in the DBP for the "before", "during", and 
"after" smoking and across different time intervals. This coincides with the previous 
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Fig. 6  The training results of the ML model of the DBP for the "before" smoking phase
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observation that analyzed the morphology of the PPG signals, where alterations in 
signal characteristics were observed, possibly due to vasoconstriction. It also depicts 
how BP changes at different stages, aligning with the actual measurements taken from 
the subjects.

Statistical analysis was performed on the anticipated DBP, providing insights into 
the mean, standard deviation (STD), and mean absolute error (MAE) of BP values 
for all subjects. The results generally indicate fluctuations in the DBP in the "after" 
smoking session at different time intervals. This demonstrates the long-term impact 
of smoking, which can persist for an extended period after the smoking session. The 
DBP peak at 20 min post-smoking (with a mean of 81.22 mmHg) reflects a transient 
smoking-induced effect, possibly due to compensatory mechanisms or stress, consist-
ent with PPG signal changes (e.g., amplitude fluctuations), and aligns with the model’s 
accuracy. Table 1 shows the mean, STD, and MAE of estimated DBP and SBP at dif-
ferent smoking phases and time intervals.

To further analyze the BP behavior for each subject over different time intervals, 
the estimated DBP values of five randomly selected subjects were examined. The 
readings exhibited fluctuations across different levels, suggesting a lack of DBP sta-
bility even after approximately 30 min post-smoking. This trend was observed con-
sistently among all subjects, by the dissimilarities between pre-smoking and 30-min 
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Table 1  The DBP and SBP estimation results at different smoking sessions

Smoking phase DBP (mmHg) SBP (mmHg)

Mean STD MAE Mean STD MAE

Before 74.50 8.40 02.10 121.22 15.56 0.65

During 72.19 5.69 11.01 124.94 21.87 22.71

After 5 min 72.57 5.16 09.27 120.79 24.97 21.19

10 min 72.71 5.02 09.93 121.05 16.79 20.21

20 min 81.22 6.56 11.28 114.72 20.73 19.10

30 min 73.64 3.78 08.96 124.37 16.60 19.77
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post-smoking DBP levels. The results depicted in Fig. 9 serve as compelling evidence 
of the incapability of the DBP to restore its baseline values before the smoking session 
even after 30 min.

To estimate SBP, a regression technique was utilized to estimate the BP using the 
significant features extracted earlier. This involves employing the GPR, with the same 
dataset divided into 85% for training and 15% for testing. The testing results for SBP 
demonstrate a high level of prediction accuracy. Figure  10 shows high prediction 
accuracy for SBP, with an R-squared value of 0.994 and for DBP, the R-squared value 
is 0.987, as shown in Fig. 6.

The BP model’s performance was assessed by testing it with sample data, demon-
strating a correlation between the predicted SBP and the actual values, as illustrated 
in Fig. 11. The results indicate a training root mean square error of around 0.0082.
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The same procedure was also applied to test SBP following the smoking session. Fig-
ure  12 shows the changes in SBP levels before, during, and after the smoking session 
over various time intervals. Statistical analysis was performed on the predicted BP data, 
providing insights into the mean and standard deviation of SBP readings among all sub-
jects, as illustrated in Table 1.

Across all smoking habits (i.e. NC, EC, and SH) both SBP and DBP exhibited notable 
variations across the "before", "during", and "after" smoking phases, as predicted by the 
GPR model. The SBP generally increased during smoking (mean: 124.96 mmHg) com-
pared to baseline (mean: 121.22 mmHg), reflecting acute vasoconstrictive effects, with 
NC showing the most pronounced increase, followed by SH and EC. Conversely, the 
DBP exhibited a slight drop during smoking (mean: 72.19 mmHg vs. 74.5 mmHg before 
the smoking session), possibly due to compensatory mechanisms, before peaking at 20 
min after the smoking session (mean: 81.22 mmHg). These trends persisted up to 40 
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min post-smoking, with SBP stabilizing near baseline (mean: 124.37 mmHg at 30 min) 
while DBP showed greater fluctuation (STD: 3.78 to 8.40 mmHg). The ML model’s accu-
racy (RMSE: 0.0082 mmHg for SBP, 0.2924 mmHg for DBP) underscores its reliability in 
capturing these dynamic BP responses, highlighting smoking’s sustained cardiovascular 
impact across all habits, with NC exerting the strongest effect.

To provide further insight into the behavior of SBP and the influence of smoking on BP 
values, five subjects were randomly selected over different time intervals. Variations in 
SBP values were observed between the periods before and after the smoking session, as 
shown in Fig. 13.

While prior studies have explored smoking’s chronic effects on BP (e.g., Al-Safi [5]; 
Primatesta et al. [2]) or PPG-based BP estimation in non-smoking contexts (e.g., Dag-
amseh et  al. [30]), our study uniquely bridges these domains by examining acute BP 
responses to diverse smoking habits using PPG and ECG signals. This approach reveals 
immediate physiological changes unreported in earlier work, setting a new benchmark 
for non-invasive monitoring in this novel context.

Conclusions
An instrumentation system was designed to simultaneously measure PPG and ECG sig-
nals, with optimizations aimed at improving its performance across various subjects. The 
system was employed to monitor signal changes in smokers before smoking during, and 
at different intervals after the smoking session (5, 10, 20, 30, and 40 min). Blood pressure 
(BP) was also measured before the smoking session, synchronized with data acquisition. 
Each subject’s signals result in a set of 16 features, from which statistical measures (e.g., 
mean, standard deviation, skewness, kurtosis) were determined. Signal morphology was 
examined across different smoking phases, revealing significant alterations indicative of 
smoking effects, such as changes in amplitude due to vasoconstriction, increased heart 
rate, and notch migration. These changes, reflecting vessel constriction and relaxation, 
persisted beyond the final measurement (i.e., at 40 min). Additionally, an ML regression 
model was developed using pre-smoking BP as a target variable, employing the Gaussian 
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Process Regression (GPR) technique. The model demonstrated high accuracy in esti-
mating BP during and after smoking, with a root mean square error (RMSE) of 0.2924 
mmHg for diastolic blood pressure (DBP) and 0.0288 mmHg for systolic blood pressure 
(SBP), a mean absolute error (MAE) of 0.01 mmHg ± 0.29 mmHg for DBP, and 0.005 
mmHg ± 0.15 mmHg for SBP. The efficacy of the model was validated through concur-
rent experimentation and BP measurement alongside signal acquisition. These metrics 
highlight the model’s robustness in capturing smoking-induced BP dynamics. This study 
represents a step further toward understanding the impact of smoking habits at different 
time intervals relative to the smoking session.

Method and material
Ethical statement

The Institutional Review Board (IRB) committee at Yarmouk University – Jordan (num-
ber IRB/2021/4), approved the current study. The experiment protocol and the consent 
form were approved by the deanship of graduate studies and the IRB committee at Yar-
mouk University—Jordan. The research and observations follow the ethical guidelines 
set forth by the 1964 Helsinki Declaration and its subsequent revisions or equivalent 
ethical standards.

System design

Figure 14 shows a block diagram representing the entire instrumentation system utilized 
in this study. The instrumentation system consists of two subsystems designed to meas-
ure ECG and PPG signals. The PPG subsystem is composed of an LED as a light source 
with a peak wavelength of 660 nm, and a photodiode (PD) with a maximum responsivity 
at 660 nm. These components are integrated into a probe-shaped structure. The LED is 
operated through a driving electronic circuit with a frequency of 500 Hz. The generated 
current by the PD is directed to a trans-impedance amplifier to convert it to voltage. 
Subsequently, the signal is filtered using a bandpass filter with a range of 0.05 to 30Hz 
[36–38], followed by post-amplification to increase the signal amplitude. This preserves 
the transient morphological features (e.g. systolic notches) containing higher-frequency 
components critical to the analysis, unlike narrower ranges that smoothed rapid tran-
sients. Typical PPG ranges (e.g., 0.5–15 Hz [39]) focus on lower frequencies, but our 
wider band avoided noise (motion artifacts < 1 Hz, power-line at 50 Hz), as verified by 
power spectral density as shown in Figs. 16 and 17. To facilitate further processing, the 
output of the PPG system is transmitted to a laptop via a data acquisition card (DAC).

Fig. 14  A Block diagram of the developed instrumentation system
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On the other hand, the ECG subsystem consists of a single lead. The signal was cap-
tured by the electrodes positioned on the right arm (RA) and left arm (LA) and subse-
quently transferred to an instrumentation amplifier (INA 129) for signal amplification. 
The ECG signal was bandpass filtered from 0.05 to 140 Hz, aligning with standard 
R-wave detection practices [40], with a 50 Hz notch filter to eliminate power-line noise. 
The output of the system was transmitted to a laptop through a data acquisition system 
from National Instrument (USB NI 6216) with a sampling rate of 500 Hz (ensuring suf-
ficient resolution) for further signal processing [41].

Study protocol and procedure

The study protocol involved standardized measurements to minimize all potential 
sources of errors from the measurement process or setup, including the measurement 
procedure and the subjects’ positions during the measurements. The study was con-
ducted on subjects who smoke, with specific smoking habits or behaviors (i.e., NC, EC, 
or SH). Tables 2 and 3 show the demographic data and age distribution of the 84 subjects 
who participated in this study.

The subjects were categorized into four groups: light smokers (LS), medium smokers 
(MS), heavy smokers (HS), and acute or excessive smokers (HSS) according to Table 4. 
Before performing the measurements, participants were requested to abstain from 
smoking for a minimum of 2 h and avoid consuming caffeine-containing beverages (e.g., 
coffee, alcohol, etc.). This is crucial to prevent any potential influences on the vital signs 
or the characteristics of the signals being measured.

In this study, the timing of the measurement plays a crucial role as the features of 
the PPG and ECG signals depend on it. Both signals (i.e. PPG and ECG signals) were 

Table 2  The demographic data of the subjects

Physical Index Statistical Index

Number of subjects 84 (80 Male and 4 female)
Mean and STD

Age (years) 28.07 ± 09.32

Height (cm) 175.29 ± 05.82

Weight (kg) 77.03 ± 14.76

Body mass index (kg/m2) 25.15 ± 05.14

SBP (mm Hg) 121.71 ± 15.11

DBP (mm Hg) 75.36 ± 11.17

Heart rate (beats/min) 83.24 ± 12.61

Table 3  The age distribution of participants

Age Male (%) Female (%)

17–26 48 (57.2%) 2 (2.4%)

27–36 17 (20%) –

37–46 10 (12%) 2 (2.4%)

47–56 4 (4.8%) –

57–66 1 (1.2%) –

Total 80 4
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measured "before", "during", and "after" smoking phases. The BP was measured using 
a cuff-based technique (i.e., a mercury sphygmomanometer) as the standard measure-
ment. Following the smoking session, measurements were performed at intervals of 5, 
10, 20, 30, and 40 min, with a duration of 30 s each.

During the measurement process, all subjects were seated in a chair, instructed to 
remain calm, and requested to replicate their typical smoking habits. In the "during" 
smoking period, a second assistant was present to handle the smoking device. This is 
important to minimize motion artifacts and thereby improve the quality of the meas-
ured signals.

Signal pre‑processing

The raw signals were preprocessed before the feature extraction procedure. Figure  15 
illustrates the preprocessing procedures applied to the PPG and ECG signals. The pre-
processing involved applying bandpass filters to both signals (i.e., the PPG signal with 
0.05–30 Hz and the ECG signal with 0.05–140 Hz) followed by a notch filter (48–52 Hz 
centered at 50 Hz).

Figures 16 and 17 show the ECG and PPG signals before and after filtering with their 
frequency contents. As it is observed in the power spectrum density (PSD) the noise 
components were reduced and the signals became more robust for the feature extraction 
step.

Table 4  Smoking classifications

Smoking class Type of smoking

NC EC SH

Number of cigarettes 
per day

Number of cartridges 
per day

Number of 
bowls per 
week

Light smoker  < 6  < 0.5  < 3

Medium smoker 7–12 1 7

Heavy smoker 13–24 2 14

Acute smoker (Too heavy)  > 24  > 3  > 14

Fig. 15  Preprocessing procedure applied to a PPG signals and b ECG signals
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Fig. 16  a Raw PPG signal with its power spectral density representation in (b), and (c) raw ECG signal with its 
power spectral density representation in (d)
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Fig. 17  a Filtered PPG signal with its power spectral density representation in (b), and (c) filtered ECG signal 
with its power spectral density representation in (d)
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The data processing begins with the normalization of the PPG and ECG signals to a 
common scale (0 to 1), which is vital for optimizing the performance of ML algorithms. 
The amplitudes of the signals (SN) were normalized between zero and one with:

An example of a normalized PPG signal is shown in Fig. 18. The same procedure was 
applied to the ECG signal. Subsequently, a peak detection procedure was applied to 
identify the peaks, notches, and valleys in the PPG signal, and to determine the R-wave 
peaks in the ECG signals. The PPG signal notch was determined by a special technique 
that utilizes the first derivative of the PPG signal. The peak of the first derivative between 
the index of the PPG peaks points to the position (index) of the notch. In other words, 
the index of this peak (first derivative peak) is positioned between the indices of the peak 
and valley in the original PPG signal, thereby representing the position of the notch. The 
notch detection procedure was performed automatically and then verified manually to 
ensure the reliability and robustness of the notch identification technique. Figure  19 
represents an example of peak detection in the PPG signal. Next, outliers are detected 
and excluded to mitigate their potential adverse effects on model accuracy. To augment 
the dataset, cubic interpolation expands the dataset from 84 to 870 samples, ensuring a 
denser and more evenly distributed dataset, and improving the robustness of subsequent 
analyses.

Feature extraction

After identifying peaks in the signals, they are prepared for the subsequent process of 
feature extraction. This process involves extracting the morphological and correspond-
ing statistical parameters. These statistical measures include the mean, standard devia-
tion, skewness, and kurtosis, which are calculated for each feature. Figure 20 illustrates 
the definition of some PPG morphological features, with a detailed description of these 
features shown in Table 5.
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Fig. 18  Normalized PPG signal
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Additional features were derived through the combination of the PPG and ECG sig-
nals. The instantaneous heart rate was identified as a feature and calculated by deter-
mining the reciprocal of the interval between two consecutive R-waves (i.e., TPP), as 
illustrated in Eq. (2) and Fig. 21.

Additionally, the pulse transient time (PTT) was determined as a common feature 
relating to the PPG and ECG signals. It is defined as the time between the peaks of the 
R-wave to the peak of the PPG signal, as shown in Fig. 21.
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Fig. 19  Peak and notch detection of PPG signal

Fig. 20  The definitions of the PPG signal features
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Furthermore, the zero-crossing rate (Z), which reflects the rate of sign changes within 
the PPG signal, was calculated along with its first and second derivatives. The Z was also 
calculated for the ECG signal. The Z was determined as:

where y is the signal, N is the signal length, and � {Y } is one when argument Y is true and 
zero otherwise.

Shannon entropy was used to quantitatively assess the uncertainty in the PPG signals 
and their derivatives, reflecting changes in signal complexity due to smoking-induced 

(3)Z =
1

N

N
∑

y=1

�
{

y < 0
}

Table 5  The main morphological PPG signal features

PPG feature Description

sa Systolic amplitude

Da Diastolic amplitude

SA Systolic Area

DA Diastolic Area

IPA Inflection Point Area = SA/DA

ST Systolic Time

DT Diastolic Time

PI Pulse Interval

SI Stiffness Index = sa/DT

PPI Peak-to-Peak Interval

PR Pulse Rate = 60/PPI

FWHM Full Width at Half Maximum

sa-DT-ratio Systolic amplitude to diastolic time ratio

AI Augmentation Index = sa/Da

Fig. 21  The definitions of the ECG signal features
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physiological effects. For the PPG signal and its first and second derivatives, the entropy 
values were determined as:

According to the outlined feature extraction procedure, 65 features were determined 
from both the PPG and ECG signals. These features will be utilized in designing and 
developing an ML model for estimating BP levels before, during, and after the smoking 
session.
Acknowledgements
The authors express their gratitude to the Deanship of Scientific Research and Graduate Studies at Yarmouk University 
in Jordan for providing the financial support (Grant Number Z/10/2023) in conducting this study in Germany at RWTH 
Aachen University. The corresponding author is also grateful to the staff of the chairs for Medical Information Technol-
ogy Helmholtz-Institute for Biomedical Engineering at RWTH Aachen University / Germany for hosting him during his 
research visit

Author contributions
Qasem Qananwah, system design, data collection, signal analysis, writing and revising manuscript Hiam Al Quran,  
machine learning analysis and  and revising manuscript Ahmad Dagamseh, data collection, manuscript writing and 
revising Vladimir Blazek, data analysis, writing manuscript Steffen Leonhardt, supervision, writing manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. Deanship of Scientific Research and Graduate Studies at 
Yarmouk University in Jordan for providing the financial support, Z/10/2023.

Availability of data and materials
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate
The authors affirm that all activities carried out in research involving human subjects were conducted in compliance 
with the ethical guidelines set forth by the institutional and/or national research committee, as well as the 1964 Helsinki 
Declaration and its subsequent revisions or equivalent ethical standards. Furthermore, the authors assert that no animals 
were utilized in the study. The ethical committee (Institutional Review Board (IRB)) at Yarmouk University—Jordan (num-
ber IRB/2021/4), approved this research. All participants gave written informed consent to participate in the study.

Informed consent
Informed consent was obtained from all individual participants included in the study.

Competing interests
The authors declare no competing interests.

Received: 4 January 2025   Accepted: 28 March 2025

References
	1.	 Okorare O, et al. Smoking cessation and benefits to cardiovascular health: a review of literature. Cureus. 2023. https://​doi.​

org/​10.​7759/​cureus.​35966.
	2.	 Primatesta P, Brookes M, Poulter NR. Improved hypertension management and control: results from the health survey 

for England 1998. Hypertension. 2001;37:187–93.
	3.	 Seltzer CC. Effect of smoking on blood pressure. Am Heart J. 1974;87(5):558–64. https://​doi.​org/​10.​1016/​0002-​8703(74)​

90492-X.
	4.	 Salehi N, Janjani P, Tadbiri H, Rozbahani M, Jalilian M. Effect of cigarette smoking on coronary arteries and pattern and 

severity of coronary artery disease: a review. J Int Med Res. 2021. https://​doi.​org/​10.​1177/​03000​60521​10598​93.
	5.	 Al-Safi SA. Does smoking affect blood pressure and heart rate? Eur J Cardiovasc Nurs. 2005;4(4):286–9. https://​doi.​org/​

10.​1016/j.​ejcnu​rse.​2005.​03.​004.
	6.	 Aronow WS, Dendinger J, Rokaw SN. Heart rate and carbon monoxide level after smoking high-, low-, and non-nicotine 

cigarettes. A study in male patients with angina pectoris. Ann Intern Med. 1971;74(5):697–702. https://​doi.​org/​10.​7326/​
0003-​4819-​74-5-​697.

	7.	 Elliott SFJM. Cigarettes and accelerated hypertension. N Z Med J. 1980;91(662):447–9.
	8.	 Benowitz NL, Kuyt F, Jacob P. Influence of nicotine on cardiovascular and hormonal effects of cigarette smoking. Clin 

Pharmacol Ther. 1984;36(1):74–81. https://​doi.​org/​10.​1038/​clpt.​1984.​142.

(4)E = −

N
∑

n=1

y[n]2loge(y
[

n]2
)

https://doi.org/10.7759/cureus.35966
https://doi.org/10.7759/cureus.35966
https://doi.org/10.1016/0002-8703(74)90492-X
https://doi.org/10.1016/0002-8703(74)90492-X
https://doi.org/10.1177/03000605211059893
https://doi.org/10.1016/j.ejcnurse.2005.03.004
https://doi.org/10.1016/j.ejcnurse.2005.03.004
https://doi.org/10.7326/0003-4819-74-5-697
https://doi.org/10.7326/0003-4819-74-5-697
https://doi.org/10.1038/clpt.1984.142


Page 22 of 22Qananwah et al. BioMedical Engineering OnLine           (2025) 24:57 

	9.	 Tuomilehto J, Elo J, Nissinen A. Smoking among patients with malignant hypertension. BMJ. 1982;284(6322):1086–1086. 
https://​doi.​org/​10.​1136/​bmj.​284.​6322.​1086.

	10.	 Berglund G, Wilhelmsen L. Factors related to blood pressure in a general population sample of swedish men. Acta Med 
Scand. 1975;198(1–6):291–8. https://​doi.​org/​10.​1111/j.​0954-​6820.​1975.​tb195​43.x.

	11.	 Mann SJ. Elevation of ambulatory systolic blood pressure in hypertensive smokers. JAMA. 1991;265(17):2226. https://​doi.​
org/​10.​1001/​jama.​1991.​03460​17008​0037.

	12.	 Green MS, Jucha E, Luz Y. Blood pressure in smokers and nonsmokers: epidemiologic findings. Am Heart J. 
1986;111(5):932–40. https://​doi.​org/​10.​1016/​0002-​8703(86)​90645-9.

	13.	 Greene SB, Aavedal MJ, Tyroler HA, Davis CE, Hames CG. Smoking habits and blood pressure change: a seven year 
follow-up. J Chronic Dis. 1977;30(7):401–13. https://​doi.​org/​10.​1016/​0021-​9681(77)​90034-0.

	14.	 Gordon T, Kannel WB, Dawber TR, McGee D. Changes associated with quitting cigarette smoking: the Framingham 
Study. Am Heart J. 1975;90(3):322–8. https://​doi.​org/​10.​1016/​0002-​8703(75)​90320-8.

	15.	 Katsiki N, Papadopoulou SK, Fachantidou AI, Mikhailidis DP. Smoking and vascular risk: are all forms of smoking harmful 
to all types of vascular disease? Public Health. 2013;127(5):435–41. https://​doi.​org/​10.​1016/j.​puhe.​2012.​12.​021.

	16.	 Lakier JB. Smoking and cardiovascular disease. Am J Med. 1992;93(1):S8–12. https://​doi.​org/​10.​1016/​0002-​9343(92)​
90620-Q.

	17.	 Gallucci G, Tartarone A, Lerose R, Lalinga AV, Capobianco AM. Cardiovascular risk of smoking and benefits of smoking 
cessation. J Thorac Dis. 2020;12(7):3866–76. https://​doi.​org/​10.​21037/​jtd.​2020.​02.​47.

	18.	 Yadav DJ, Yadav JU. Study of effects of smoking on electrocardiography in smokers compared to non-smokers. Int J Med 
Heal Sci. 2015;4:190–5.

	19.	 Devi MRR. ECG changes in smokers and non smokers—a comparative study. J Clin Diagn Res. 2013;7(8):824–6. https://​
doi.​org/​10.​7860/​JCDR/​2013/​5180.​2950.

	20.	 Yıldırım F, Çevik Y, Emektar E, Çorbacıoğlu ŞK, Katırcı Y. Evaluating ECG and carboxyhemoglobin changes due to smoking 
narghile. Inhal Toxicol. 2016. https://​doi.​org/​10.​1080/​08958​378.​2016.​12249​57.

	21.	 Chatterjee S, Nag SK, Dey SK, Chatterjee P. Chronic effect of smoking on the electrocardiogram. Jpn Heart J. 
1989;30(6):827–39. https://​doi.​org/​10.​1536/​ihj.​30.​827.

	22.	 Korkmaz OE, Aydemir O, Ozturk M. Detection of smoking, gender and starvation—satiety using photoplethysmogram 
signals. In 2017 25th Signal Processing and Communications Applications Conference (SIU), IEEE, May 2017, pp. 1–4. 
https://​doi.​org/​10.​1109/​SIU.​2017.​79605​37.

	23.	 Haryadi B, Chang P-H, Akrom A, Raharjo AQ, Prakoso G. Poincaré plots to analyze photoplethysmography signal 
between non-smokers and smokers. Int J Electr Comput Eng. 2022;12(2):1565. https://​doi.​org/​10.​11591/​ijece.​v12i2.​
pp1565-​1570.

	24.	 Shi P, Zhu Y, Allen J, Hu S. Analysis of pulse rate variability derived from photoplethysmography with the combination of 
lagged Poincaré plots and spectral characteristics. Med Eng Phys. 2009;31(7):866–71. https://​doi.​org/​10.​1016/j.​meden​
gphy.​2009.​05.​001.

	25.	 Qananwah Q, Khader A, Al-Hashem M, Mumani A, Dagamseh A. Investigating the impact of smoking habits through 
photoplethysmography analysis. Physiol Meas. 2024;45(1): 015003. https://​doi.​org/​10.​1088/​1361-​6579/​ad1b10.

	26.	 Black CE, et al. Effect of nicotine on vasoconstrictor and vasodilator responses in human skin vasculature. Am J Physiol 
Regul Integr Comp Physiol. 2001;281(4):1097–104. https://​doi.​org/​10.​1152/​ajpre​gu.​2001.​281.4.​r1097.

	27.	 Akishima S, et al. Cigarette-smoke-induced vasoconstriction of peripheral arteries evaluation by synchrotron radiation 
microangiography. Circ J. 2007;71(3):418–22. https://​doi.​org/​10.​1253/​circj.​71.​418.

	28.	 Berisha V, et al. Digital medicine and the curse of dimensionality. NPJ Digit Med. 2021;4(1):1–8. https://​doi.​org/​10.​1038/​
s41746-​021-​00521-5.

	29.	 Alquran H, Alsleti M, Alsharif R, Qasmieh IA, Alqudah AM, Harun NHB. Employing texture features of chest X-Ray images 
and machine learning in COVID-19 detection and classification. MENDEL. 2021;27(1):9–17. https://​doi.​org/​10.​13164/​
mendel.​2021.1.​009.

	30.	 Dagamseh A, Qananwah Q, Al Quran H, Shaker Ibrahim K. Towards a portable-noninvasive blood pressure monitoring 
system utilizing the photoplethysmogram signal. Biomed Opt Express. 2021;12(12):7732. https://​doi.​org/​10.​1364/​boe.​
444535.

	31.	 Jolliffe IT. Principal component analysis for special types of data. New York: Springer; 2002. p. 338–72.
	32.	 Williams CK, Rasmussen CE. Gaussian processes for machine learning, 2(3). Cambridge, MA: MIT press; 2006. p. 4.
	33.	 Seeger M. Gaussian processes for machine learning. Int J Neural Syst. 2004;14(02):69–106. https://​doi.​org/​10.​1142/​S0129​

06570​40018​99.
	34.	 Chu W, Ghahramani Z. Gaussian processes for ordinal regression Zoubin Ghahramani. J Mach Learn Res. 2005;6:1019–41.
	35.	 Snoek J, Larochelle H, Adams RP. Practical bayesian optimization of machine learning algorithms. Adv Neural Inf Process 

Syst. 2012; 25.
	36.	 Béres S, Hejjel L. The minimal sampling frequency of the photoplethysmogram for accurate pulse rate variability param-

eters in healthy volunteers. Biomed Signal Process Control. 2021;68: 102589.
	37.	 Iqbal T, Elahi A, Ganly S, Wijns W, Shahzad A. Photoplethysmography-based respiratory rate estimation algorithm for 

health monitoring applications. J Med Biol Eng. 2022;42(2):242–52.
	38.	 Elgendi M. Optimal signal quality index for photoplethysmogram signals. Bioengineering (Basel). 2016;3(4):21. https://​

doi.​org/​10.​3390/​bioen​ginee​ring3​040021.
	39.	 Elgendi M. On the analysis of fingertip photoplethysmogram signals. Curr Cardiol Rev. 2012;8(1):14–25.
	40.	 Tereshchenko LG, Josephson ME. Frequency content and characteristics of ventricular conduction. J Electrocardiol. 

2015;48(6):933–7.
	41.	 National Instruments. USB-6216: Isolated multifunction I/O device. Austin, TX: National Instruments; 2023. https://​www.​

ni.​com/​en-​us/​shop/​model/​usb-​6216.​html.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1136/bmj.284.6322.1086
https://doi.org/10.1111/j.0954-6820.1975.tb19543.x
https://doi.org/10.1001/jama.1991.03460170080037
https://doi.org/10.1001/jama.1991.03460170080037
https://doi.org/10.1016/0002-8703(86)90645-9
https://doi.org/10.1016/0021-9681(77)90034-0
https://doi.org/10.1016/0002-8703(75)90320-8
https://doi.org/10.1016/j.puhe.2012.12.021
https://doi.org/10.1016/0002-9343(92)90620-Q
https://doi.org/10.1016/0002-9343(92)90620-Q
https://doi.org/10.21037/jtd.2020.02.47
https://doi.org/10.7860/JCDR/2013/5180.2950
https://doi.org/10.7860/JCDR/2013/5180.2950
https://doi.org/10.1080/08958378.2016.1224957
https://doi.org/10.1536/ihj.30.827
https://doi.org/10.1109/SIU.2017.7960537
https://doi.org/10.11591/ijece.v12i2.pp1565-1570
https://doi.org/10.11591/ijece.v12i2.pp1565-1570
https://doi.org/10.1016/j.medengphy.2009.05.001
https://doi.org/10.1016/j.medengphy.2009.05.001
https://doi.org/10.1088/1361-6579/ad1b10
https://doi.org/10.1152/ajpregu.2001.281.4.r1097
https://doi.org/10.1253/circj.71.418
https://doi.org/10.1038/s41746-021-00521-5
https://doi.org/10.1038/s41746-021-00521-5
https://doi.org/10.13164/mendel.2021.1.009
https://doi.org/10.13164/mendel.2021.1.009
https://doi.org/10.1364/boe.444535
https://doi.org/10.1364/boe.444535
https://doi.org/10.1142/S0129065704001899
https://doi.org/10.1142/S0129065704001899
https://doi.org/10.3390/bioengineering3040021
https://doi.org/10.3390/bioengineering3040021
https://www.ni.com/en-us/shop/model/usb-6216.html
https://www.ni.com/en-us/shop/model/usb-6216.html

	Investigating the correlation between smoking and blood pressure via photoplethysmography
	Abstract 
	Introduction
	Results and discussion
	Observations
	Feature-dependent results
	Data interpolation
	Gaussian process regression (GPR)


	Conclusions
	Method and material
	Ethical statement
	System design
	Study protocol and procedure
	Signal pre-processing
	Feature extraction

	Acknowledgements
	References


