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Introduction
Bone possesses remarkable regenerative capabilities; however, under certain 
pathological conditions, regeneration may be compromised. Bone defects, a prevalent 
clinical orthopedic issue, present significant treatment challenges. Trauma, infection, 
and pathological fractures are common causes of critical bone defects [1, 2]. Currently, 
bone transplantation is the predominant treatment and ranks as one of the most widely 
performed types of tissue transplantation globally. Autografts, derived from the same 
individual, exhibit superior histocompatibility, osteoconduction, and osteoinduction, 
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essential for bone regeneration. These grafts can rapidly and completely integrate 
with the defect site and exhibit a low probability of immune rejection, making them a 
preferred method for treating bone defects [3].

Despite their advantages, the availability of natural bone grafts does not meet the 
demand, and this shortage leads to challenges such as prolonged surgical times and a 
high incidence of donor sites [4, 5]. Pain allograft transplantation, another common 
approach, offers a relatively broader source availability and is not constrained by 
shape and size. Although allografts address some limitations of autografts, their 
osteoinductive properties can be diminished due to cryopreservation. Moreover, 
allografts often display inadequate regenerative capabilities and are associated with 
various challenges, including infection and immune response issues [6, 7]. In treating 
bone defects, the demand for innovative grafts that can replace traditional methods and 
foster new treatment approaches is growing. Recent advances in bone tissue engineering 
have seen the flourishing of bone tissue scaffolds, particularly those created using 3D 
printing technology. Utilizing bone-related materials, this technology has significantly 
impacted bone regeneration, increasing the variety of artificial bone implant substitutes. 
The capabilities for mass production, alongside their mechanical properties and 
biocompatibility, are poised to revolutionize bone defect management strategies [8, 9]. 
Figure 1 illustrates the procedure of 3D printing technology.

With their exogenous structures, scaffolds are designed to enhance cell viability and 
proliferation, forming desired tissue architectures. Recent developments in scaffold 
manufacturing techniques have been implemented, such as phase separation, freeze-
drying, gas foaming, and electrospinning. However, these methods generally provide 
only an approximate control over scaffold pore size and cannot precisely adjust 

Fig. 1 The procedure of 3D printing technology. R&D: release and delivery
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parameters such as porosity, thus failing to accurately emulate physiological bone 
structure and meet clinical needs [10–13]. In response, 3D printing technology has 
emerged and evolved, offering unprecedented precision in structure control and design 
compared to earlier scaffold technologies [14, 15]. This method manufactures three-
dimensional, multi-layered structures that allow precise control over factors such 
as pore morphology, closely mimicking physiological bone tissue. Currently, it has 
shown promising preliminary clinical outcomes, particularly in dentistry. For instance, 
3D-printed materials used for temporary restorations can provide sufficient mechanical 
properties for intraoral applications in crown and bridge restorations [16].

Given the significant clinical potential and therapeutic relevance of 3D printed 
scaffolds in bone defect treatment, this review will further explore the details of 
bone defect scaffolds, focusing on scaffold material selection and composite design 
encompassing metallic; structural optimization with hierarchical porosity (macro/micro/
nano-scale) and biomechanical properties tailored; biological functionalization through 
growth factor delivery, cell seeding strategies and surface modifications. We critically 
analyze scaffold performance metrics from different research applications, while 
discussing current translational barriers, including vascular network establishment, 
mechanical stability under load-bearing conditions, and manufacturing scalability. The 
review concludes with a forward-looking perspective on innovative approaches such 
as 4D dynamic scaffolds, smart biomaterials with stimuli-responsive properties, and 
the integration of artificial intelligence for patient-specific design optimization. This 
systematic review aims to provide comprehensive insights into the rapidly evolving field 
of 3D-printed scaffolds for bone defect repair.

Overview of scaffold’s properties
The performance of ideal scaffolds hinges on their ability to meet specific biological and 
mechanical criteria to function optimally in vivo post-implementation. The development 
of bone tissue scaffolds must adhere to key characteristics, as illustrated in Fig. 2.

Implant heterogeneity (biocompatibility)

Biocompatibility, a concept introduced to the biomedical field in the last century, 
is defined as the ability of materials to elicit appropriate host responses in specific 
applications [17]. This characteristic is crucial to ensure that the scaffolds do not 
provoke adverse immune reactions when involved in cellular behaviors such as 
adhesion, migration, and proliferation. The goal is to prevent severe inflammatory 
responses from these interactions [18, 19]. Given that scaffolds are inherently 
foreign objects within a biological system, they inevitably trigger immune responses, 
which could lead to material failure or more severe complications. Thus, selecting 
materials with high biocompatibility is essential for the success of any implantation 
[20]. For instance, in developing vascular grafts, where hemolysis reactions are 
prevalent, integrating natural materials such as collagen and elastin—known for 
their elasticity and toughness—can help simulate the physiological performance of 
vascular tissues [21]. Natural materials, which are integral components of human 
organs, theoretically exhibit superior biocompatibility compared to synthetic 
polymers [22]. Hence, incorporating an appropriate proportion of natural materials 
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into composites is crucial to enhance the biocompatibility of synthetic materials [23]. 
Presently, mainstream scaffold materials such as PCL and β-TCP, among synthetics, 
are recognized for their excellent biocompatibility, which significantly enhances 
cell growth and the expression of osteogenic markers. Biological experiments have 

Fig. 2 Main properties required for bone tissue regeneration scaffolds. a Biological function of ideal bone 
tissue regeneration scaffold. b Characteristics of ideal bone tissue regeneration scaffold
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demonstrated their effectiveness in promoting bone defect healing [24]. The factors 
influencing the biocompatibility of therapeutic materials are varied, encompassing 
both the materials used for scaffolds and their fabrication processes, which can lead 
to different outcomes.

Structural characteristics of scaffold engineering

Biomimetic characterization is of paramount importance. Biomaterials that feature 
high porosity, interconnected pores, and specific surface modifications can emulate the 
structure of the natural extracellular matrix (ECM). Such scaffolds provide a bone-like 
microenvironment conducive to vascularization, stem cell recruitment, and regulation of 
cellular behaviors, including cell adhesion, proliferation, migration, and differentiation. 
Moreover, they leverage the synergistic effects of cytokines for bone regeneration [25, 
26].

Specific porosity is a crucial attribute for orthopedic scaffolds. The ideal scaffold in 
bone tissue engineering should mimic both the biological and physical properties of 
natural bone. This entails a hierarchical structure with a well-defined organization 
spanning from the nanoscale to the macroscale. In scaffold design, achieving a structure 
with suitable porosity and diameter is prioritized to replicate the unique pore structure 
of bone tissue. The porous structure promotes cellular nutrition, proliferation, and 
migration and facilitates new blood vessel formation, protein absorption, and efficient 
waste removal [27]. Therefore, most scaffolds are designed as porous, mesh-like 
interconnected structures [28]. 3D printing technology excels in manipulating scaffold 
geometry to create interconnected pore structures and achieve specific porosity. 
Designing an optimal pore structure and appropriate porosity is crucial for influencing 
biological behavior [29]. Bone tissue comprises a unique structure of cancellous (spongy) 
and compact (dense) bone. Compact bone is characterized by high density and low 
porosity, typically ranging from 5 to 30%, whereas cancellous bone has a lower density 
with porosity levels between 50 and 90% [30]. Multi-level pores mimic physiological bone 
structures, creating favorable environments for bone tissue regeneration. Researchers 
have explored the effects of integrating multi-level scaffolds with controllable 
microporosity (< 50 μm) alongside scaffolds based on macropores. Designing scaffolds 
incorporating structures at both the macro- and micro-scale promotes enhanced 
bone and cell growth [31]. The multi-level pore structure significantly improves bone 
growth compared to single-level pore structures or materials lacking well-defined pore 
architecture [32]. Firstly, it provides a larger surface area for bone cells to adhere and 
proliferate, thus enhancing regeneration. Secondly, the interconnected pores facilitate 
improved nutrient and oxygen supply, which is crucial for the growth and survival of 
bone cells [33, 34]. The integration of varying pore sizes allows cells to fully interact with 
the scaffold [35], and designing hierarchical porosity that increases layer by layer from 
the exterior to the interior can enhance the differentiation capacity of bone marrow 
stromal cells (BMSCs), fostering both physiological and mechanical adaptation of the 
scaffold to the bone [36, 37].

Regarding osteocyte accommodation, materials with a pore size of around 100 μm are 
considered more conducive to cell ingrowth and osseointegration, whereas smaller pore 
sizes can promote osteochondral ossification [27]. However, some researchers argue 
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that smaller pore sizes might impede vascular growth and cell proliferation, suggesting 
that a pore size greater than 300 μm can better support bone growth and angiogenesis. 
Additionally, fibrocartilage tissue typically requires a larger pore size of 200–300 μm for 
normal growth, indicating the necessity to tailor scaffold pore sizes based on specific 
tissue engineering requirements [38]. The mechanical properties of scaffolds, even 
with ideal pore sizes, are often not suitable for practical applications. While these 
scaffolds maintain initial structural integrity, they lack the necessary strength, stability, 
and durability to withstand physiological demands and forces in real-life scenarios. 
Although larger pore sizes and increased porosity can enhance cell ingrowth and 
osteogenesis, these features compromise mechanical strength and extend the duration 
of osseointegration. This conflict between scaffold properties may lead to implantation 
failures [39]. There is no consensus on the ideal pore size and porosity for optimal bone 
tissue regeneration [30].

In addition to pore size and porosity, mechanical strength is crucial for the 
effectiveness of scaffolds in supporting bone tissue growth and cell differentiation 
in  vivo. A balance between mechanical strength and porosity is essential to provide 
adequate mechanical support while promoting good vascular formation within the 
scaffold. Many materials, particularly natural polymers, are limited in their use as bone 
scaffolds due to insufficient mechanical strength [40, 41]. Key mechanical properties of 
scaffold load-bearing capacity include Young ‘s modulus (elastic modulus), compressive 
strength (the ability of the scaffold to withstand loads that tend to compress or decrease 
its size, and tensile strength [42, 43]. The ideal scaffold should possess mechanical 
strengths similar to that of cortical bone, with Young’s modulus ranging from 7 to 30 
GPa along the long axis, a compressive strength of about 50 to 200 MPa, and a tensile 
strength of approximately 150 MPa [44, 45]. This is vital for designing the material’s 
modulus properties to approximate those of physiological bone.

Bone tissue regeneration in vivo is a dynamic and complex process involving a two-
phase composite material where minerals and collagen are intricately bound. Utilizing 
mixtures of materials with varied modulus properties can help scaffold designs more 
closely emulate the characteristics of physiological bone, enhancing both function and 
integration [46].

Biodegradability

The degradation rate of scaffold materials must be sufficiently aligned with the rate of 
bone tissue regeneration to effectively enhance the metabolic activity of osteoblasts 
[47]. Researchers are exploring the integration of materials with varying degradation 
rates to tailor scaffold degradation to the bone regeneration process. A trend in scaffold 
development is using composite materials to adjust performance characteristics. 
For instance, Miao et  al. investigated a multi-parameter tunable scaffold made from 
strontium-doped calcium sulfate (SrCSH) and strontium-doped tricalcium phosphate 
(Sr-TCP). Combining two materials whose degradation rates are speedy and very slow, 
the degradation rate of the composite scaffold can be tuned by adjusting the porosity 
and specific structure of the scaffold. During bone defect repair, scaffolds with differing 
parameters were evaluated to identify those whose degradation profiles best matched 
the bone regeneration process [48].
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Additionally, researchers have utilized natural materials such as chitosan to encapsulate 
SrCSH, further slowing the degradation rate and achieving a controlled release effect 
in vivo [49]. Generally, materials used in scaffold construction are selected to conform to 
desired tissue degradation rates, allowing for complete degradation of the scaffold as the 
tissue regenerates [50]. Common polymeric materials such as polycaprolactone (PCL), 
polylactic acid (PLA), and polylactic acid-co-glycolic acid (PLGA) are biodegradable 
and widely utilized in biological experiments. Using composite materials enables the 
production of bone tissue with varied properties tailored to different body parts [51].

The nature of degradation products also significantly impacts subsequent tissue 
growth and overall health. It is crucial to ensure that these products are non-toxic or 
have minimal toxicity to reduce potential side effects. The control of scaffold porosity 
is intricately linked to degradation capability; adequate porosity facilitates the removal 
of degradation products and metabolic waste, thus enhancing the metabolic activity of 
osteoblasts and promoting osteogenesis [52].

Scaffold swelling ratio

The swelling property is a critical attribute in scaffold fabrication, primarily influenced 
by the hydrophilicity and permeability of the material. Different bone scaffold materials 
and application scenarios necessitate varied swelling rates. For instance, injectable 
hydrogel scaffolds, used to fill small bone defects, may require a higher swelling rate to 
adequately fill the defect and integrate seamlessly with surrounding tissues. Conversely, 
scaffolds that provide long-term mechanical support, such as those used for repairing 
significant segmental bone defects, should have a lower swelling rate to maintain 
stability throughout the bone repair process [53, 54]. Expanding scaffolds upon water 
uptake can lead to structural changes such as altered pore architecture, which impacts 
cellular growth and the effective exchange of nutrients, oxygen, and other metabolites. 
While hydration-mediated expansion can increase pore size and scaffold volume, which 
is beneficial for filling bone defects, post-implantation swelling may negatively affect the 
scaffold’s degradation process [30].

For example, Zhang XT et al. observed that in hydrogel-based bone scaffolds, water 
molecule ingress during swelling disrupts the interactions between polymer chains, 
accelerating degradation [55]. Additionally, Mehdi Ebrahimi et  al. explored several 
factors affecting the hydrophilicity of a nanocomposite collagen/nanobiphasic calcium 
phosphate scaffold (collagen/nBCP). They determined that a higher Tween ratio (the 
ratio of Tween content to other materials in the scaffold), faster quenching rate (the rate 
at which excited matter returns to its ground state), and a greater collagen ratio enhance 
the scaffold’s hydrophilicity. Over time, interactions with the environment, such as water 
molecule adsorption and surface chemical alterations, can modify the hydrophilicity, 
increasing or decreasing it based on the surrounding conditions [56].

Rheological properties also play a significant role in the practical application of implant 
materials. For instance, injecting gel-like substances into non-gel material scaffolds 
requires specific rheological coefficients to achieve successful outcomes [57]. Control 
over the swelling rate of hydrogels is thus crucial for developing hydrogel-wrapped 
scaffolds. Common bioinks, which are formulations of acellular matrix particles and 
gels in specific ratios, exemplify materials that achieve desirable swelling rates. These 
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rates support essential functions such as the exchange of water and nutrients necessary 
for cell survival and proliferation without compromising the mechanical integrity and 
degradation properties of the scaffold [58].

Angiogenic capacity

As highlighted previously, large porosity within scaffolds provides an optimal 
environment for endothelial cell ingrowth and the formation of blood vessels, which are 
vital for bone defect regeneration. A robust blood supply is crucial as it delivers essential 
nutrients and oxygen to bone cells, promoting effective tissue regeneration [59, 60]. The 
failure of many bone graft scaffolds is often attributed to inadequate vascularization 
[61]. Fine-tuning the pore size and controlling the microstructure of bone scaffolds can 
enhance angiogenesis and bone tissue regeneration [62].

The regulation of angiogenesis-related factors such as HIF-1α and VEGF is key 
in promoting angiogenesis [63]. Modifications to the scaffold’s surface coating and 
increases in porosity can significantly boost the expression levels of these angiogenic 
factors, indirectly aiding bone tissue healing by fostering angiogenesis and osteocyte 
differentiation [64]. Many scaffold materials possess inherent vascular-promoting 
functions, an important consideration in material selection. For instance, Gao et  al. 
investigated magnesium-coated Ti6 Al4 V scaffolds and found that they could enhance 
the expression of HIF-1α and VEGFs, thus improving the proliferation and migration of 
endothelial cells [65].

HIF-1α plays a central role in controlling angiogenesis, and its overexpression can 
notably enhance the expression of various angiogenic factors, thereby influencing 
angiogenesis within scaffolds [66]. Moreover, the sustained release of VEGF from the 
scaffold has been shown to significantly promote angiogenesis in areas of bone defect, 
thereby improving bone regeneration [67]. VEGF not only promotes vascularization 
indirectly, but also directly influences osteogenesis [68, 69], highlighting its critical dual 
role in bone regeneration. Furthermore, the synergy between osteogenic factors such 
as BMP-2 and angiogenic factors indicates the intricate interplay and significance of 
angiogenesis in the context of bone scaffolds, affirming the vital link between vascular 
and bone regeneration [70, 71].

Addressing refractory bone defects remains a substantial clinical challenge due to the 
dual hurdles of insufficient osteogenesis and angiogenesis. Lai et  al. explored a Herin 
microenvironment-responsive scaffold composed of poly-L-lactic acid (PLLA) and 
manganese dioxide (MnO2) nanoparticles. This scaffold enhances bone regeneration 
and modulates the immune microenvironment in  situ by scavenging endogenous 
reactive oxygen species. Targeting the bone microenvironment to micro-regulate bone 
regeneration processes and achieve precise, effective interventions is a promising 
research direction [72]. Additionally, Li et  al. developed a novel bioinspired double-
network hydrogel scaffold via 3D printing, characterized by its incorporation of tissue-
specific acellular extracellular matrix (dECM) and exosomes derived from human 
adipose-derived mesenchymal stem cells (MSC). This scaffold ensures a continuous 
and stable release of exosomes, profoundly influencing the bone microenvironment 
and enabling the concurrent regeneration of cartilage and subchondral bone tissue in 
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a preclinical rat model. This technology facilitates cell-free delivery and represents a 
potential therapeutic approach for treating injuries or degenerative joint diseases [73].

These biomimetic strategies represent a leap in innovation, paving the way for the 
design of structured and functionalized 3D bio-inspired scaffolds that target complex 
tissue regeneration.

In summary, the primary considerations for characterizing bone tissue scaffolds 
encompass biocompatibility, porosity and pore size, biodegradability, swelling rate, 
and angiogenic capabilities [9]. The foremost consideration is using biocompatible 
materials, such as commonly employed natural polymers, to prevent severe reactions 
such as rejection soon after implantation [74]. Additionally, the scaffold’s porosity 
and pore size are critical for vascularization and mechanical strength, facilitating 
successful implantation and sufficient support for bone regeneration and the temporary 
replacement of the weight-bearing or specific mechanical requirements of bone [27]. 
However, striking a balance between enhancing bone cell activity and maintaining 
mechanical properties with existing technology presents a significant challenge. 
Thus, prioritizing material selection and manufacturing considerations for scaffold 
development is imperative [75].

Moreover, the type of cells loaded on the scaffold significantly influences the 
effectiveness of implantation due to the direct repair impact of cells on bone defect 
regeneration [76]. Table 1 lists the common cells used in bone scaffolds, with stem cells 
playing a predominant role in regenerative behaviors in bone tissue engineering [76]. 
Stem cells are noted for their remarkable regenerative and differentiation capabilities, 
such as embryonic stem cells, which can differentiate into various cells for regeneration 
and repair [77]. Once harvested from autologous or allogeneic sources, these cells can 
proliferate in vitro and be encapsulated onto pre-fabricated bone tissue materials. Post-
implantation, they can further differentiate and proliferate, integrating to form new 

Table 1 Related cells in bone scaffold

ASCs: adipose‑derived stem cells; BMSCS: bone mesenchymal stem cells; iPSCs: induced pluripotent stem cells; HUVECs: 
human umbilical vein endothelial cells; DPSCS: dental pulp stem cells; PDLSCs: periodontal ligament stem cells

Commonly used 
cells in bone 
scaffolds

Characteristics Related articles

ASCs It has an osteogenic ability similar to BMSC and can also produce bone 
matrix. The number of donors is relatively abundant, which does not 
require in vitro amplification and can be obtained relatively easily, the 
incidence rate of donors is low

[194, 195]

BMSCs Has the ability to differentiate into osteoblasts and other cells, can 
form intact bone tissue, and is the gold standard cell for bone tissue 
engineering

[196, 197]

iPSC Can differentiate into BMSCs with strong proliferation and 
differentiation abilities, also with powerful osteogenic and angiogenic 
abilities

[198, 199]

Osteoblast Can synthesize and deposit ECM of bone cells, but has weaker 
differentiation ability than mesenchymal stem cells

[200–202]

HUVECs Originating from the umbilical vein, it is an important source of cells 
for bone tissue vascular regeneration and also has anti-inflammatory 
properties

[203, 204]

DPSCs With great potential to reconstruct mineralized tissues, including bone 
and dentine/pulp complex

[205]

Human PDLSCs Express PDGF-BB to promote the bone growth of alveolar bone defects [206]
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tissue at the defect site [78]. Utilizing these bone-related cells for bone transplantation 
offers several benefits: firstly, obtaining bone cells directly from the patient mitigates 
rejection risks; secondly, scaffolds designed for bone cell implantation can foster new 
bone growth more effectively [79]. Employing different types of loaded cells under 
specific conditions can optimize regenerative outcomes [80].

Material selection (mainstream material classification)
The selection of scaffold materials is pivotal for maximizing the efficacy of scaffolds 
in treating bone defects. These materials must align with the previously described 
characteristics; only when these fundamental characteristics are met can the scaffold’s 
performance be fully realized, which is critical for clinical interventions in bone defects. 
Different materials exhibit unique properties, as outlined in Table 2, which details the 
main advantages and disadvantages of primary bone tissue engineering materials. 
Table  3 systematically compares 3D printing materials and traditional transplantation 
techniques.  The number of points in the table  represents the degree of superiority  of 
various performance indicators. The more points there are, the better the performance. 

In 3D printing materials, natural biological substances such as collagen offer distinct 
benefits [81]. Derived from natural cellular components, these materials harmonize 

Table 2 Commonly used materials and their characteristics for the treatment of bone defects

PCL: polycaprolactone; PLGA: polylactic acid‑co‑glycolic acid; HA: hydroxyapatite; β‑TCP: β‑tricalcium phosphate

Materials Advantages Disadvantages Examples

Metals Biocompatible superior 
strength

Toxic of metal ions 
stress-shielding poor 
tissue adhesion poor 
biodegradability

Ti6 Al4 V magnesium 
tantalum

Natural polymers Biocompatible biodegradable 
low toxicity low cost 
adhesion sites for cells

Low mechanical properties 
low controllability endotoxin 
and other pathogenic 
substances

Collagen chitosan alginate

Synthetic polymers Multiple ways of 
compositioneasy to modify

Some may produce acidic 
degradation products 
low biological activity 
hydrophobic

PCL, PLGA

Ceramics Biocompatible high 
compressive modulus 
delivering bioactive 
ion osteoinductive and 
osteoconductive Anti-
corrosion

Brittle HA, β-TCP bioglass zirconia

Table 3 Comparison of 3D printing materials and traditional transplantation techniques

Autograft Allograft Metal Polymer Ceramic

Osteoinductive ●●●● ●●●● ●● ●●● ●●●
Osteoconductive ●●●● ●●●● ●● ●●● ●●●
Economic ●● ●● ●●●● ●●●● ●●●●
Biocompatible ●●●●● ●●●● ●●● ●●● ●●●
Young’s modulus ●●●●● ●●●●● ●● ●●●● ●●●
Personalized manufacturing ● ● ●●●● ●●●● ●●●●
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with tissue structures in their biological functions and elicit lower immunogenic 
responses [74]. Yun-Jeong Seong and colleagues developed chitin–hydroxyapatite–
collagen composite scaffolds (CHCS) to repair tibial defects, which are biocompatible 
and biodegradable porous scaffolds. In vivo experiments on tibial repair demonstrated 
significant bone regeneration in the CHCS group, thereby accelerating bone 
repair. Collagen enhances the scaffold’s biocompatibility and promotes osteogenic 
differentiation [82]. Natural polymers exhibit superior capabilities in promoting cell 
viability, proliferation, and differentiation compared to synthetic polymers. However, 
natural polymers present challenges such as insufficient mechanical strength and low 
controllability [83–85]. In contrast, synthetic materials such as PLGA and PCL offer 
significant mechanical strength, enhanced processability, and controllable degradation 
rates. Nonetheless, synthetic polymers often suffer from low bioactivity and high 
hydrophobicity, which can impede cellular behavior.

Researchers have developed new composite scaffolds to mitigate these drawbacks 
and leverage the strengths of both material types. These composites combine natural 
and synthetic polymers or blend metals with natural polymers, thus integrating both 
advantages. Such scaffolds meet bioscaffold requirements, including bioactivity, ease 
of fabrication, mechanical strength, and controlled degradation [86, 87]. They support 
the growth of bone cells, osteogenic differentiation of bone tissue, angiogenesis, and 
other biological behaviors [88]. Given the various limitations of using a single material, 
composite materials represent a promising research direction [89] due to their ability to 
compensate for individual deficiencies.

Xing Wang and colleagues created a functional, insulin-loaded nHAC/PLGA 
composite scaffold that acts both as a drug delivery system and a three-dimensional 
scaffold to sustain cell activity in bone defect repair. The insulin release kinetics were 
effectively controlled. This composite scaffold exhibited robust mechanical and 
structural properties, facilitating BMSC adhesion, proliferation, and differentiation into 
osteoblasts. The combined biocompatibility, mechanical properties, and slow release of 
the materials were fully utilized, demonstrating excellent bone repair performance in a 
rabbit critical-size bone defect model.

Reflecting on recent trends, scaffold materials can be categorized into metals, 
polymers, and bioceramics. These categories can be further refined based on the origin 
of the materials, such as natural versus synthetic [90–92].

Metals

Metallic materials, including stainless steel and titanium alloys, have been used in 
bone replacement for over a century due to their outstanding mechanical strength and 
compatibility. They are extensively employed in orthopedic surgeries, such as fracture 
surgery, enhancing bone strength and support [93]. Moreover, metal ions contribute 
to bone defect repair by promoting osteoblastogenesis, inhibiting osteoclastogenesis, 
enhancing angiogenesis, and providing antibacterial properties [94]. However, metal 
scaffolds present limitations such as lack of biodegradability and potential harm to tissue 
growth, which restrict their application in bone tissue engineering. These materials 
exhibit a high elastic modulus and may also lead to biological issues such as metal ion 
poisoning, poor tissue adhesion, and the stress shielding effect [95, 96].
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In joint replacement scenarios, most of the load is borne by the metal implant, resulting 
in insufficient stress on the bone tissue and a lack of stimulation for bone regeneration, 
a phenomenon known as the stress shielding effect [97]. In the rapidly evolving field of 
dentistry involving metal implants, contemporary implants are often fabricated from 
titanium alloys and zirconia. These materials are characterized by a slightly rough 
surface, good biocompatibility, and rapid osseointegration, as evidenced by numerous 
animal and human studies [98]. Research indicates that surface modifications of titanium 
alloys, specifically Ti6 Al4 V, can enhance feedback, demonstrating effective integration 
capabilities in tooth defect models [99].

Metal materials, particularly titanium alloys, have long been fundamental in 
bone tissue implants. Titanium alloys are particularly noted for their excellent 
biocompatibility, high strength, and corrosion resistance, making them crucial for 
bone growth and defect tissue reconstruction with broad prospects in orthopedics 
and dentistry [100, 101]. Ti6 Al4 V, a common titanium alloy, is particularly suited for 
orthopedic surgery. Compared to other alloys, it has a slightly lower elastic modulus 
and a relatively minor stress-shielding effect, facilitating the regeneration of bone 
tissue within the scaffold [102, 103]. Leveraging the mechanical strength of titanium 
alloys while compensating for their lack of biodegradability remains a priority in their 
application. Tao Yang’s team devised a bilayer scaffold to promote cartilage regeneration, 
featuring a subchondral bone compartment made of 3D-printed titanium alloy and a 
cartilage compartment composed of a freeze-dried collagen sponge. This design provides 
the necessary mechanical support from the titanium alloy, whereas the collagen ensures 
sufficient biodegradation. In a rabbit femoral trochlear osteochondral defect model, 
titanium alloy scaffolds accelerated osteochondral formation and integration with 
adjacent host tissues, highlighting the importance of continuous mechanical support in 
scaffold printing technology for bone support [104].

The insufficient surface activity of titanium alloys significantly contributes to 
suboptimal bone implantation effects [105]. Since copper plays a vital role in the 
normal physiological structure of bones and the maturation of bone tissue, a coating 
can be applied to titanium surfaces to increase the roughness of titanium alloys, thus 
aiding in their stabilization in vivo [106]. In research focused on the surface activity 
of macroporous Ti6 Al4 V scaffolds, a silicon-substituted hydroxyapatite (SiHA) 
coating was employed alongside VEGF to enhance surface activity. Studies have 
demonstrated that the adsorption of VEGF stimulates endothelial cell proliferation. 
In  vivo experiments in sheep revealed that only the simultaneous presence of 
these two components significantly boosts bone tissue regeneration. Osteogenesis 
facilitated by SiHA coating alone or VEGF alone proved unsatisfactory. However, the 
combined adsorption of a SiHA-coated scaffold and VEGF enhances the functionality 
of titanium alloys, displaying a synergistic effect. Surface coating titanium alloys with 
active factors can alter their characteristics and enhance their active function in vivo 
[67]. Titanium metal possesses a high elastic modulus, significantly surpassing that 
of bone tissue, which leads to a stress-shielding effect when in contact with bone. 
In addressing this issue, Takashi Takizawa et al. demonstrated a titanium fiber plate 
that, subjected to compressive and shear stress, achieved a thickness of 0.2 mm and 
Young’s modulus as low as 30 Gpa, nearing the typical cortical bone range of 10–30 
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Gpa. Even after prolonged implantation in the defect area, this titanium plate does 
not induce stress shielding. It demonstrates an outstanding osteogenic effect when 
engineered with appropriate pore size and porosity [107].

Infectious bone defects present a significant clinical challenge, and traditional 
approaches for their prevention and treatment are suboptimal. Techniques such 
as autologous bone transplantation, the Ilizarov technique, and the Masquelet 
technique may compromise local blood supply, resulting in diminished local 
antibiotic concentrations following systemic administration. The cornerstone of 
treatment involves the reconstruction of bone defects, anti-infection measures, and 
osteogenesis. Teng Zhang et  al. developed a hydrogel encapsulating vancomycin, 
designed with an optimized molecular chain structure to degrade over 25 days, 
aligning with the healing timeline of infectious bone defects. This hydrogel exhibits 
bacterial-responsive release properties. The implant surface, modified with 
submicron pores via micro-arc oxidation (MAO), enhances osteogenic activity and 
integrates effectively with the hydrogel drug delivery system. In infected rabbit bone 
defects, osteogenesis confirmed the implant’s effective antibacterial and osteogenic 
capabilities. The results indicate that MAO 3D printed porous Ti6 Al4 V composite 
with vancomycin hydrogel can repair infectious bone defects, offering excellent anti-
infection and bone integration outcomes [108].

This strategy provides a promising approach for clinical surgery with antibacterial 
properties. By refining the gel wrapping system and incorporating a range of 
antibacterial drugs, precise, quantified, timed, and targeted release can be achieved, 
promoting excellent antibacterial effects and bone regeneration.

Many metal materials, including aluminum alloys, exhibit sufficient mechanical 
strength but generally lack effective biodegradability. In recent years, magnesium 
alloys and ions, notable for their relatively superior biodegradability and biological 
activity, have garnered interest in the research of bone scaffolds. Magnesium plays 
a crucial role in bone metabolism as a regulator, influencing intracellular calcium 
and sodium channels, catalyzing various enzymes, and stimulating cell growth and 
proliferation. It can enhance bone density by impacting the functions of osteoblasts 
and osteoclasts [109].

Compared to other conventional metallic materials, magnesium has an elasticity 
modulus that is more akin to that of bones. This property is advantageous as it helps 
reduce the stress shielding effect that occurs post-implantation and aids in promoting 
bone stress regeneration. To compensate for the strength deficiencies of hydrogel 
scaffolds, Xintao Zhang et al. incorporated magnesium ions into a double crosslinked 
hydrogel through the Mg-S coordinate covalent bond. This addition enhances 
mechanical strength and cell adhesion and boosts biological activity, thereby 
endowing the hydrogel with robust, comprehensive performance. The synergistic 
properties of these composite scaffolds have been effectively utilized [110].

These advancements demonstrate comprehensive performance in bone scaffolds 
through Mg ion loading, which could address clinical challenges such as large segmental 
bone defects that require robust scaffold strength for effective bone regeneration.

Despite its numerous advantages in bone tissue engineering, magnesium has 
a significant drawback: it corrodes rapidly in physiological solutions. This high 
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corrosion rate can lead to a direct loss of mechanical and physiological properties 
during bone healing [111].

Currently, tantalum, a distinct metal, is gaining increasing attention, with a growing 
body of research dedicated to its use. Tantalum offers several advantages over many 
existing materials due to its structural continuity, high strength, low stiffness, and high 
porosity. These properties are crucial for constructing porous scaffolds with complex 
configurations and unique shapes [112, 113]. Unlike many metals, which suffer from 
inertness detrimental to implant integration, tantalum exhibits excellent biological 
activity. This is attributed to its ability to form a self-passivating surface oxide layer that 
promotes the formation of a bone-to-bone interface [114].

The elastic modulus is a critical parameter for assessing the mechanical properties of 
porous tantalum bone scaffolds, indicating their capacity to resist elastic deformation 
and recover after stress application. When subjected to tensile or bending tests, the 
elastic modulus of porous tantalum scaffolds typically ranges from about 2 GPa to 8 GPa. 
Such resistance to compression and deformation is advantageous in metal materials and 
is highly beneficial for bone regeneration [112].

Zhiyi Zhang et al. fabricated porous tantalum scaffolds using the selective laser melting 
method and created unique micro-gradient nanostructures on the surface. This bionic 
hierarchical structure enhances the surface hydrophilicity of the scaffolds. Additionally, 
these porous tantalum scaffolds demonstrated enhanced early bone integration in a 
rabbit femur implantation model [115].

Polymers

Polymers are widely used in the biomedical field, with increasing applications in 
orthopedics. However, biopolymers such as collagen and cellulose can illicit immune 
responses. Natural biopolymers contain various proteins, such as collagen, gelatin, 
albumin, [85, 116, 117] and polysaccharides, such as cellulose, hyaluronic acid, chitosan, 
and alginate [118, 119]. These are derived from natural cellular components. Their 
composition is highly consistent with the natural ECM, and the body readily absorbs 
them. This compatibility fosters cellular integration without typically inducing immune 
reactions. Collagen, primarily sourced from animal skin, bones, and other connective 
tissues, predominantly consists of type I collagen [120], whereas type II collagen is 
primarily derived from cartilage tissue [121].

The production of collagen involves various specialized methods, which crucially 
influence its physical and biological properties. A significant aspect of collagen 
production is maintaining its native, undenatured form, which retains resistance to 
proteases. Avoiding high temperatures and denaturing agents during production is 
essential to preserve the fiber-modified structure on the collagen surface, thereby 
enhancing its immune resistance [122, 123]. Additionally, these natural materials 
feature specific amino acid sequences that promote cell adhesion, proliferation, and 
differentiation [83, 124].

Among the natural polymers utilized in 3D printing, collagen is arguably the most 
prevalent [125]. Given its significant presence in the ECM proteins of bone, collagen is a 
vital component of physiological bone tissue, noted for its exceptional biocompatibility 
and abundant sources. As a scaffold material, collagen is preferred due to its minimal 
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side effects. Type I collagen, in particular, is the most widely used [85]. Despite the 
excellent biological properties of pure collagen scaffolds, their mechanical properties are 
lacking, rendering them unsuitable for use alone in bone tissues that require mechanical 
support. The mechanical properties of collagen can be enhanced through intermolecular 
crosslinking using physicochemical methods. While such strategies can improve the 
structural integrity of collagen scaffolds, they may adversely impact cellular responses 
in vivo [126].

The limitations of single-component systems are often addressed by employing a blend 
of polymers. Natural polymers are extensively utilized in tissue engineering, mirroring 
the properties of natural extracellular matrices [124]. Notably, most materials for cranial 
defect regeneration are either biologically inert or non-biodegradable. Addressing this, 
Li et  al. developed a high-strength mineralized collagen bone scaffold for large-scale 
calvarial defects in sheep, featuring a biomimetic composition and microstructure. In 
their process, calcium and phosphate ions were introduced into a type I collagen solution 
to form a precipitate, which was then combined with PCL to create a mineralized 
collagen complex. This dense scaffold, characterized by a small pore size, compensates 
for the mechanical deficiencies of collagen pores. The exceptional performance of this 
composite material shows the critical role of material composites in scaffold applications 
[126].

Compared to natural polymers, synthetic polymers offer broader sources, higher 
strength, diverse functionality, slower degradation rates, and strong structural plasticity 
[127, 128]. Bone tissue engineering necessitates the specific modification and processing 
of polymer materials to meet unique requirements, a challenging task with natural 
polymers due to their limited malleability. In contrast, synthetic polymers are highly 
adaptable, allowing the design of polymer functional groups to exhibit various structures 
and properties. This adaptability renders synthetic polymers extremely valuable in 
managing complex clinical conditions [74]. The most frequently used synthetic polymers 
in producing tissue engineering polymers are aliphatic polyesters, including PCL, PLA, 
and PLGA [129–132].

As a semi-crystalline aliphatic polyester, PCL is recognized for its excellent toughness 
and biocompatibility, with a non-toxic degradation profile. However, its slow degradation 
rate and insufficient mechanical properties are considered limitations in the bone tissue 
regeneration process, as this synthetic polymer alone does not possess the mechanical 
properties required to adequately replace certain bone tissues [133, 134]. PCL, which 
exhibits a semi-crystalline state in vivo due to its melting temperature being higher than 
body temperature, is chemically quite hydrophobic and lacks specific cell recognition 
sites, resulting in insufficient cell-scaffold interaction. This limitation affects the ability 
of cells to adhere, survive, and proliferate, making surface modification of PCL a widely 
adopted method for material enhancement [135, 136]. By integrating apatite materials, 
known for their excellent compatibility, with PCL to introduce carboxylic acid groups, 
dense hydroxyapatite deposition can be promoted on the material’s surface [137]. Senem 
Buyuksungur et al. enhanced the characteristics of PCL scaffolds by 3D printing them 
with methacrylate gelatin (GelMA)-loaded dental pulp stem cells (DPSCS), creating a 
hybrid scaffold that leverages the hydrophilicity, high biocompatibility, and adequate 
pore size coefficient of GelMA to improve the PCL framework. This approach ensures 
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mechanical strength while enhancing cell activity, osteogenic differentiation, and 
mineralization levels [88]. Techniques such as laser treatment and bioceramics such as 
calcium phosphate have also proven effective for modifying PCL surfaces [136, 138]. 
The application of PCL in composite materials is remarkably extensive, exhibiting 
excellent synergistic capabilities when combined with metals or other polymers. 
Hou et  al. developed a PCL-PEG-PCL composite scaffold that was noted for its good 
biocompatibility and biodegradability. They incorporated the metal nanomineral 
zinc oxide (n-BD) into the PCL polymer to enhance biological activity and osteogenic 
capacity, resulting in an n-BPC bioactive scaffold with interconnected large pores. The 
addition of PEG, known for its superior mechanical properties and amphiphilicity, 
significantly enhances the water absorption, degradation rate, and mechanical strength 
of the bone scaffold. This improvement promotes cell proliferation and differentiation 
[139]. Integrating materials with higher mechanical strength has broadened the 
applicability of PCL materials, making them suitable for repairing bone defects that 
require robust mechanical support.

One of the primary challenges in clinical practice remains the repair of extended bone 
defects, which necessitates using bone grafts, growth factors, and mechanical stability. A 
novel approach involves a 3D-printed polycaprolactone (PCL)/β-tricalcium phosphate 
(β-TCP) scaffold coated with polydopamine (PDA) and alginate microspheres (AM) for 
the sustained delivery of bone morphogenetic protein-2 (BMP-2). Polydopamine (PDA), 
inspired by mussel adhesives, exhibits strong adherence to various material surfaces, 
including superhydrophobic ones, whereas alginate can encapsulate bioactive molecules 
through cross-linking reactions. This configuration in the rabbit femoral segmental bone 
defect model facilitated improved cortical bone connectivity and induction [140].

While traditional materials such as PCL have advantages, their performance alone is 
relatively limited, preventing their sole use in clinical applications. The current trend 
focuses on encapsulating osteogenic-inductive molecular substances within slow-release 
materials to offset the inherent limitations, such as the strength deficiencies of natural 
materials. Composite scaffolds that balance these properties may more likely achieve 
clinical translation, presenting a balanced solution for complex medical challenges.

Bioceramics

Bioceramics dominate the market for bone tissue engineering scaffold materials, 
primarily due to their high strength, excellent biocompatibility, significant bioactivity, 
and robust bone induction and conductivity. These materials can also load stem cells, 
growth factors, and drugs [141, 142]. However, their application is limited by insufficient 
degradability and mechanical strength. Additionally, bioceramics are highly brittle as 
they are produced by sintering inefficiently filled powders [143, 144], which contributes 
to their fragility. Bioceramics can be classified based on their interaction with bone 
tissue into three types: resorbable calcium phosphates, which include hydroxyapatite 
(HA), tricalcium phosphate (TCP) and their combination in biphasic calcium phosphate 
(BCP), bioactive types, such as bioactive glass, and near-inert types such as zirconia 
[145–148]. These materials are clinically useful as surgery implants and as drug delivery 
carriers [149, 150].
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Given that the core component of natural bone is hydroxyapatite (HA) nanocrystals, 
HA is frequently used with natural polymers in bone tissue scaffolds, particularly for 
repairing bone defects [151, 152]. HA and TCP have shown promise in regenerating 
alveolar bone, initially demonstrating potential in dental applications [153]. These 
materials are highly biocompatible and non-toxic and excel in osteoconductivity and 
osteoinductivity. Their bone-like porous structure facilitates vascular growth and 
osseointegration, enhancing their efficacy in medical applications [154]. Although 
HA is a principal component of bone tissue, its application in bone tissue engineering 
is somewhat limited due to its slow degradation rate in implants, which hampers new 
bone formation. Additionally, HA’s mechanical properties are relatively weak, making 
it unsuitable as a load-bearing material for bone defects. These challenges necessitate 
the development of advanced composite materials that enhance its strength while 
capitalizing on its excellent biocompatibility. Composite materials incorporating 
hydroxyapatite can significantly improve the adhesion, migration, and differentiation 
of osteoblasts on the scaffold. K. Zafeiris et al. created a composite by mixing chitosan, 
L-arginine, and hydroxyapatite nanocrystals, further enhancing scaffold strength with 
genipin, given that hydroxyapatite provides the essential calcium and phosphorus 
elements for bone growth [155].

Bioactive glass, a type of ceramic material, has been a staple in materials engineering 
for centuries and underwent a transformational shift in 1969, revolutionizing implant 
materials by providing a viable alternative to inert substances. Its composition—rich in 
calcium, phosphorus, and silicon—renders it highly compatible with the human body. 
A notable attribute of bioactive glass is its ability to foster bone regeneration. Upon 
implantation, bioactive glass activates osteoblast proliferation, which is essential for 
bone formation, facilitating the growth of new bone tissue and repairing bone defects or 
fractures. Moreover, bioactive glass’s superior biocompatibility ensures minimal adverse 
effects on surrounding tissues, making it an ideal material for bone tissue engineering 
and orthopedic surgeries. Furthermore, its antibacterial properties are advantageous for 
preventing infections at the implantation site. The release of silicon ions from bioactive 
glass boosts its antibacterial effectiveness and modifies cellular behaviors. This alteration 
enhances the fluidity of cell membranes, influencing cellular responses to the implant 
and exerting a broader bioactive effect.

Bioactive glass (BG) stands out in bone engineering applications due to its strong 
adherence to bone tissue, excellent biocompatibility, and robust antibacterial properties. 
These attributes enhance its capacity to promote bone regeneration and positively 
influence cell behavior, broadening its versatility and future potential in the field [156, 
157]. The antibacterial properties of bioactive glass are particularly noteworthy, leading 
to extensive research in this area. Innovations have included the incorporation of 
silver, known for its bactericidal efficacy against various bacteria while being benign 
to human cells. Rodrigo L. M. S. Oliveira et al. developed bioactive glass scaffolds with 
well-defined pore structures using a sponge replication technique. These scaffolds 
have two pore size ranges: one from 1 mm to 1.5 mm and another from 170 μm to 700 
μm. Silver nanoparticles were coated onto the scaffolds, resulting in a layer of silica 
gel on the microcrystalline surface that promotes adhesion between the nanoparticles 
and the scaffold. This silver coating effectively inhibits bacterial growth, such as 
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Staphylococcus aureus and Pseudomonas aeruginosa, addressing infection risks in 
clinical bone transplantation and suggesting a pathway for further development through 
manufacturing best practices and clinical trials [158].

Despite its advantages, traditional bioactive glass’s brittleness and limited degradation 
capacity are less ideal for load-bearing bone growth. In a study on rat cranial bone 
defects, Angela Maria Paiva Magri et  al. enhanced these properties by combining 
PLGA, a porous material, with bioactive glass. This combination accelerated material 
degradation and bone healing in the cranial defect model. Additionally, bioactive 
glass degradation produces alkaline substances, which are unfavorable for bone tissue 
regeneration, whereas the acidic nature of PLGA, composed of polylactic acid and 
glycolic acid, neutralizes this effect, thus improving the bone regeneration environment 
[159, 160].

Further advancements in nanomedicine include the study of iron oxide nanoparticles 
(IONPs), particularly in applications such as magnetic particle bone cement. Traditional 
Fe₃O₄ magnetic particle bone cement has demonstrated efficacy in eliminating 
Staphylococcus aureus under an alternating magnetic field. However, its non-
degradability necessitates subsequent surgical interventions. To overcome this, Ying 
Jin and colleagues developed a borosilicate bioactive glass (BSG) scaffold combined 
with iron tetroxide (Fe₃O₄), enhancing both antibacterial efficacy and bone repair 
capabilities. This scaffold increases the expression of osteogenic factors. Flow cytometry 
revealed the polarization of M2 cells towards RUNX 2, ALP, and OCN, demonstrating 
superior antibacterial effects at the implantation site and effectively controlling SAC 
and Staphylococcus aureus. The scaffold promoted ideal new bone formation around 
the original infection site [161]. This study demonstrates a processing approach similar 
to previous materials, employing a novel antibacterial material in combination with 
traditional borosilicate bioactive glass. It simultaneously achieves antibacterial and bone 
regeneration effects, making the prospect of osteogenesis alongside antibacterial activity 
more promising.

Special processing method of materials

Many materials are limited in clinical applications due to insufficient specific functions. 
To improve material characteristics, researchers have devised a modification method 
that enhances the biomimetic ability of materials. This method uses surface-modified 
coatings to modify materials with certain functional deficiencies, such as typical metallic 
materials [37]. Due to high-stress shielding and low tissue compatibility, typical metallic 
materials cannot achieve good bone integration after implantation [36]. Therefore, the 
mechanical properties of metallic materials can be utilized by designing well-modified 
surface coatings. However, their incompatibility with regenerating bone can also be 
avoided, allowing for normal automatic repair of the defect structure after implantation 
[27]. Thus, first, we need to completely understand bone tissue regeneration. In addition, 
surface modification can also be expected to improve problems such as poor integration 
of bone grafts with host bone tissue, infection, and inflammatory reactions [162]. 
Although coating treatment of the material can greatly improve certain aspects of the 
scaffold, different coating treatments are required due to the varied characteristics of the 
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materials. At present, achieving a unified coating method to solve all material problems 
is impossible.

Hydroxyapatite, renowned for its exceptional biocompatibility and osteoconductive 
properties, is increasingly utilized in metal coatings to enhance metal–bone integration. 
It effectively reduces the corrosion of metallic implants and the toxicity caused by 
metal ions, thereby promoting more substantial bone growth and deeper penetration 
depth while facilitating more direct contact with tissue surfaces [163]. In a study 
focused on material selection for cranioplasty, Armaghan Naderi et  al. employed the 
sol–gel method to coat hydroxyapatite onto a metal mesh, resulting in a 3D composite 
implant. This modification aligned the material’s elastic modulus closely with that of 
the human skull and demonstrated superior compatibility. The presence of adipose-
derived stem cells (ASC) thriving in the open mesh areas of the coating indicated that 
the hydroxyapatite coating promotes cellular activity within the composite matrix. 
Additionally, the electrochemical behavior of the scaffold was shown to reduce metal 
electrode corrosion, enhancing the corrosion resistance of the metal. These findings 
illustrate that hydroxyapatite coatings can significantly improve the biocompatibility and 
corrosion resistance of metal implants while maintaining the metal’s strength, making it 
suitable for applications such as cranioplasty [164].

In many cases, the application of a composite scaffold alone may not be sufficient to 
produce a good healing effect in bone defect models due to the need for special factors 
to stimulate bone tissue repair [165]. Many bone-related growth factors can promote 
bone tissue healing by enhancing bone induction and integration. Adding these growth 
factors to biologically active scaffolds helps improve the functional characteristics of the 
scaffolds and is a novel modification method. Bone morphogenetic protein is the most 
widely used, and many other cell factors can also be used to encapsulate tissue material. 
Table 4 presents the common application of various bone regeneration-related growth 
factors and bone scaffold materials, providing important insights for improving material 
functionality.

Bioprinting
Firstly, in bone engineering, the printing method significantly impacts the properties 
of scaffolds, making it crucial to understand the various techniques involved in scaffold 
manufacturing. The evolution of bioprinting technologies and the development of 
compatible “ink” materials have been central to advancing 3D scaffolds for bone defect 
repair. Among the bioprinting methods developed so far are inkjet-based, extrusion-
based, and laser-based bioprinting, each with unique characteristics and applications 
[166, 167].

Inkjet-based bioprinting utilizes a non-contact, droplet-based system, allowing for 
high-resolution deposition of biomaterials. Binding jetting is a special type of inkjet 
printing; it typically uses two materials, namely metal/ceramic-based materials for 
manufacturing components and adhesive materials, to lay and deposit a layer of adhesive 
on a powder metal/ceramic layer. Using computer-aided design (CAD) models, a layer 
of adhesive is deposited on the metal layer, and fine water jets are accurately printed 
layer by layer onto the metal powder bed. The metal/ceramic powder material is layered 
and bonded, and then the printed metal parts are sintered in a furnace to achieve the 
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required mechanical strength [168]. The main advantages of this printing method are low 
equipment cost and a thermally controlled sintering process, making the manufacturing 
process fast. However, its manufacturing accuracy is relatively low, making it suitable 
for printing requirements with lower precision [169]. Selective laser melting (SLM) is 
a technology that uses advanced high-energy fiber lasers to melt powders and rapidly 
laser shape materials in a vacuum higher laser energy density and finer focusing can 
produce materials with higher dimensional accuracy and better performance. Powder 
materials can be single or multi-component substances; the raw materials do not need 
to be specially prepared. SLM can provide the advantage of design freedom, which 
gives a wide range of material choices. Complex-shaped scaffolds can also be prepared 
to meet the needs of many delicate organ tissues in clinical practice [170]. However, 
laser-assisted bioprinting also has limitations, including high complexity, high cost, 
and slow manufacturing speed. Moreover, the potential damage of laser to cells and the 
toxicity of photoinitiators also limit its clinical application [171]. Extrusion bioprinting 
is currently widely used in scaffolds. Fused deposition modeling (FDM) is a typical 
extrusion type based on a continuous extrusion process where pressure is applied 
to a syringe to extrude the bioink through a micro-nozzle. This extrusion method has 
many unique advantages. It has a high sedimentation and printing speed, which can 
promote scalability in a short time. This technology does not require heating, is fast to 
manufacture, and is beneficial for cell loading. In addition, this method provides various 
bio-ink options to manufacture more specialized scaffolds as needed [172]. However, 
a major limitation of FDM is that the technology can only produce biological scaffolds 

Table 4 Features of growth factors related to bone tissue engineering and materials

Growth factor Material carrier Animal model Functions/
advantages

Limitations References

BMP-2 Chitosan coatings 
on Ti

Tibial defect in 
rabbits

Promotes cell 
adherence, 
proliferation, 
differentiation 
and calcium 
mineralization

Short half-life 
easily degradable

[207]

BMP-7 PLA/PCL nano-HA/
polyamide PLGA

Mandibular defect 
osteochondral 
defect of rabbit 
knees

Low dose required Cell differentiation 
rather than 
proliferation

[208, 209]

PDGF-BB Brushite–chitosan 
Bioglass/silk fibrin

Osteoporotic 
critical-sized femur 
defect of rat

Recruits 
mesenchymal 
progenitor cells 
inducing bone 
tissue regeneration 
promotes 
angiogenesis

Inhibit BMP-2 
induced bone 
healing inhibit 
osteogenesis of 
mesenchymal 
stem cells

[210, 211]

FGF PLGA/β-TCP Rat cranial bone 
defect

Promotes rapid 
tissue in growth in 
the scaffold

[212]

VEGF PLGA SiHA HG-HA-
TCP

Rat cranial bone 
defect bone defect 
of sheep limbs

Promotes 
angiogenesis, 
osteoinductive 
increases ALP 
activity increases 
the permeability of 
the vessels

Limited 
osteogenic 
inductive effect

[213–215]
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with limited shapes and relatively regular structures; with insufficient precision, only 
limited printing resolution can be achieved. Therefore, to produce scaffolds for clinical 
use, these issues must be improved [173].

Secondly, the compatibility of bioprinting with various scaffold materials is another 
critical area of research in bioprinting. Bioprinting involves the precise deposition 
of bioinks, which are formulations containing living cells and biomaterials, to create 
complex tissue structures. The choice of scaffold material significantly impacts the 
success of bioprinting, as it must support cell viability, proliferation, and differentiation 
while maintaining structural integrity. Hydrogels are among the most commonly used 
scaffold materials in bioprinting due to their high water content and biocompatibility, 
which mimic the natural ECM [174]. However, hydrogels often suffer from poor 
mechanical properties and low printability, which can limit their application in creating 
robust tissue constructs. To address these issues, researchers have developed various 
strategies to enhance the mechanical stability and printability of hydrogel-based bioinks. 
For instance, dual-crosslinking methods, which involve both physical and chemical 
crosslinking, have been shown to improve the mechanical properties of hydrogels, 
making them more suitable for bioprinting applications [175]. The rheological properties 
of bioinks are crucial for successful bioprinting, as they determine the flow behavior 
and printability of the material. Bioinks must exhibit shear-thinning behavior, where 
viscosity decreases under shear stress, to facilitate smooth extrusion through the printer 
nozzle [176]. Additionally, the crosslinking strategy employed can significantly affect 
the final properties of the printed construct. For example, photo-crosslinkable bioinks 
allow for precise control over the gelation process, enabling the creation of complex 
structures with high fidelity [177]. Ceramic materials, on the other hand, are often 
used in bioprinting for applications requiring high mechanical strength, such as bone 
tissue engineering. The incorporation of ceramic particles into bioinks can enhance the 
osteoconductivity and mechanical properties of the printed scaffolds [178]. However, 
the high viscosity of ceramic-containing bioinks can pose challenges for extrusion-
based bioprinting, necessitating the development of novel rheology modifiers and 
crosslinking strategies to improve printability [179]. Despite these advancements, there 
are still limitations in the current bioprinting technologies. The compatibility of different 
scaffold materials with bioprinting processes needs further exploration to optimize 
the properties of the final constructs. Moreover, the development of bioinks that can 
seamlessly integrate with various scaffold materials without compromising cell viability 
and function remains a significant challenge [180, 181]. In conclusion, the compatibility 
of bioprinting with hydrogels and ceramics is being continuously improved through 
innovative techniques and material combinations. These advancements are crucial for 
the successful application of bioprinting in tissue engineering, offering new possibilities 
for the creation of complex and functional tissue constructs.

Clinical applications, challenges, and prospects
Currently, 3D printing technology has been applied in orthopedic surgery. Combined 
with CT and other medical imaging techniques, 3D printing implants can be more 
specific to the target bone structure. Hu et al. designed a 3D-printed artificial vertebral 
body for multiple segments of the spinal resection, which is used for spinal surgery. 
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They found that the combination of adjuvant therapy had a good outcome, and the 
spine gradually recovered [182]. The 3D printing Ti6 Al4 V scaffold, a relatively mature 
scaffold, has been applied to various clinical scenes. Liu et  al. made a porous Ti6 Al4 
V scaffold through 3D printing to repair the defect of the lower extremities. The result 
indicates that the scaffold can rebuild the severe bone defect of the lower extremities 
without additional bone [183]. A tibial fracture is a common type of injury. Since the 
injury of the subcutaneous muscle tissue is minor, the blood of the tibia is poor, causing 
nonunion of a tibial fracture that failed to heal. Zhao et al. designed a porous tantalum 
metal bone plate with excellent mechanical and biological properties to treat tibial 
fractures, improving the therapeutic effects of the treatment [184]. In recent years, the 
clinical application has been doubled, and 3D-printed scaffolds have made substantial 
progress in orthopedic surgery.

Currently, the treatment of bone defects continues to rely on autologous bone 
transplantation, and the fabrication of ideal bone tissue scaffolds remains a significant 
challenge. Numerous technical issues require appropriate solutions. To enhance the 
clinical application potential of bone tissue engineering, several key problems and 
potential strategies are summarized as follows:

1. Vascularization: In cell-loaded bone tissue scaffolds, although vascular regeneration 
can be effectively promoted by incorporating endothelial growth factors, 
regeneration at the microvessel level remains scarce. Constructing hollow and 
densely distributed microvascular networks is difficult, and both cell survival and 
diffusion are still limited. Therefore, with respect to vascularization, it is proposed 
that incorporating artificial microvascular structures within scaffold materials or 
the controlled release of specific pro-angiogenic substances to facilitate vascular 
formation may significantly enhance the efficiency of cell diffusion [185, 186].

2. Simulating the structure of natural bone tissue: Natural bone tissue possesses a 
hierarchical architecture. If a 3D-printed scaffold can accurately replicate this 
structure, it may exert excellent inductive effects on bone regeneration. However, the 
limited resolution of current 3D printing technology prevents precise simulation of 
such hierarchical features. Advancements in this area necessitate the development of 
higher precision printers, specifically engineered with finer print nozzle diameters 
[187].

3. Antimicrobial characteristics: In clinical practice, managing infectious bone defects 
is particularly challenging due to difficulties in controlling infections. Systemic 
administration of high-dose antibiotics may lead to toxicity and contribute to the 
emergence of drug-resistant strains. Therefore, the encapsulation of antibiotics 
within nanomaterials for targeted and sustained release offers the potential for long-
term antimicrobial efficacy while minimizing systemic side effects [188].

4. Cost: The cost of 3D printing is an important issue that limits its application, so it is 
necessary to consider how to reduce the cost. In terms of material costs, optimizing 
structural design can reduce multiple operations in material printing, thereby 
reducing material investment. Secondly, further research should be conducted on 
material selection to develop cheaper printing materials. In terms of equipment 
investment, the incompleteness of current 3D printing development and the 
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absence of large-scale manufacturing facilities are closely related to the maturity of 
the technology. It is anticipated that as 3D printing technology achieves significant 
breakthroughs in both scientific research and clinical application, related investments 
will substantially increase, enabling the realization of mass production.

Regarding control over printing details, if only a tiny portion of a printed component 
requires exceptionally high precision, reducing the overall layer height is not necessarily 
advantageous to enhance accuracy. Such an approach would considerably prolong 
production time. Instead, large tolerance compensation can be applied to areas with 
lower precision requirements, allowing for rougher accuracy during initial printing 
and post-processing to improve precision in critical regions. Mastery of such detail 
management strategies can lead to substantial savings in both time and material costs in 
3D printing.

Along with 3D printing technology, many other bone tissue repair strategies are 
developing rapidly. A basic understanding of 3D printing, in conjunction with other 
commonly used technologies, can provide a more comprehensive perspective and 
contribute to the further improvement of 3D printing applications. Therefore, a simple 
comparison between 3D printing technology, stem cell therapy, and gene therapy is 
presented in Table 5.

At the forefront of development in 3D structures, some researchers have demonstrated 
that enhancing the dynamic responsiveness of scaffolds to external stimuli can improve 
their adaptability in diverse clinical scenarios, leading to the emergence of four-
dimensional (4D) printing strategies [189, 190]. Various physicochemical stimuli, such as 
light or temperature, can induce structural transformations in scaffolds when innovative 
materials convert external stimuli or energy into dynamic motion. This approach 
demonstrates significant potential for fabricating shape-variable, tissue-like structures 
and represents a promising direction for next-generation core printing technologies 
[191, 192].

For example, Alina Kirillova et  al. fabricated a hollow, self-folding hydrogel-based 
tube using 4D printing technology. They achieved precise dynamic control over its 
mechanical properties, resulting in an adjustable and responsive structure capable of 
accurately forming the desired geometry [193]. This innovation provides a potential 
comprehensive strategy for clinical decision-making in disease treatment, enabling the 
modulation of scaffold characteristics to meet the varying requirements of different 
recovery phases following scaffold implantation in bone defects.

During phases requiring high mechanical strength and load-bearing capacity, the 
material can transition to a lower porosity state, enhancing its mechanical properties 

Table 5 Comparison between 3D printing and other technologies

Advantages Disadvantages

3D printing scaffold Structure support vascularization Clinical validation is not sufficient for mass application

Stem cell therapy Quick, easy delivery Multiple complications, low survival rate of cells

Gene therapy No need for cell implantation Technical problems are difficult to solve, serious 
complication
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to meet stress demands. Conversely, during periods where increased nutrient exchange 
and vascularization are critical, the porosity and architecture of the scaffold can be 
adjusted to support angiogenesis. Additionally, shape-memory materials can facilitate a 
more accurate fit to the defect site for bone defects with irregular geometries, further 
improving therapeutic outcomes.

Conclusion
Bone defects represent a formidable challenge in orthopedic and reconstructive 
medicine, particularly for large critical-sized defects that defy conventional repair 
strategies. While autografts remain the clinical gold standard, their limitations have 
spurred innovative alternatives leveraging 3D printing technology. This review highlights 
the transformative potential of 3D-printed scaffolds, emphasizing material innovation, 
structural precision, and biological functionality as the pillars of next-generation 
bone regeneration. Advances in biomaterial composites—such as osteoconductive 
bioceramics, mechanically resilient titanium alloys, and bioactive polymers—have 
significantly enhanced scaffold performance. The ability to fine-tune porosity, stiffness, 
and degradation kinetics through additive manufacturing has enabled scaffolds to better 
mimic native bone architecture. Furthermore, biological functionalization via growth 
factor delivery, stem cell integration, and immunomodulatory coatings has bridged 
the gap between synthetic constructs and living tissue. Despite these breakthroughs, 
challenges persist. Ensuring rapid vascularization, preventing infection, and achieving 
seamless osseointegration remain critical hurdles. Future progress will depend on 
merging emerging technologies—such as 4D-printed dynamic scaffolds, AI-driven 
design optimization, and advanced bioreactor conditioning—with clinical insights. 
By uniting engineering precision with biological complexity, 3D-printed scaffolds are 
poised to redefine bone defect repair, moving beyond structural replacement to active 
tissue regeneration.
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