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Abstract 

Background:  Accurate measurement of anterior segment parameters is crucial 
for diagnosing and managing ophthalmic conditions, such as glaucoma, cataracts, 
and refractive errors. However, traditional clinical measurement methods are often 
time-consuming, labor-intensive, and susceptible to inaccuracies. With the growing 
potential of artificial intelligence in ophthalmic diagnostics, this study aims to develop 
and evaluate a deep learning model capable of automatically extracting key points 
and precisely measuring multiple clinically significant anterior segment parameters 
from ultrasound biomicroscopy (UBM) images. These parameters include central 
corneal thickness (CCT), anterior chamber depth (ACD), pupil diameter (PD), angle-to-
angle distance (ATA), sulcus-to-sulcus distance (STS), lens thickness (LT), and crystalline 
lens rise (CLR).

Methods:  A data set of 716 UBM anterior segment images was collected from Tianjin 
Medical University Eye Hospital. YOLOv8 was utilized to segment four key anatomical 
structures: cornea–sclera, anterior chamber, pupil, and iris–ciliary body—thereby 
enhancing the accuracy of keypoint localization. Only images with intact posterior 
capsule lentis were selected to create an effective data set for parameter measurement. 
Ten keypoints were localized across the data set, allowing the calculation of seven 
essential parameters. Control experiments were conducted to evaluate the impact 
of segmentation on measurement accuracy, with model predictions compared 
against clinical gold standards.

Results:  The segmentation model achieved a mean IoU of 0.8836 and mPA of 0.9795. 
Following segmentation, the binary classification model attained an mAP of 0.9719, 
with a precision of 0.9260 and a recall of 0.9615. Keypoint localization exhibited 
a Euclidean distance error of 58.73 ± 63.04 μm, improving from the pre-segmentation 
error of 71.57 ± 67.36 μm. Localization mAP was 0.9826, with a precision of 0.9699, 
a recall of 0.9642 and an FPS of 32.64. In addition, parameter error analysis and Bland–
Altman plots demonstrated improved agreement with clinical gold standards 
after segmentation.
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Conclusions:  This deep learning approach for UBM image segmentation, keypoint 
localization, and parameter measurement is feasible, enhancing clinical diagnostic 
efficiency for anterior segment parameters.

Keywords:  Deep learning, Ultrasound biomicroscopy, Anterior segment, Keypoint 
localization, Parameter measurement

Introduction
The anterior segment of the eye comprises the front part of the eyeball, including the 
cornea, anterior chamber, iris, pupil, lens, and anterior chamber angle (ACA). Accurate 
localization of keypoints and precise measurement of anterior segment parameters are 
crucial for assessing ocular health, with significant clinical implications for diagnosing 
and treating eye diseases, such as glaucoma, cataracts, and refractive errors [1].

Studies have shown that patients with glaucoma often present with elevated 
intraocular pressure (IOP), shallow anterior chambers, shorter axial lengths, thickened 
or anteriorly displaced lenses, and smaller corneal diameters and curvatures [2, 3]. 
Incorporating precise anterior segment parameters into individualized treatment plans 
can significantly improve glaucoma management. Phacoemulsification remains the 
safest and most effective method for cataract  treatment, with research indicating that 
postoperative outcomes include reduced IOP and increased anterior chamber depth 
(ACD), anterior chamber volume (ACV), and ATA [4, 5]. Accurate measurements 
of anterior segment parameters, such as keratometry curvature (KC), ACD, and axial 
length (AL), are essential for selecting appropriate surgical techniques and intraocular 
lenses [6]. Moreover, successful implantation of intraocular contact lenses (ICL) for high 
refractive error correction relies on precise anterior segment parameters of ATA, ACD, 
AL, and vault height [7, 8].

Anterior segment imaging is commonly performed using anterior segment-optical 
coherence tomography (AS-OCT) and ultrasound biomicroscopy (UBM). AS-OCT 
utilizes optical coherence interferometry to generate high-resolution (10–20 μm), non-
invasive cross-sectional images. However, AS-OCT cannot visualize structures such as 
the posterior chamber, ciliary body, and suspensory ligament due to the inability of light 
to penetrate the iris pigment epithelium [9, 10]. In contrast, UBM utilizes high-frequency 
ultrasound (50–100 MHz), offering higher resolution than B-mode ultrasound but lower 
than AS-OCT. Despite being a contact imaging technique, UBM enables visualization of 
structures posterior to the iris, providing more comprehensive anatomical information 
[11]. Given these advantages, this study employed UBM for anterior segment imaging 
and parameter measurement.

With the rapid advancement of artificial intelligence and the expansion of large-
scale medical data sets, deep learning algorithms are increasingly being applied in 
disease screening, diagnosis, and detection. Ophthalmic imaging, which relies heavily 
on auxiliary diagnostic tools, has particularly benefited from these advancements 
[12, 13]. For instance, Da Soh et  al. developed and validated a deep learning model 
utilizing CycleGAN and U-NET algorithms to automatically label the scleral spur (SS) 
and segment the anterior chamber (AC) in AS-OCT images. This approach enabled 
rapid and accurate measurement of ACD and anterior chamber angle opening (ACA 
Opening), reducing human subjectivity [14]. Jiang et al. proposed a deep learning model 
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using U-NET + + for ACA tissue segmentation, combined with support vector machine 
and logistic regression algorithms for classifying iris curvature, iris root insertion, 
and angle closure. Their SS localization and ACA parameter measurement algorithm 
demonstrated strong consistency with the gold standard [15]. Fu et  al. analyzed the 
anatomical features of AC structures in patients suspected of primary angle closure 
suspect (PACS) and developed an AI-assisted diagnostic system using classification 
and regression trees, random forests, VGG-16, and AlexNet, with results validating its 
reliability [16]. Ren et  al. designed and evaluated a deep learning system (PM-AI) for 
screening pathologic myopia (PM) and myopic choroidal neovascularization (mCNV) 
based on 1156 color fundus photographs, demonstrating high diagnostic performance 
and reducing the workload of ophthalmologists [17]. In summary, deep learning has 
shown great promise in ophthalmology, significantly enhancing intelligent diagnostics 
and disease screening. As AI-driven techniques continue to evolve, their role in 
ophthalmic disease detection and diagnosis is expected to expand further [18].

The diagnosis and treatment of anterior segment diseases rely heavily on imaging-
based measurements [19]. Currently, clinical assessments primarily involve manual 
annotation of anatomical structures or the use of physical measurement devices such 
as Orbscan, IOL-Master, Pentacam, A-scan, AS-OCT, and UBM to obtain anterior 
segment parameters [20]. While widely employed, these methods have notable 
limitations. First, traditional devices require a high level of expertise, leading to inter-
operator variability that affects measurement precision and consistency. Second, manual 
annotation and measurement processes are time-consuming and prone to human error, 
thereby reducing efficiency. In addition, the resolution and measurement accuracy 
of some traditional devices are constrained by hardware limitations, making high-
precision assessments challenging. In contrast, deep learning methods offer significant 
advantages in anterior segment parameter measurement. They enable automated image 
processing, enhancing efficiency while minimizing human error. Deep learning models 
demonstrate high consistency and stability when analyzing large datasets, ensuring 
reliable and accurate results. Moreover, as data sets expand and models are further 
optimized, measurement precision and robustness will improve, reducing reliance on 
operator experience. However, research on comprehensive anterior segment parameter 
measurement using deep learning remains limited, highlighting the need for further 
investigation to enhance accuracy and completeness.

According to the actual requirements of the above analysis, this study employed 
deep learning technology using the YOLOv8 model for semantic segmentation of 
clinically collected UBM images. The segmentation targeted key anterior segment 
structures, including the cornea–sclera, anterior chamber, pupil, and iris–ciliary body. 
Subsequently, the UBM data were classified to exclude clinically insignificant data. 
Following segmentation, the YOLOv8 object detection algorithm was utilized for 
keypoint localization, identifying anatomical keypoints, such as the central corneal 
epithelium, central corneal endothelium, posterior capsule lentis, left and right anterior 
chamber angles, left and right ciliary grooves, the midpoint of the anterior lens capsule, 
and the left and right edges of the pupil. Based on these keypoints, the study computed 
anterior segment parameters, including CCT, ACD, PD, ATA, STS, LT, and CLR. Each 
of these parameters holds clinical significance: CCT is closely associated with IOP 
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variations and primary angle-closure glaucoma (PACG) progression; ACD measurement 
aids in PACG prevention and intraocular lens (IOL) placement; PD assists in cataract 
surgery planning; and ATA, STS, and CLR are essential for selecting IOLs in ICL surgery. 
In addition, LT serves as a crucial indicator for detecting conditions, such as glaucoma 
and cataracts [21–24].

This study aims to develop an accurate and efficient method for the  automatic 
localization and measurement of multiple anterior segment parameters using UBM 
images. By simplifying the clinical measurement process and detecting a comprehensive 
set of relevant parameters, this approach can support clinical diagnosis and improve 
workflow efficiency. The feasibility of the proposed keypoint localization and parameter 
measurement method was validated through a comparison of the automated detection 
results with the gold standard provided by clinicians.

Methods
Data sets

The data sets utilized in this study were sourced from myopic patients who underwent 
panoramic UBM examinations at Tianjin Medical University Eye Hospital between 
April 11, 2019, and September 18, 2020, in preparation for ICL surgery. Images were 
acquired using the MD-300L device (MEDA Co., Ltd., Tianjin, China) with a 50 MHz 
ultrasound probe, a scanning depth of 11 mm, and a width of 17.5 mm. Each image, with 
a resolution of 1024 × 576, captured detailed structures of the cornea, sclera, iris, pupil, 
anterior chamber, ciliary body, and lens. Experienced ophthalmologists performed the 
imaging, while another trained ophthalmologist annotated the images using Labelme 
(Massachusetts Institute of Technology, Cambridge, MA, USA) under de-identified 
conditions. The annotations were subsequently reviewed by a senior ophthalmologist to 
ensure accuracy and consistency. Ultimately, 716 high-quality panoramic UBM images 
meeting clinical criteria were included for analysis. To protect patient privacy, all images 
were anonymized. This study adhered to the principles of the Declaration of Helsinki by 
the World Medical Association and was approved by the Medical Ethics Committee of 
Tianjin Medical University Eye Hospital (2023KY-05). As a retrospective study utilizing 
anonymized data, informed consent was not required.

The annotation of UBM images was divided into three steps:
Segmentation: A random selection of 200 UBM anterior segment images was selected 

and manually segmented using Labelme software by an experienced ophthalmologist. 
Four anatomical structures were annotated: cornea–sclera, anterior chamber, iris–ciliary 
body, and pupil. Given the indistinct boundaries between the cornea and sclera, as well 
as the iris and ciliary body in UBM images, and considering that precise separation was 
not essential for keypoint localization, the cornea and sclera were combined into a single 
class, as were the iris and ciliary body. The annotated data set was divided into training 
and validation sets at an 8:2 ratio. Upon completion of model training, segmentation 
was performed on the remaining 516 images. The resulting segmented outputs were 
subsequently utilized in the binary classification task.

Classification: Since the posterior capsule lentis is only visible when the ultrasound 
beam is nearly perpendicular to the imaging plane, its presence indicates that the 
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scanning plane is aligned close to the midline of the lens and eyeball. Therefore, only 
images displaying the posterior capsule were considered valid for further analysis.

From the 516 images obtained from the segmentation model inference, 200 images 
were randomly selected and manually annotated by ophthalmologists to indicate the 
presence or absence of the posterior capsule. These annotated images were divided into 
training and validation sets at an 8:2 ratio to develop a binary classification model for 
detecting the posterior capsule. Once trained, the model was applied to the remaining 
316 unannotated images to automatically identify valid images containing the posterior 
capsule.

In the control group, which did not undergo segmentation, the same set of 200 images 
used in the experimental group of binary classification task was selected. These images 
were similarly divided into training and validation sets at an 8:2 ratio and used to train a 
separate binary classification model. Since this group did not include segmentation, the 
trained model was directly applied to the remaining 516 unsegmented images to identify 
valid samples.

Finally, the valid images identified by both the experimental and control groups were 
compared, and their intersection—comprising the same images recognized as valid with 
or without segmentation—was used as the final data set for the subsequent keypoint 
localization task.

Keypoint Localization: A total of 182 valid intersecting images were identified through 
the binary classification task. An experienced ophthalmologist then annotated the 
coordinates of ten key anatomical points, which served as the ground truth for the 
keypoint localization task. These keypoints included the central corneal epithelium, 
central corneal endothelium, posterior capsule lentis, left and right anterior chamber 
angles, left and right ciliary grooves, midpoint of the anterior lens capsule, and the left 
and right edges of the pupil. Subsequently, fivefold cross-validation was performed on 
the selected data set, which comprised 182 segmented images (experimental group) 
and their corresponding 182 unsegmented original images (control group). In each 
fold, the data were randomly divided into training, validation, and test sets in a 6:2:2 
ratio. A YOLOv8s-based keypoint localization model was trained on each training set 
and evaluated on its respective test set. Upon completion of all five folds, keypoint 
localization results were generated for all 182 images in both groups. Based on the 
predicted coordinates, seven anterior segment anatomical parameters were calculated 
for further analysis and comparative evaluation.

Model

To enhance adaptability in hardware-constrained environments, this study employed 
YOLOv8 as the deep learning model to simultaneously perform segmentation, 
classification, and localization tasks. The goal was to achieve efficient and accurate 
real-time inference while minimizing hardware demands, paving the way for future 
integration of  multi-task learning. The YOLOv8 framework offers advantages, such 
as low hardware demands, a shared feature extraction network, unified optimization 
through a joint loss function, and a flexible multi-output design. These features enable 
seamless handling of segmentation, classification, and localization tasks within a single 
model. Released by the Ultralytics team in 2023, YOLOv8 follows the YOLO (You Only 
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Look Once) paradigm and consists of three key components: the backbone, the neck, 
and the YOLO head. It adopts the CSPNet (Cross Stage Partial Network) architecture, 
which enhances feature learning while maintaining the real-time performance and high 
efficiency characteristic of the YOLO series [25, 26].

In this study, the YOLOv8s-seg semantic segmentation model was first utilized to 
segment four anatomical structures—cornea–sclera, anterior chamber, iris–ciliary 
body, and pupil. Subsequently, the YOLOv8s object detection model was employed to 
perform binary classification by identifying the presence of the posterior capsule lentis, 
ensuring that only clinically meaningful images containing this structure were retained 
for further analysis. Following this filtering step, the YOLOv8s model was again used to 
localize ten predefined anatomical keypoints. Based on these localization results, seven 
critical anterior segment parameters—CCT, ACD, PD, ATA, STS, LT, and CLR—were 
subsequently calculated.

Experimental procedure

The overall experimental workflow is illustrated in Fig. 1. To accommodate the unique 
positional characteristics of key points in UBM images, specific segmentation strategies 
were implemented. The cornea and sclera were combined into a single class, facilitating 
the extraction of key points related to the central corneal epithelium and endothelium. 
The anterior chamber was segmented separately to enhance the detection of the left 
and right anterior chamber angles. Similarly, the ciliary body and iris were grouped 
together to aid in localizing the left and right ciliary grooves. Meanwhile, the pupil was 
segmented individually to improve the identification of the midpoint of the anterior lens 
capsule and the left and right edges of the pupil.

From the original set of 716 UBM images, 200 were randomly selected for training the 
YOLOv8s-seg semantic segmentation model. An experienced ophthalmologist manually 
annotated four anatomical structures using Labelme software. After training, the 
segmentation model was applied to the remaining 516 images. Subsequently, 200 of 516 
segmented images were randomly selected and annotated for the presence or absence of 
the posterior capsule lentis, serving as a clinical criterion to evaluate the completeness 

Fig. 1  Overall workflow diagram
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and validity of the segmentation outputs. A binary classification model was then trained 
using these annotated images. Finally, the remaining 316 images—which had not been 
used during either the segmentation or classification training phases—were evaluated 
using the trained classifier, and clinically invalid images were excluded from further 
analysis.

To evaluate whether segmenting key anterior segment regions in UBM images 
improves keypoint detection accuracy, a control experiment was conducted. In this 
experiment, 200 randomly selected unsegmented images from the original set of 716 
were annotated for the presence of the posterior capsule lentis and used to train a binary 
classification model. This model was then applied to the remaining 516 unsegmented 
images to filter out clinically invalid cases.

Based on the binary classification results from both the experimental and control 
groups, a total of 182 overlapping valid images were identified and selected as the final 
data set for keypoint localization. Subsequently, fivefold cross-validation was conducted 
separately for the experimental group (with segmentation) and the control group 
(without segmentation). In each fold, the 182 images were randomly split into training, 
validation, and test sets in a 6:2:2 ratio. Two independent YOLOv8s-based keypoint 
localization models were trained on the respective training sets and evaluated on the 
corresponding test sets. After completing all five folds, keypoint localization results 
were obtained for all 182 images in both groups. Using the predicted coordinates of 
ten key anatomical keypoints, seven critical anterior segment parameters—CCT, ACD, 
PD, ATA, STS, LT, and CLR—were calculated. A comprehensive comparison of these 
parameters between the two groups is presented in the following sections.

In the first experimental group, the image is processed by YOLOv8s-seg to segment 4 
key structures, followed by YOLOv8s for binary classification to filter valid images and 
detect 10 anterior segment keypoints. Clinical parameters such as CCT, ACD, PD, ATA, 
STS, LT, and CLR are then computed.

In the second experimental  group, the image is directly processed by YOLOv8s to 
filter valid images and detect 10 keypoints, followed by the calculation of CCT, ACD, 
PD, ATA, STS, LT, and CLR parameters.

Environment setup

This study employed YOLOv8s and YOLOv8s-seg models. The model training 
framework was PyTorch version 2.4.1, with Python version 3.11.9. The GPU used was an 
NVIDIA RTX 3090Ti with 24 GB of memory, and the computing platform was based on 
CUDA version 12.1.

Evaluation metrics

Segmentation model evaluation metrics:
In deep learning-based segmentation tasks, performance is commonly assessed using 

metrics, such as Intersection over Union (IoU) and Pixel Accuracy (PA):

IOU =
Intersection

Union
=

TP

TP+ FP+ FN
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IoU measures the overlap between the predicted segmentation and the ground 
truth, providing an indication of model accuracy. True Positives (TP) represent 
correctly classified positive pixels, False Positives (FP) denote pixels mistakenly 
classified as positive, and False Negatives (FN) correspond to positive pixels 
incorrectly classified as negative:

PA measures the proportion of correctly predicted pixels relative to the total 
number of pixels in the image. In this context, True Negatives (TN) refer to pixels 
accurately classified as belonging to the negative class.

Evaluation Metrics for Binary Classification Models:
In binary classification tasks, commonly used evaluation metrics include mean 

Average Precision (mAP), Precision, and Recall to assess model performance:

The Average Precision (AP) evaluates the model’s accuracy and stability for a single 
class, where Rn is the recall at the nth recall point, Pn is the precision at the nth point, 
and N is the number of threshold points:

mAP measures the model’s ability to balance precision and recall across all classes, 
where C is the total number of classes, and APc denotes the average precision for class c:

Precision represents the proportion of correctly predicted positive samples among 
all samples classified as positive:

Recall indicates the proportion of actual positive samples that are correctly 
predicted by the model.

Evaluation Metrics for Keypoint Localization Models:
In this study, the performance of the keypoint localization model is evaluated 

using the Mean Absolute Error (MAE), which measures the average absolute error 
of the Euclidean distance between the deep learning localization results and the gold 
standard; the Root Mean Squared Error (RMSE), which calculates the root mean 
square error of the Euclidean distance; as well as mAP, Precision, Recall, and Frames 
Per Second (FPS) to assess the effectiveness of keypoint localization:

PA =
TP+ TN

TP+ FP+ TN+ FN

AP =

N∑

n=1

(Rn − Rn−1)Pn

mAP =
1

C

C∑

c=1

APc

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN
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MAE reflects the average absolute difference between the predicted values and the 
true values, where n is the number of samples, yi is the true value of the ith sample, and 
ŷi is the predicted value of the ith sample:

RMSE reflects the variability between predictions and ground truth, while FPS 
represents the model’s inference speed by measuring the number of images processed 
per second.

Results
Segmentation results

The model achieved an mIoU of 0.8836 and an mPA of 0.9795 in the internal data set, 
demonstrating strong segmentation performance. The results, both before and after 
segmentation, are presented in Fig. 2.

Binary classification results

In this study, the effectiveness of the UBM images was assessed by determining the 
presence or absence of the posterior capsule lentis using the YOLOv8s model. For the 
unsegmented images, the model achieved an mAP of 0.9661, a precision of 0.9254, 
and a recall of 0.9549. For segmented images, the model achieved an mAP of 0.9719, 

MAE =
1

n

n∑

i=1

∣∣yi − ŷi
∣∣

RMSE =

√√√√1

n

n∑

i=1

(
yi − ŷi

)2

Fig. 2  UBM Images before and after segmentation. a Original UBM image before segmentation. b Manually 
annotated segmentation mask. c Predicted structural maps for the four categories by the segmentation 
model. d Predicted segmentation masks by the segmentation model
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a precision of 0.9259, and a recall of 0.9615. The valid images identified by both the 
experimental (segmented) and control (unsegmented) groups were then compared, 
and their intersection—comprising 182 identical images recognized as valid in both 
cases—was selected as the final data set for the subsequent keypoint localization task.

Keypoint localization and anterior segment parameter calculation

In this study, the YOLOv8s model was employed for object detection to locate ten 
anterior segment keypoints and calculate anterior segment parameters. The keypoint 
localization results before and after segmentation are presented in Fig. 3.

In the figure, the coordinates of the detection box center points for Classes 0 to 9 
correspond to the positions of the left and right ciliary grooves, the midpoint of the 
anterior lens capsule, the central corneal endothelium, the central corneal epithelium, 
the left and right anterior chamber angles, the left and right edges of the pupil, and 
the posterior capsule lentis. Table  1 summarizes the average performance of the 
keypoint localization models under fivefold cross-validation, both with and without 
segmentation, in terms of MAE, RMSE, mAP, Recall, and FPS.

As shown in the table above, the keypoint localization model demonstrates a relatively 
high detection speed, exceeding 32 frames per second. After segmentation, the 
average Euclidean distance error decreased from 71.57 ± 67.36 μm to 58.73 ± 63.04 μm, 
indicating a significant reduction in localization error. Both MAE and RMSE also 
improved, further confirming that segmentation enhances the accuracy of the object 
detection model. In addition, the mAP, Precision, and Recall values were higher after 
segmentation, reflecting improved model performance and greater suitability for 
keypoint localization in UBM images. Figure 4 presents a histogram of the localization 
errors of keypoints before and after segmentation, with the x-axis representing the error 
range (μm) and the y-axis representing the proportion of keypoints.

Fig. 3  Results of keypoints localization. a Keypoints localization result before segmentation. b Keypoints 
localization result after segmentation

Table 1  Localization performance of keypoints before and after segmentation

MAE/μm RMSE/μm mAP Precision Recall FPS

Pre-Segmentation 71.57 67.36 0.9493 0.9270 0.9233 33.46

Post-Segmentation 58.73 63.04 0.9826 0.9699 0.9642 32.64
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As illustrated in Fig. 4, the proportion of keypoints with localization errors below 
50 μm increased from 68.24% to 76.42% after segmentation, while the proportion of 
keypoints with errors exceeding 50 μm decreased. These results further confirm the 
improved performance of the keypoint localization model after the application of 
segmentation.

Once the ten keypoints of the anterior segment are identified, calculating the values 
of CCT, ACD, PD, ATA, STS, LT, and CLR becomes straightforward. Their positions 
within the UBM images are illustrated in Fig. 5.

In this study, the performance of key parameter measurements was evaluated 
using the MAE and the RMSE of the Euclidean distances between the deep learning 
predictions and the ground truth. After fivefold cross-validation, the measurement 
results of all test sets, with and without segmentation, are summarized in Table 2.

The accuracy of four anterior segment parameters—ATA, STS, PD, and CLR—
significantly improved after segmentation. This improvement can be attributed to 
several factors:

Fig. 4  Error Range and Proportion of Keypoints Localization Before and After Segmentation. a Histogram 
of keypoints localization errors before segmentation. b Histogram of keypoints localization errors after 
segmentation

Fig. 5  Key Anterior Segment Parameters Before and After Segmentation. a Key anterior segment parameters 
before segmentation. b Key anterior segment parameters after segmentation. CCT: Distance from the central 
corneal apex to the endothelium; ACD: Distance from the corneal endothelium to the apex of the anterior 
lens capsule; LT: Vertical distance from the apex of the anterior lens capsule to the posterior capsule lentis; 
ATA: Distance between the left and right anterior chamber angles; STS: Distance between the left and right 
ciliary grooves; PD: Distance between the left and right edges of the pupil; CLR: Distance from the midpoint 
of the anterior lens capsule to the line connecting the left and right anterior chamber angles
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1.	 Semantic segmentation refines the YOLOv8s localization model by extracting 
local features, distinguishing anatomical structures (e.g., cornea, iris, ciliary body), 
reducing background noise, and improving keypoint localization accuracy.

2.	 Segmentation provides structured contextual information, helping define anatomical 
boundaries and spatial relationships. Since all 10 keypoints are located near these 
boundaries, segmentation assists YOLOv8s in achieving more precise localization.

3.	 High-quality segmentation optimizes training data, providing more accurate inputs 
for keypoint detection and improving overall localization accuracy.

Conversely, the accuracy of CCT, ACD, and LT slightly decreased after 
segmentation, which may be due to the following reasons:

1.	 Error Accumulation: These parameters rely on the positions of the cornea, pupil, 
and posterior capsule lentis, where segmentation errors may accumulate, affecting 
accuracy.

2.	 Indistinct Boundaries: Certain structures are challenging to delineate precisely, 
leading to potential misalignment in keypoint localization.

3.	 Impact on Non-Boundary Keypoints: Keypoints such as the central corneal 
endothelium and epithelium are located near bright crescent-shaped regions 
rather than clear structural boundaries. Since segmentation primarily emphasizes 
boundaries, it may introduce slight shifts in their localization.

4.	 UBM Resolution Limitations: The errors in CCT, ACD, and LT measurements fall 
within the 10–20 μm range, which is lower than the device’s resolution limits (30 μm 
axial, 40 μm lateral), constraining further accuracy improvements.

Moreover, as shown in the table above, the RMSE of different key parameters 
after segmentation exhibits variations, with some increasing and others decreasing, 
without a clear consistent trend. RMSE is highly sensitive to outliers, meaning that 
segmentation errors in specific images can lead to significant fluctuations. These 
variations reflect the complexity of UBM images, data set diversity, and inherent 
limitations of the segmentation model.

Table 2  Measurement performance of key parameters before and after segmentation

The bold values indicate that the MAE or RMSE has significantly improved after segmentation

MAE/μm
(Pre-Segmentation)

RMSE/μm
(Pre-Segmentation)

MAE/μm
(Post-Segmentation)

RMSE/μm
(Post-
Segmentation)

CCT​ 18.53 14.80 25.81 20.41

ACD 19.18 15.36 24.14 19.06

LT 24.06 37.03 24.37 37.00

ATA​ 100.96 98.35 67.94 60.89
STS 88.12 76.34 45.54 68.35
PD 86.00 97.94 76.85 100.13

CLR 36.23 32.94 25.79 22.50
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Figure  6 presents the Bland–Altman plots for anterior segment parameter 
measurements before and after segmentation, illustrating the consistency between the 
deep learning model’s outputs and the ground truth data.

In the Bland–Altman plot, the red dashed line represents the mean difference between 
the predicted and true values. This line remains close to zero both before and after 
segmentation, indicating that the deep learning-based method for measuring anterior 
segment parameters does not exhibit significant systematic bias, and the predicted 
values align well with the actual values. The two green lines represent the limits of 
agreement (LoA), within which most of the data points should fall. A narrower LoA 
interval suggests better stability in the prediction results. In Fig.  6b, the LoA interval 
is narrower, and the data points are more tightly clustered, particularly around zero, 
indicating that the predicted values are closer to the true values. This further indicates 
that after segmentation, the model demonstrates reduced variability, leading to 
enhanced consistency and stability in the measurements. These findings further confirm 
the positive impact of segmentation on anterior segment parameter estimation. Overall, 
considering keypoint localization accuracy and parameter calculation before and after 
segmentation, the YOLOv8s-based model, following segmentation, proves more suitable 
for clinical measurement of key parameters in UBM anterior segment images.

Discussion
In this study, we proposed a method for keypoint localization and parameter 
measurement in UBM anterior segment images based on the YOLOv8 deep learning 
model. Our approach successfully segmented four key structures: cornea–sclera, 
anterior chamber, iris–ciliary body, and pupil. We evaluated the effectiveness of the 
anterior segment images and filtered UBM images with complete clinical significance. 
We accurately localized ten keypoints and computed seven commonly used anterior 
segment parameters—CCT, ACD, PD, ATA, STS, LT, and CLR—based on clinical 
definitions. The maximum error compared to the gold standard established by clinical 
experts was within the micrometer range, highlighting the potential of artificial 
intelligence to enhance efficiency and completeness in anterior segment parameter 
measurement. Furthermore, comparative experiments demonstrated that segmenting 
key structures in UBM images significantly improves measurement accuracy.

Fig. 6  Bland–Altman plots based on the error distance between all predicted and actual points. a Bland–
Altman plot of 182 points before segmentation. b Bland–Altman plot of 182 points after segmentation
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The proposed method for anterior segment parameter measurement offers several 
advantages over traditional approaches. In terms of automation and efficiency, 
conventional methods rely on manual annotation and device-based measurements 
(e.g., Orbscan, IOL-Master, Pentacam, A-scan, AS-OCT, and UBM), which are time-
consuming and subject to operator experience and subjective biases. In contrast, our 
fully automated approach significantly enhances processing efficiency. In addition, 
it ensures greater consistency. Traditional methods often exhibit variability due to 
differences in operator skills, making it difficult to maintain uniform accuracy. By 
leveraging deep learning, our method produces stable and reliable results, minimizing 
human error. Furthermore, our method effectively reduces measurement errors. 
Traditional techniques rely on the operator’s ability to precisely identify key anatomical 
points, making them prone to errors, especially among less experienced practitioners. In 
contrast, our deep learning model continuously improves its robustness and accuracy as 
data volume increases, leading to a significant reduction in error rates.

Previous studies on AI applications in ophthalmology have primarily focused on 
disease assessment and diagnosis, including glaucoma, cataracts, age-related macular 
degeneration, and diabetic retinopathy, while research dedicated to anterior segment 
parameter measurements remains limited. Guangqian Yang et  al. measured anterior 
segment parameters such as the anterior chamber angle opening distance (AOD), 
trabecular iris space area (TISA), and ACA using a hybrid convolutional neural 
network, which aids in the diagnosis and monitoring of PACG [27]. Studies in the field 
of artificial intelligence for anterior segment parameter measurement are similar to 
this work, while literature on measuring other anterior segment parameters remains 
limited. Zhuyun Qian, Zhi Da Soh, and Shimizu E utilized deep learning models to 
measure ACD, demonstrating the importance of high-quality imaging. Shimizu E’s 
machine learning model, based on SWSL ResNet, reported an ACD detection error of 
93 ± 82 μm—significantly higher than the 24.14 ± 19.06 μm achieved in this study [28–
30]. In addition, the anterior segment parameters measured using artificial intelligence 
models in existing studies remain relatively limited in scope. Pham T H et  al. utilized 
U-NET and FRRnet to segment structures, such as the iris, cornea–scleral shell, and 
anterior chamber, subsequently measuring ACD, ATA, and ACA Opening with high 
reliability—an approach that closely aligns with this study [31]. Fu H et al. utilized VGG-
16 to measure multiple parameters, including PD, ATA, ACD, ACV, and iris thickness 
(IT) in AS-OCT images. Their study’s findings are highly referential, but the accuracy of 
their measurements is significantly influenced by the positioning accuracy of the SS and 
trabecular meshwork (TM), as well as interference from image shadows [32]. Overall, 
there remains a shortage of research on AI-driven measurement of multiple anterior 
segment parameters. Further studies are needed to enhance the comprehensiveness and 
accuracy of AI-based measurement approaches.

In this study, the segmentation model achieved an mIOU of 0.8836 and an mPA of 
0.9795, effectively segmenting four key structures in UBM anterior segment images. 
Meanwhile, the mAP for binary classification exceeded 0.96, demonstrating the model’s 
ability to accurately identify UBM images with complete clinical significance. We further 
evaluated keypoint localization and parameter measurement performance before 
and after segmentation. After segmentation, the Euclidean distance error for keypoint 
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localization improved to 58.73 ± 63.04  μm from 71.57 ± 67.36  μm, with 76.42% of 
keypoints having an error below 50  μm compared to 68.24% before segmentation. In 
addition, the model achieved an mAP of 0.9826, a Precision of 0.9699 and a Recall of 
0.9642, highlighting its suitability for keypoint localization in UBM anterior segment 
images. For parameter measurements, segmentation significantly reduced errors in 
ATA, STS, PD, and CLR, indicating that the semantic segmentation model enhanced 
the YOLOv8s localization model by extracting local features, providing structured 
contextual information, and optimizing the training data set. However, the accuracy of 
CCT, ACD, and LT slightly declined, suggesting that the segmentation-then-localization 
approach may introduce segmentation errors, affecting precise boundary detection and 
reducing accuracy for non-boundary key points. In addition, the resolution limitations 
of the UBM device may constrain further precision improvements. The RMSE variations 
across different parameters showed inconsistencies, reflecting image complexity, 
data set variability, and segmentation model limitations. To enhance result reliability, 
future research could incorporate stability analyses, such as multiple cross-validation, 
to assess performance across different contexts. In the Bland–Altman plot (Fig. 6), the 
post-segmentation results exhibited improved consistency, characterized by narrower 
limits of agreement and data points more densely clustered around zero. This indicates 
that the predicted values more closely approximate the true values, further validating 
the positive effect of segmentation on anterior segment parameter measurements. 
Overall, this method provides an efficient and comprehensive approach for measuring 
key anterior segment parameters (CCT, ACD, PD, ATA, STS, LT, CLR) in UBM images, 
offering valuable clinical reference and improving diagnostic efficiency. However, further 
validation through clinical practice is necessary for broader application.

This study also has some limitations. First, compared to traditional methods, our 
approach has a higher reliance on computational resources. While using high-end 
GPUs (such as the 3090Ti), the model inference speed can exceed 32 FPS. Although 
reasonable hardware configurations can achieve the same or higher detection rates 
without relying on high-end GPUs, some resource-limited hospitals may struggle to 
meet the hardware requirements. Future research should focus on reducing model 
complexity through techniques such as pruning, quantization, depthwise separable 
convolutions, and lightweight architectures to improve performance in hardware-
constrained environments. Second, the model’s generalization ability is relatively weak. 
The data set used in this study comes from a single UBM device, with a small sample 
size and a fixed target population. If the source of the images or the equipment changes, 
the model’s detection accuracy may decrease. Future work will need to retrain or adjust 
the model to ensure the reliability and accuracy of the measurement results. Finally, the 
interpretability of the results is limited. Traditional methods have a transparent and 
easily understandable calculation process, while our method directly outputs results, 
which may reduce trust in the outcomes by both patients and doctors.

Conclusion
The deep learning model we proposed effectively performs keypoint localization 
and parameter measurement in UBM anterior segment images. It accurately and 
effectively detects seven critical anterior segment parameters: CCT, ACD, PD, 
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ATA, STS, LT, and CLR. The measurement results exhibit minimal errors compared 
to the gold standard established by clinical experts, offering valuable references 
for clinicians and improving diagnostic efficiency. This demonstrates the model’s 
potential for clinical application. Future work will focus on further clinical validation 
to assess its real-world performance and refine it to better meet clinical needs.
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