Skip to main content

Table 2 Baseline characteristics of included studies and performance of color fundus image screening

From: Performance and limitation of machine learning algorithms for diabetic retinopathy screening and its application in health management: a meta-analysis

Code

Author (year) [Ref.]

Total images

Sensitivity

Specificity

AUC

Approach for screening

2

Jain (2021) [26]

1294

100

89.55

 

Kowa VX-10a mydriatic camera & Remidio FOP NM-10

3

Keel (2018) [27]

96

92.3

93.7

0.95

DLA

4

Jiang (2020) [28]

3228

93.9

94.4

0.94

Grad-CAM

5

Ipp (2020) [29]

893

95.5

85

 

ETDRS scale

6

Ibáñez-Bruron (2021) [30]

89

100

55.4

 

DART

7

Yo-Ping Huang (2020) [31]

52

96.6

95.2

0.99

VGG16, VGG19, MobileNet, InceptionV3, DenseNet

8

Hsu (2021) [32]

13,410

96.84

89.44

0.97

DLA

9

Yi-Ting Hsieh (2019) [33]

7524

92.2

97.5

0.95

CNN (VeriSee)

10

Heydon (2020) [34]

30,405

95.7

68

 

EyeArt v2.1

11

He (2019) [35]

889

90.79

98.5

0.94

Airdoc

12

Hao (2022) [36]

6146

79.2

87.1

 

VoxelCloud

13

Guo (2021) [37]

978

54

95

0.88

ResNet & U-Net

14

Gulshan (2019) [38]

3049

83.5

98.7

0.96

ICDR scale

15

Gulshan (2016) [39]

4997

90.3

98.1

0.99

DLA

16

Grzybowski (2021) [40]

60

93.33

94.45

0.94

Retinalyze

17

González-Briceño (2020) [41]

3368

89

92

 

Cross-industry standard process for data mining

18

Gargeya (2017) [42]

75,137

94

98

0.97

DLA

19

Glinton (2022) [43]

597

91

95

0.93

Python (version 3.6.9)

20

Gadekallu (2020) [44]

1151

90.4

94.3

 

DLA

21

Fleming (2023) [45]

179,944

89.19

77.41

0.99

DLA

22

M. Al-hazaimeh (2022) [46]

88,702

99.2

96.4

0.98

SVMGA

23

TamoorAziz (2023) [47]

219

94.21

97.46

0.98

DLA

24

Ghadah Alwakid (2023) [48]

12,522

89

99

 

CLAHE, ESRGAN

25

Eman AbdelMaksoud (2022) [49]

3662

96

69

0.99

CNN

26

Marc Baget-Bernaldiz (2021) [50]

1200

97.92

99.91

0.99

DLA

27

Anas Bilal (2022) [51]

98

96.9

96.9

0.97

U-NET, CNN-SVD

28

Usharani Bhimavarapu (2023) [52]

88,702

96.34

96.74

0.89

CNN

29

Wejdan L. Alyoubi (2021) [53]

13,673

89

97.3

0.95

CNN512, YOLOv3

30

Miao (2022) [54]

35,126

79.01

89.07

0.79

DLA

31

Penha (2023) [21]

686

93.6

71.7

0.86

EyerMaps

32

Lee (2021) [55]

311,604

80.47

81.28

 

VA HCS

33

Lam (2018) [56]

1346

95

96

 

DIGITS

34

Nugroho (2021) [57]

200

95

81

 

DLA

35

Nneji (2022) [58]

35,126

98.9

98

0.99

WFDLN

36

Zhang (2022) [22]

1089

98.23

74.45

0.95

EyeWisdom V1

37

Yang (2021) [59]

1418

79.6

79.9

0.81

XGBoost, RF, naïve Bayes, KNN, AdaBoost, Light GBM, ANN, LR

38

Zhao (2022) [60]

7943

88.9

74

0.8

RF, XGBoost, LR, SVM, KNN

39

Pinedo-Diaz (2022) [61]

420

97.66

98.33

0.98

DLA

40

Surya (2023) [62]

1085

83.33

98.86

0.83

Dr Noon

41

Zhang (2020) [63]

47,269

83.3

92.5

 

DLA

42

Sosale (2020) [64]

922

93

92.5

0.9

Medios AI

43

Mehboob (2022) [65]

25,600

78

44

 

DLA

44

Mujeeb Rahman (2022) [66]

560

93.65

95.13

0.97

DNN, SVM

45

Abramoff (2016) [67]

1748

96.7

87

0.98

IDx-DR X2.1

46

Palaniswamy (2023) [68]

813

94.28

99.34

0.96

DLA

47

Ting (2017) [69]

71,896

90.5

91.6

0.93

DLA

48

Jebaseeli (2019) [70]

201

80.61

99.54

 

DLBSVM

49

Jena (2022) [71]

100

99.2

99.4

0.99

2-branch CNN

50

Jiang (2019) [72]

30,244

85.57

90.85

0.946

DLA

51

Khan (2023) [73]

45

79.63

98.63

0.98

Inception v3 & DenseNet-121

52

Shankar (2020) [74]

541

98.54

99.38

 

SDL

53

Kuna (2023) [75]

1200

98.9

99.7

 

DL-DRDC

54

Ludwig (2020) [76]

92,364

89

89

0.89

CNN

55

Sosale (2020) [77]

297

98.84

86.73

0.92

ICDRS scale

56

Li (2022) [23]

1674

95

85.1

0.94

Deep learning algorithm

57

Roy (2020) [78]

1330

94

95

 

DLA

58

Romero-Aroca (2020) [79]

1748

96.7

97.6

 

DLA

59

Pei (2022) [80]

324

91

81.3

0.86

EyeWisdom

60

Rayave (2022) [81]

650

65.54

100

 

CNN, RNN, SVM, FKM, DA

61

Paradisa (2020) [82]

89

99.3

98

 

CNN, SVM, KNN, RF, XGBoost

62

Li (2022) [83]

950

97.96

93.88

0.99

NNs, SVM, XGBoost, DT, LR, GNB, KNN

63

Roychowdhury (2013) [84]

1200

100

53.16

0.87

GMM, SVM, KNN, AdaBoost

64

Sarao (2020) [85]

165

90.8

75.3

0.07

EyeArt

65

Li (2021) [86]

32,452

70

90

0.9

LR, XGBoost, RF, SVM

66

Wu (2022) [87]

7033

100

37.8

0.9

OC-Net, SE-Net

67

Ruamviboonsuk (2022) [88]

138

91.4

95.4

 

DLA

68

Ruamviboonsuk (2019) [89]

25,326

97

96

 

DLA

69

Saxena (2020) [90]

56,839

81.02

86.09

0.92

CNN

70

Sayres (2019) [91]

1612

79.4

96.6

 

DLA

71

A. Shah (2021) [92]

2680

100

81.82

0.98

IDx-DR

72

P. Shah (2020) [93]

1533

99.7

98.5

0.99

CNN

73

Rajalakshmi (2018) [94]

296

95.8

80.2

 

ICDR

74

Reddy (2022) [95]

89

90.2

95.2

0.88

DLA

75

Rom (2022) [96]

363

45

94

0.81

CNN

76

Rogers (2021) [97]

22,180

81.6

81.7

0.98

Pegasus

77

Ryu (2022) [98]

918

67.5

94.4

 

CNN

  1. DLA: Deep-learning algorithm; VA: Veterans Affairs; HCS: Puget Sound Health Care System; DIGITS: Deep Learning GPU Training System; WFDLN: weighted fusion deep learning network; XGBoost: extreme gradient boosting; KNN: k-nearest neighbour; ANN: artificial neural network; RF: Random Forest; LR: Logistic Regression; SVM: Support Vector Machine; DNN: deep neural network; DLBSVM: Deep Learning Based Support Vector Machine; SDL: Synergic deep learning; CNN: convolutional neural networks; ICDRS: International Clinical Diabetic Retinopathy Severity Scale System; RNN: Recurrent Neural Network; FKM: Fuzzy K-means cluster; DA: Discriminant Analysis; GNB: Gaussian Naive Bayes; LR: Logistics Regression; DT: Decision Tree; NNs: Neural Networks; GMM: Gaussian Mixture model; OC-Net: occurrence network; SE-Net: a severity network; DL-DRDC: w deep learning empowered diabetic retinopathy detection and classification