Code | Author (year) [Ref.] | Total images | Sensitivity | Specificity | AUC | Approach for screening |
---|---|---|---|---|---|---|
2 | Jain (2021) [26] | 1294 | 100 | 89.55 | Â | Kowa VX-10a mydriatic camera & Remidio FOP NM-10 |
3 | Keel (2018) [27] | 96 | 92.3 | 93.7 | 0.95 | DLA |
4 | Jiang (2020) [28] | 3228 | 93.9 | 94.4 | 0.94 | Grad-CAM |
5 | Ipp (2020) [29] | 893 | 95.5 | 85 | Â | ETDRS scale |
6 | Ibáñez-Bruron (2021) [30] | 89 | 100 | 55.4 |  | DART |
7 | Yo-Ping Huang (2020) [31] | 52 | 96.6 | 95.2 | 0.99 | VGG16, VGG19, MobileNet, InceptionV3, DenseNet |
8 | Hsu (2021) [32] | 13,410 | 96.84 | 89.44 | 0.97 | DLA |
9 | Yi-Ting Hsieh (2019) [33] | 7524 | 92.2 | 97.5 | 0.95 | CNN (VeriSee) |
10 | Heydon (2020) [34] | 30,405 | 95.7 | 68 | Â | EyeArt v2.1 |
11 | He (2019) [35] | 889 | 90.79 | 98.5 | 0.94 | Airdoc |
12 | Hao (2022) [36] | 6146 | 79.2 | 87.1 | Â | VoxelCloud |
13 | Guo (2021) [37] | 978 | 54 | 95 | 0.88 | ResNet & U-Net |
14 | Gulshan (2019) [38] | 3049 | 83.5 | 98.7 | 0.96 | ICDR scale |
15 | Gulshan (2016) [39] | 4997 | 90.3 | 98.1 | 0.99 | DLA |
16 | Grzybowski (2021) [40] | 60 | 93.33 | 94.45 | 0.94 | Retinalyze |
17 | González-Briceño (2020) [41] | 3368 | 89 | 92 |  | Cross-industry standard process for data mining |
18 | Gargeya (2017) [42] | 75,137 | 94 | 98 | 0.97 | DLA |
19 | Glinton (2022) [43] | 597 | 91 | 95 | 0.93 | Python (version 3.6.9) |
20 | Gadekallu (2020) [44] | 1151 | 90.4 | 94.3 | Â | DLA |
21 | Fleming (2023) [45] | 179,944 | 89.19 | 77.41 | 0.99 | DLA |
22 | M. Al-hazaimeh (2022) [46] | 88,702 | 99.2 | 96.4 | 0.98 | SVMGA |
23 | TamoorAziz (2023) [47] | 219 | 94.21 | 97.46 | 0.98 | DLA |
24 | Ghadah Alwakid (2023) [48] | 12,522 | 89 | 99 | Â | CLAHE, ESRGAN |
25 | Eman AbdelMaksoud (2022) [49] | 3662 | 96 | 69 | 0.99 | CNN |
26 | Marc Baget-Bernaldiz (2021) [50] | 1200 | 97.92 | 99.91 | 0.99 | DLA |
27 | Anas Bilal (2022) [51] | 98 | 96.9 | 96.9 | 0.97 | U-NET, CNN-SVD |
28 | Usharani Bhimavarapu (2023) [52] | 88,702 | 96.34 | 96.74 | 0.89 | CNN |
29 | Wejdan L. Alyoubi (2021) [53] | 13,673 | 89 | 97.3 | 0.95 | CNN512, YOLOv3 |
30 | Miao (2022) [54] | 35,126 | 79.01 | 89.07 | 0.79 | DLA |
31 | Penha (2023) [21] | 686 | 93.6 | 71.7 | 0.86 | EyerMaps |
32 | Lee (2021) [55] | 311,604 | 80.47 | 81.28 | Â | VA HCS |
33 | Lam (2018) [56] | 1346 | 95 | 96 | Â | DIGITS |
34 | Nugroho (2021) [57] | 200 | 95 | 81 | Â | DLA |
35 | Nneji (2022) [58] | 35,126 | 98.9 | 98 | 0.99 | WFDLN |
36 | Zhang (2022) [22] | 1089 | 98.23 | 74.45 | 0.95 | EyeWisdom V1 |
37 | Yang (2021) [59] | 1418 | 79.6 | 79.9 | 0.81 | XGBoost, RF, naïve Bayes, KNN, AdaBoost, Light GBM, ANN, LR |
38 | Zhao (2022) [60] | 7943 | 88.9 | 74 | 0.8 | RF, XGBoost, LR, SVM, KNN |
39 | Pinedo-Diaz (2022) [61] | 420 | 97.66 | 98.33 | 0.98 | DLA |
40 | Surya (2023) [62] | 1085 | 83.33 | 98.86 | 0.83 | Dr Noon |
41 | Zhang (2020) [63] | 47,269 | 83.3 | 92.5 | Â | DLA |
42 | Sosale (2020) [64] | 922 | 93 | 92.5 | 0.9 | Medios AI |
43 | Mehboob (2022) [65] | 25,600 | 78 | 44 | Â | DLA |
44 | Mujeeb Rahman (2022) [66] | 560 | 93.65 | 95.13 | 0.97 | DNN, SVM |
45 | Abramoff (2016) [67] | 1748 | 96.7 | 87 | 0.98 | IDx-DR X2.1 |
46 | Palaniswamy (2023) [68] | 813 | 94.28 | 99.34 | 0.96 | DLA |
47 | Ting (2017) [69] | 71,896 | 90.5 | 91.6 | 0.93 | DLA |
48 | Jebaseeli (2019) [70] | 201 | 80.61 | 99.54 | Â | DLBSVM |
49 | Jena (2022) [71] | 100 | 99.2 | 99.4 | 0.99 | 2-branch CNN |
50 | Jiang (2019) [72] | 30,244 | 85.57 | 90.85 | 0.946 | DLA |
51 | Khan (2023) [73] | 45 | 79.63 | 98.63 | 0.98 | Inception v3 & DenseNet-121 |
52 | Shankar (2020) [74] | 541 | 98.54 | 99.38 | Â | SDL |
53 | Kuna (2023) [75] | 1200 | 98.9 | 99.7 | Â | DL-DRDC |
54 | Ludwig (2020) [76] | 92,364 | 89 | 89 | 0.89 | CNN |
55 | Sosale (2020) [77] | 297 | 98.84 | 86.73 | 0.92 | ICDRS scale |
56 | Li (2022) [23] | 1674 | 95 | 85.1 | 0.94 | Deep learning algorithm |
57 | Roy (2020) [78] | 1330 | 94 | 95 | Â | DLA |
58 | Romero-Aroca (2020) [79] | 1748 | 96.7 | 97.6 | Â | DLA |
59 | Pei (2022) [80] | 324 | 91 | 81.3 | 0.86 | EyeWisdom |
60 | Rayave (2022) [81] | 650 | 65.54 | 100 | Â | CNN, RNN, SVM, FKM, DA |
61 | Paradisa (2020) [82] | 89 | 99.3 | 98 | Â | CNN, SVM, KNN, RF, XGBoost |
62 | Li (2022) [83] | 950 | 97.96 | 93.88 | 0.99 | NNs, SVM, XGBoost, DT, LR, GNB, KNN |
63 | Roychowdhury (2013) [84] | 1200 | 100 | 53.16 | 0.87 | GMM, SVM, KNN, AdaBoost |
64 | Sarao (2020) [85] | 165 | 90.8 | 75.3 | 0.07 | EyeArt |
65 | Li (2021) [86] | 32,452 | 70 | 90 | 0.9 | LR, XGBoost, RF, SVM |
66 | Wu (2022) [87] | 7033 | 100 | 37.8 | 0.9 | OC-Net, SE-Net |
67 | Ruamviboonsuk (2022) [88] | 138 | 91.4 | 95.4 | Â | DLA |
68 | Ruamviboonsuk (2019) [89] | 25,326 | 97 | 96 | Â | DLA |
69 | Saxena (2020) [90] | 56,839 | 81.02 | 86.09 | 0.92 | CNN |
70 | Sayres (2019) [91] | 1612 | 79.4 | 96.6 | Â | DLA |
71 | A. Shah (2021) [92] | 2680 | 100 | 81.82 | 0.98 | IDx-DR |
72 | P. Shah (2020) [93] | 1533 | 99.7 | 98.5 | 0.99 | CNN |
73 | Rajalakshmi (2018) [94] | 296 | 95.8 | 80.2 | Â | ICDR |
74 | Reddy (2022) [95] | 89 | 90.2 | 95.2 | 0.88 | DLA |
75 | Rom (2022) [96] | 363 | 45 | 94 | 0.81 | CNN |
76 | Rogers (2021) [97] | 22,180 | 81.6 | 81.7 | 0.98 | Pegasus |
77 | Ryu (2022) [98] | 918 | 67.5 | 94.4 | Â | CNN |